
Original Paper

Ability of Current Machine Learning Algorithms to Predict and
Detect Hypoglycemia in Patients With Diabetes Mellitus:
Meta-analysis

Satoru Kodama1, MD, PhD; Kazuya Fujihara2, MD, PhD; Haruka Shiozaki2, PhD; Chika Horikawa3, RD, PhD, CDE;

Mayuko Harada Yamada2, MD; Takaaki Sato2, MD, PhD; Yuta Yaguchi2, MD; Masahiko Yamamoto2, MD; Masaru

Kitazawa2, MD; Midori Iwanaga2, MD; Yasuhiro Matsubayashi2, MD, PhD; Hirohito Sone2, MD, PhD, FACP
1Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Niigata University Graduate School of Medical and
Dental Sciences, Niigata, Japan
2Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
3Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan

Corresponding Author:
Satoru Kodama, MD, PhD
Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup
Niigata University Graduate School of Medical and Dental Sciences
1-757, Asahimachi-dori, Cyuoh-ku
Niigata, 951-8510
Japan
Phone: 81 25 227 2117
Email: ybbkodama@gmail.com

Abstract

Background: Machine learning (ML) algorithms have been widely introduced to diabetes research including those for the
identification of hypoglycemia.

Objective: The objective of this meta-analysis is to assess the current ability of ML algorithms to detect hypoglycemia (ie, alert
to hypoglycemia coinciding with its symptoms) or predict hypoglycemia (ie, alert to hypoglycemia before its symptoms have
occurred).

Methods: Electronic literature searches (from January 1, 1950, to September 14, 2020) were conducted using the Dialog platform
that covers 96 databases of peer-reviewed literature. Included studies had to train the ML algorithm in order to build a model to
detect or predict hypoglycemia and test its performance. The set of 2 × 2 data (ie, number of true positives, false positives, true
negatives, and false negatives) was pooled with a hierarchical summary receiver operating characteristic model.

Results: A total of 33 studies (14 studies for detecting hypoglycemia and 19 studies for predicting hypoglycemia) were eligible.
For detection of hypoglycemia, pooled estimates (95% CI) of sensitivity, specificity, positive likelihood ratio (PLR), and negative
likelihood ratio (NLR) were 0.79 (0.75-0.83), 0.80 (0.64-0.91), 8.05 (4.79-13.51), and 0.18 (0.12-0.27), respectively. For prediction
of hypoglycemia, pooled estimates (95% CI) were 0.80 (0.72-0.86) for sensitivity, 0.92 (0.87-0.96) for specificity, 10.42 (5.82-18.65)
for PLR, and 0.22 (0.15-0.31) for NLR.

Conclusions: Current ML algorithms have insufficient ability to detect ongoing hypoglycemia and considerate ability to predict
impeding hypoglycemia in patients with diabetes mellitus using hypoglycemic drugs with regard to diagnostic tests in accordance
with the Users’ Guide to Medical Literature (PLR should be ≥5 and NLR should be ≤0.2 for moderate reliability). However, it
should be emphasized that the clinical applicability of these ML algorithms should be evaluated according to patients’ risk profiles
such as for hypoglycemia and its associated complications (eg, arrhythmia, neuroglycopenia) as well as the average ability of the
ML algorithms. Continued research is required to develop more accurate ML algorithms than those that currently exist and to
enhance the feasibility of applying ML in clinical settings.

Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42020163682;
http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42020163682
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Introduction

Hypoglycemia is a major barrier to achieving the tight glycemic
control in patients with diabetes mellitus (DM) that is required
to delay the progression of late DM-related complications.
Although many patients exhibit symptoms of hypoglycemia
such as anxiety, heart palpitations, and confusion, a significant
number have diminished ability to recognize these hypoglycemic
symptoms [1,2], which is defined as “impaired awareness of
hypoglycemia” [3]. This impaired awareness can lead to severe
hypoglycemia, which is associated with seizures, coma, and
death. Real-time glucose monitoring can help patients maintain
optimal glycemic control while avoiding symptomatic or
asymptomatic hypoglycemia [4]. However, the traditional
monitoring method, intermittent glucose monitoring by finger
stick, provides only a limited number of readings and is unlikely
to detect hypoglycemia of a short duration. Continuous glucose
monitoring (CGM) typically produces a reading every 5 minutes
and can alert the patient to not only the occurrence of
hypoglycemia but also impending hypoglycemia [5]. Accuracy
of CGM has progressively improved, with overall measurement
errors reduced by twofold than in the first commercially
available CGM devices introduced in 2000 [5].

However, even if CGM advancements enabled patients to
continuously track their subcutaneous glucose levels, the
statistical disadvantage of the CGM data stream would remain
as a major limitation. The autocorrelation of the CGM reading
vanishes after 30 minutes, meaning that the projection of blood
glucose levels more than 30 minutes ahead would be inaccurate
[6]. This finding suggests that the algorithm for identifying
hypoglycemia should consider a patient’s contextual information
such as diet, physical activity, and medications (including
insulin) as well as various features of the CGM trend arrow [7].

Machine learning (ML) algorithms have been widely introduced
to diabetes research including those for identification of
hypoglycemia. The growing use of mobile health (mHealth)
apps, sensors, wearables, and other point-of-care devices,
including CGM sensors for self-monitoring and management
of DM, have made possible the generation of automated and
continuous diabetes-related data and created the opportunity
for applying ML to automated decision support systems [8].
Combining ML-based decision support systems with the
abundance of generated data has the potential to identify
hypoglycemia with greater accuracy.

Conventionally, ML has been applied to detect abnormalities
in blood glucose levels using physiological parameters that are
highly correlated with hypoglycemia (eg, changes in brain or
cardiac electrical activities) [7]. Recently, in addition to the
detection of hypoglycemia, ML-based decision support systems
have been proposed for predicting hypoglycemia by using
various historical data (eg, series of blood glucose data, other
laboratory and demographic data, verbal data in medical records,
or secure messages suggesting occurrence of hypoglycemic
events) [8]. Despite many reports of ML algorithms for detecting

or preventing hypoglycemia, their abilities have not been
comprehensively or quantitatively assessed. This meta-analysis
aims to assess the current ability of ML algorithms to detect or
predict hypoglycemia in patients with DM.

Methods

Protocol Registration
The study protocol has been registered in the international
prospective register of systematic reviews (PROSPERO;
Registration ID: CRD42020163682).

Literature Searches
We used Dialog to perform the electronic literature searches.
The platform allows users to access and search 96 databases of
peer-reviewed literature. Publication dates ranged from January
1, 1950, to September 14, 2020. Search terms consisted of 2
elements: (1) thesaurus and text words related to ML and (2)
text terms related to hypoglycemia and thesaurus terms related
to glucose monitoring or blood glucose. The use of the thesaurus
term was limited to 2 databases: EMBASE (EMTREE terms)
and MEDLINE (MeSH terms). The above 2 elements were
combined using the BOOLEAN operator “AND” (Multimedia
Appendix 1). Manual searches were added to review reference
lists in relevant studies. If eligible studies were obtained from
the reference lists, the reference lists in those studies were also
examined. Manual searches were continued until no eligible
study was found in the references lists.

Study inclusion criteria were (1) all participants had DM; (2)
study endpoint was hypoglycemia; (3) researchers clarified that
they originally trained the ML algorithm using training data to
build a model for detecting or predicting hypoglycemia or the
same researchers trained the ML algorithm in a previous study;
(4) the model’s performance was tested using the test data; and
(5) sensitivity and specificity for detection or prediction of
hypoglycemia were presented or could be calculated.

Exclusion criteria were (1) an event-based study (ie, specificity
could not be estimated because nonhypoglycemia data were not
included in the test data), (2) a case study (ie, training and test
data were derived from only 1 patient), and (3) a 2 × 2
contingency table consisting of the number of true positives,
false positives, false negatives, and false positives could not be
reproduced. If studies met all of the inclusion criteria but did
not allow the reproduction of a 2 × 2 contingency table, we
asked the corresponding author of these studies for the total
number of test data sets (N-total) and events (N-hypo) so that
we could reproduce the 2 × 2 table. If the same test data were
shared by 2 or more eligible studies, we chose the most updated
study in which the ML algorithm was considered to show the
best performance.

The outcome of meta-analyses of diagnostic or prognostic tests
is the extent of consistency between an index test and a reference
standard. The index test is defined as a new test that is proposed
when the method for perfectly diagnosing a target condition in
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all individuals does not exist or cannot be used. In this
meta-analysis, it corresponded to an ML algorithm that classified
the input data as either hypoglycemia or nonhypoglycemia. The
reference standard is defined by a procedure that is considered
the best available method for categorizing participants into
having or not having a target condition. In this meta-analysis,
it corresponded to methods for diagnosing hypoglycemia in
clinical practice, which included measurement of glucose levels,
the International Classification of Diseases (ICD) code for
hypoglycemia, or experts’ subjective judgment. Evaluation item
was the ability of ML algorithms to detect hypoglycemia (ie,
alert to hypoglycemia coinciding with its symptoms) or the
ability to predict hypoglycemia (ie, alert to hypoglycemia before
its symptoms have occurred). In studies that assessed the ability
for detection, data used for the index test (ie, the ML algorithm)
and data used for a reference standard (ie, diagnosing
hypoglycemia) had to be examined at the same time. In studies
assessing predictive ability, the data input into the ML algorithm
had to be examined before the diagnosis of hypoglycemia.

Data Extraction
Data were extracted by two authors (SK and KF) Disagreements
were resolved by discussion with a third author (HiS). We
fundamentally selected 1 datum if there were 2 or more
extractable data for a set of test data in an individual study. If
an individual study tested 2 or more ML classification methods
or 2 or more models for 1 ML classifier, we extracted the datum
related to the classifier or model that the study proposed as the
best. If 2 or more different results were presented for the same
model depending on the prediction window or horizon, we
extracted data on the result in relation to the longest prediction
window or horizon.

The following study characteristics were extracted: first author,
publication year, evaluated item (ie, detecting or predicting
hypoglycemia), country, type of DM (ie, type 1 or type 2),
number of study participants, N-total, N-hypo, mean or range
of the patients’ age, time of day of hypoglycemic events, place
of supposed hypoglycemic episode (ie, experimental, in-hospital,
and out-of-hospital), ML algorithm used for classification into
hypoglycemia and nonhypoglycemia, threshold of glucose level
for hypoglycemia, method for diagnosing hypoglycemia, method
for separating the database into training and test data, and
profiling data that were input into ML algorithms for
performance testing.

Study Quality
To evaluate study quality, we used a revised tool to assess
diagnostic accuracy of studies (QUADAS-2). The QUADAS-2
consists of 4 domains: selection of participants, index test,
reference standard, and flow and timing. All 4 domains were
used for assessment of risk of bias and the first 3 domains were
used to assess the consensus of applicability. Each domain has
1 query in relation to the risk of bias or applicability consisting
of 7 questions (Multimedia Appendix 2) [9]. A “Yes” answer
was assigned 1 point.

Data Synthesis
The ability of ML algorithms to detect hypoglycemia and predict
hypoglycemia was independently assessed. For data that were

used to test the model’s performance, the number of true
positives, false positives, true negatives, and false negatives
was calculated. The set of 4 data was pooled with a hierarchical
summary receiver operating characteristic (HSROC) model
[10]. Indicators for the model’s performance included sensitivity,
specificity, positive likelihood ratio (PLR), which is calculated
as (sensitivity/[1–specificity]), and negative likelihood ratio
(NLR), which is calculated as ([1–sensitivity]/specificity). Study

heterogeneity was assessed by calculating I2 values for PLR
and NLR based on a multivariate random-effects
meta-regression that considered within- and between-study
correlations [11] and classifying them into quartiles (0% to
<25%, low; 25% to <50%, low-to-moderate; 50% to <75%,
moderate-to-high; >75%, high) [12]. Publication bias was
statistically assessed as proposed by Deeks et al [13], wherein
the logarithm of the diagnostic odds ratio is regressed against
its corresponding inverse of the square root of the effective
sample size.

Sensitivity analyses were added, and the analysis was limited
to studies that shared similar characteristics in terms of the type
of DM, time of day when hypoglycemia occurred, place of
supposed hypoglycemic events, and the profiling data input into
the ML algorithm. It is of note that at least four data sets are
necessary to perform these sensitivity analyses because the
HSROC model has 4 parameters: sensitivity, specificity,
accuracy, and threshold. A two-sided P-value <.05 was
considered statistically significant. All statistical analyses were
performed using Stata 16 (StataCorp).

Results

Literature Searches
Multimedia Appendix 3 shows the flow chart of the procedure
for selecting studies. Using prespecified search terms, 1226
articles were retrieved; 61 databases published at least one of
the retrieved articles (Multimedia Appendix 4). Of these 1226
articles, 150 studies were selected for further review. Manual
searches resulted in the addition of 32 studies for further review,
making a total of 182 studies. Of these, 149 studies were
subsequently excluded for various reasons. Specifically, 12
studies [14-25] presented insufficient data to allow reproduction
of the 2 × 2 contingency table, although data on sensitivity and
specificity were presented. We asked the authors of these studies
to provide N-totals and N-hypos so that we could calculate the
number of true positives, false positives, true negatives, and
false negatives. However, only the author of 2 studies responded
to our communication [15,25], and therefore the remaining 10
studies with insufficient data had to be excluded from the
meta-analysis. Finally, 33 studies [15,20,25-55] were eligible.

Data Extraction of Study Characteristics
Table 1 shows the summary of study characteristics. Of the 33
studies, 19 studies (58%) [26-31,33,35,36,38-42,44-47,54]
predicted hypoglycemia, and the remaining 14 studies (42%)
detected hypoglycemia [15,20,25,32,34,37,43,48-53,55]. As
much as 25 of the 33 included studies (76%)
[15,20,25-27,29,30,32,35,36,38,39,41-44,46-53,55] specified
type 1 as the type of DM. Type 2 DM was specified in only 3
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of these studies (9%) [28,31,45] and the remaining 5 studies
[33,34,37,40,54] did not specify the type of DM.

Regarding the time of day when hypoglycemic events occurred,
nocturnal hypoglycemia was the most frequently reported (14
studies of the 33 included studies; 42%)
[15,20,26,30,32,35,36,41,44,49-53]). As to the place of the
supposed hypoglycemic episode, 16 of the 19 studies that
predicted hypoglycemia (84%) [26-30,35,36,38-42,44-47]
supposed the event took place in an out-of-hospital setting. The
remaining 3 studies (16%) [31,33,54] supposed hypoglycemia
occurring in an in-hospital setting. Of the 14 studies that detected
hypoglycemia, 11 studies (79%) [15,20,25,32,43,48-52,55]
detected hypoglycemia in an experimental setting, where
hypoglycemia was induced by a hypoglycemic clamp procedure.
In 20 of the 33 included studies (61%)

[15,20,25,27,29,31,32,35,36,38,41,43-45,49-52,54,55]), a
hold-out method was used to separate the information in the
database according to training and test data.

Multimedia Appendix 5 shows the profiling data input into the
ML algorithm for testing its performance in detecting or
predicting hypoglycemia. In the majority of the 19 studies for
predicting hypoglycemia (13 studies; 68%)
[26-30,35,36,38,40-42,46,47], historical CGM data were input
into the ML algorithm while the remaining 6 studies (32%)
[31,33,39,44,45,54] did not use CGM. Of the 14 studies that
detected hypoglycemia using ML, 7 studies (50%)
[20,25,32,49,50,52,55] used information from
electroencephalograms (EEGs) and 4 studies (29%)
[15,43,51,53] used results of electrocardiography (ECG).
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Table 1. Study characteristics of the 33 included studies to assess the ability of machine learning to detect or predict hypoglycemia.

Method
of sepa-

rationh

Method of
Hypo detec-

tiong

Thresh-
old of

Hypof

(mmol/L)

Ma-
chine
learning

PlaceeTimedMean or
range of
age
(years)

N-hypocN-totalbPatients,
n

Type of
DM

CountryAssess-

menta
Study
source

nCVooCGMll3.9SVMvOutsNocp323912410T1DmSpainPrekBertachi
et al
[26]

HOppCGM3.9RFwOutN/S1318,233637,735112T1DUSAPreDave et
al [27]

nCVCGMUnclearXG-
Boost

OutN/S51172391813T2DnQatarPreElhadd
et al
[28]

HOCGM3.9KRRxOutN/S18-39526443,53311T1DIsraelPreMarcus
et al
[29]

ExVCGM3.9SVMOutNoc341711710T1DUSAPreMos-
quera-
Lopez
et al
[30],
Test 1

ExVCGM3.9SVMOutNoc35258270620T1DUSAPreMos-
quera-
Lopez
et al
[30],
Test 2

HOBlood/ICD3.9REFSIntN/S66258090,687453,487T2DUSAPreMueller
et al
[31]

HOBlood3.9BNNyExpNoc12-18531358T1DAus-
tralia

DeclNgo et
al [32]

nCVBlood3.9XG-
Boost

InN/S66703327617,658N/SoUKPreRuan et
al [33]

HOBlood3.9NNzExpuN/S551258251634T1DItalyDecRubega
et al
[25]

nCVExpertsmmN/AkkLRaaInN/SNo data11300No dataN/SUSADecChen et
al [34]

HOCGM3.9SVMOutNoc40-606556T1DUSAPreGuemes
et al
[35]

HOBlood3LDAbbOutNoc4379921463T1DDen-
mark

PreJensen
et al
[36]

nCVICDnnN/ASVMInN/SNo data1324104No dataN/SUSADecJin et al
[37]

HOCGM3.9SVMOutPosq41420144710T1DSpainPreOviedo
et al
[38]

ExVBlood3.9RFOutEx33299055T1DUSAPreReddy
et al
[39]

nCVCGM3.9RFOutPos524127052104N/SKoreaPreSeo et
al [40]
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Method
of sepa-

rationh

Method of
Hypo detec-

tiong

Thresh-
old of

Hypof

(mmol/L)

Ma-
chine
learning

PlaceeTimedMean or
range of
age
(years)

N-hypocN-totalbPatients,
n

Type of
DM

CountryAssess-

menta
Study
source

HOCGM3.9ANNccOutNoc40-606516T1DUSAPreArthur
et al
[41]

ExVCGM3.9I-

MPCdd
OutN/S4636709620T1DItalyPreTof-

fanin et
al [42]

HOCGM3.3FNNeeExpN/S155526916T1DAus-
tralia

DecLing et
al [43]

HOBlood3.9RAOutNoc18-654015034T1DUkrainePreSam-
path et
al [44],

DIAi

ExVBlood3.9RAffOutNoc3-16222476179T1DUkrainePreSam-
path et
al [44],

Childj

HOBlood3.9RFOutN/SNo data428839UnclearT2DUSAPreSud-
harsan
et al
[45]

nCVCGM3.3BAGggOutN/S2510066710T1DUAEPreEljil
[46]

ExVCGM3.9SVMOutN/SNo data15258162T1DUSAPrePlis et
al [47]

LOOqqBlood3.9SEP-

CORhh
ExpN/S44160126710T1DDen-

mark
DecJensen

et al
[48]

LOOBlood3.9+ SVMExpN/S44160126710T1DDen-
mark

DecJensen
et al
[48]

HOCGM3.3FNNExpNoc12-18761445T1DAus-
tralia

DecNguyen
et al
[49]

HOCGM3.3ANNExpNoc12-1820445T1DAus-
tralia

DecNguyen
et al
[50]

HOCGMUnclearPSOii +
SVM

ExpNoc161335755T1DAus-
tralia

DecNuryani
et al
[51]

HOCGM3.3FNNExpNoc155210016T1DAus-
tralia

DecChan et
al [15]

HOCGM3.3Fuzzy
SVM

ExpNoc168275T1DAus-
tralia

DecLing et
al [52]

HOBlood3.3BNNExpNoc12-1827796T1DAus-
tralia

DecNguyen
and
Jones
[20]

ExVBlood3.9FNNInNoc16115252T1DAus-
tralia

DecSklad-
nev et al
[53]

HOCGM3.3DTjjInN/SNo data55611141004N/SUSAPreZhang
et al
[54]
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Method
of sepa-

rationh

Method of
Hypo detec-

tiong

Thresh-
old of

Hypof

(mmol/L)

Ma-
chine
learning

PlaceeTimedMean or
range of
age
(years)

N-hypocN-totalbPatients,
n

Type of
DM

CountryAssess-

menta
Study
source

HOBlood3.3ANNExpMorr3599519908T1DBrazilDecIaione
and
Mar-
ques
[55]

aAbility for which the machine learning algorithm was assessed.
bN-total: total number of data included in test data.
cN-hypo: total number of hypoglycemic episodes included in the test data.
dTime of day when hypoglycemia occurred.
ePlace of supposed hypoglycemic episode.
fThreshold of glucose level that was used to diagnose hypoglycemia.
gMethod for separating training and test data.
hMethod used for diagnosing hypoglycemia.
iDIA: DIAdvisor.
jChild: ChildrenData.
kPre: predicting hypoglycemia.
lDec: detecting hypoglycemia.
mT1D: type 1 diabetes mellitus.
nT2D: type 2 diabetes mellitus.
oN/S: not specified.
pNOC: nocturnal hypoglycemia.
qPos: postprandial.
rMor: hypoglycemia during morning.
sOut: out-of-hospital setting.
tIn: in-hospital setting.
uExp: experimental setting (ie, hypoglycemia is induced by injection of insulin. Exercise or drug intervention is included in out of hospital setting).
vSVM: support vector machine.
wRF: random forest.
xKRR: Kernel Ridge Regression.
yBNN: Bayesian neural network.
zNN: neural network.
aaLR: logistic regression.
bbLDA: linear discriminant analysis.
ccANN: artificial neural network.
ddI-MPC: individual model-based predictive control.
eeFNN: fuzzy neural network.
ffRA: ranking aggregation algorithms.
ggBAG: bagging (bootstrap aggregating).
hhSEPCOR: separability and correlation analysis.
iiPSO: particle swarm optimization.
jjDT: decision tree.
kkN/A: Not applicable.
llCGM: continuous glucose monitoring.
mmExperts’ subjective judgment.
nnICD: International Classification of Diseases.
oonCV: n-fold cross-validation.
ppHO: hold-out method.
qqLOO: leave-one-out cross-validation.
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Assessment of Study Quality
Multimedia Appendix 6 shows the results of study quality
assessments using QUADAS-2. Mean score (SD) was 5.6 (1.1),
which corresponded to 80% of full marks (=7). The applicability
of the reference test was evaluated to be low in 61% of the 33
included studies (20 studies) because hypoglycemia was not
diagnosed by measuring blood glucose levels or ICD codes but
by CGM (ie, glucose levels in blood are indirectly estimated
from those in interstitial tissue) (19 studies)
[15,26-30,35,38,40-43,46,47,49-52,54] or experts’ subjective
judgement (1 study) [34]. The 2 factors were mainly responsible
for lowering the study quality. We considered that the threshold
of hypoglycemia in the index test was not specified in 7 studies,
which used the cross-validation method [26,28,33,34,37,40,46],
and 1 study, which used the leave-one-out method to separate
test data from training data [48].

Data Synthesis

Ability for Detection of Hypoglycemia Using ML
Algorithms
Figure 1 shows the HSROC curve and pooled estimates of
sensitivity and specificity based on the 14 studies that assessed
the ability of the ML algorithm to detect hypoglycemia. The
pooled estimates (95% CI) were 0.79 (0.75-0.83) for sensitivity
and 0.80 (0.64-0.91) for specificity. The pooled estimates (95%
CI) of PLR and NLR were 2.20 (1.46-3.32) and 0.37 (0.28-0.49),

respectively. Between-study heterogeneity expressed as I2 was
high both for PLR (98%; 95% CI 95%-99%) and NLR (80%;
95% CI 50%-90%). Statistically significant publication bias
was detected (P=.15).

Figure 1. Hierarchical summary receiver-operating characteristic (HSROC) curve for detection of hypoglycemia using machine learning algorithms.
Circles indicate study-specific sensitivity and specificity for each of the 14 included studies. The size of each circle is proportional to study sample size.
The pooled point estimates of sensitivity and specificity are plotted in a filled square.

We conducted several sensitivity analyses using a portion of
the above 14 studies that had 1 study characteristic in common.
It was not apparent that any of the sensitivity analyses showed
results different from the overall analysis. Limiting the analyses
to 12 studies [15,20,25,32,43,48-53,55] that specified type 1 as
the DM type, pooled sensitivity, specificity, PLR, and NLR
were 0.78 (95% CI 0.73-0.82), 0.71 (95% CI 0.60-0.79), 2.65
(95% CI 1.88-3.72), and 0.26 (95% CI 0.19-0.36), respectively.
When analyses were limited to the 7 studies that detected
nocturnal hypoglycemia using ML algorithms [15,20,49-53],
the pooled estimates (95% CI) were 0.75 (0.70-0.80) for
sensitivity, 0.65 (0.55-0.74) for specificity, 2.14 (1.67-2.76) for
PLR, and 0.38 (0.30-0.48) for NLR. With analyses of the 11
studies that detected hypoglycemia in an experimental setting,
pooled sensitivity, specificity, PLR, and NLR were 0.78 (95%

CI 0.73-0.82), 0.71 (95% CI 0.60-0.80), 2.66 (95% CI
1.84-3.85), and 0.31 (0.24-0.41), respectively. The pooled
estimate (95% CI) was 0.78 (0.71-0.84) for sensitivity, 0.67
(0.55-0.77) for specificity, 2.39 (1.63-3.50) for PLR, and 0.33
(0.22-0.48) for NLR when the analysis was limited to 7 studies
that used EEG abnormalities for detecting hypoglycemia. These
estimations were similar when limited to 4 studies that used
ECG abnormalities for detection of hypoglycemia: pooled
estimate (95% CI) was 0.76 (0.67-0.82) for sensitivity; 0.67
(0.54-0.78) for specificity; 2.31 (1.65-3.23) for PLR; and 0.36
(0.28-0.47) for NLR.

Ability to Predict Hypoglycemia Using ML Algorithms
Figure 2 shows the HSROC curve for predicting hypoglycemia
based on the 19 studies that assessed the predictive ability for
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hypoglycemia. The point estimates (95% CI) were 0.80
(0.72-0.86) for sensitivity, 0.92 (0.87-0.96) for specificity, 10.42
(5.82-18.65) for PLR, and 0.22 (0.15-0.31) for NLR. Extremely
high between-study heterogeneity was observed for both PLR

(I2 [95% CI] 100% [100%-100%]) and NLR (I2 [95% CI] 99%
[98%-100%]). Publication bias was not statistically significant
(P=.68).

Figure 2. Hierarchical summary receiver-operating characteristic (HSROC) curve for prediction of hypoglycemia using machine learning algorithms.
Circles indicate study-specific sensitivity and specificity for each of the 19 included studies. The size of each circle is proportional to study sample size.
The pooled point estimates of sensitivity and specificity are plotted in a filled square.

When the analyses were limited to 13 studies that specified type
1 as the DM type [26,27,29,30,35,36,38,39,41,42,44,46,47],
the pooled estimates (95% CI) were 0.77 (0.67-0.85) for
sensitivity, 0.92 (0.84-0.96) for specificity, 9.82 (4.58-21.04)
for PLR, and 0.25 (0.16-0.38) for NLR. In the analyses of 7
studies that specified night as the time of hypoglycemic events
[26,30,31,35,36,41,44], the predictive ability was low compared
with that of the overall analysis—pooled estimate (95% CI):
0.74 (0.65-0.82) for sensitivity, 0.81 (0.72-0.88) for specificity,
3.98 (2.64-6.00) for PLR, and 0.31 (0.23-0.43) for NLR.
Relatively high sensitivity and low NLR were observed in the
13 studies that used CGM historical data for predicting
hypoglycemia—pooled estimate (95% CI): 0.82 (0.71-0.90) for
sensitivity, 0.92 (0.83-0.97) for specificity, 10.41 (4.52-24.01)
for PLR, and 0.19 (0.12-0.32) for NLR—compared with 6
studies that did not use CGM—pooled estimate (95% CI): 0.76
(0.66-0.84) for sensitivity, 0.92 (0.88-0.95) for specificity, 10.14
(6.13-16.77) for PLR, and 0.26 (0.17-0.38) for NLR). After
excluding 3 studies [31,33,54] that showed that the supposed
hypoglycemic events occurred in-hospital, the pooled estimates
(95% CI) of the 16 studies with such events occurring in an
out-of-hospital setting were 0.82 (0.74-0.88) for sensitivity,
0.92 (0.85-0.96) for specificity, 10.58 (5.44-20.55) for PLR,
and 0.20 (0.13-0.39) for NLR.

Discussion

Principal Findings
Overall, the PLR and NLR of ML algorithms for detecting
hypoglycemia were 4.05 and 0.26, respectively. These estimates
were almost unchanged throughout several sensitivity analyses
that were limited to studies that shared 1 characteristic in
common. According to the Users’ Guide to Medical Literature
with regard to diagnostic tests [56], the PLR should be 5 or
more to moderately increase the probability of persons having
or developing a disease and the NLR should be 0.2 or less to
moderately decrease the probability of having or developing a
disease after taking the index test. In summary, the current ML
algorithms had insufficient ability to detect the occurrence of
hypoglycemia. However, that would not mean that ECG or EEG
monitoring in combination with ML, which was the case with
79% (11/14) of the included studies, was useless in detecting
hypoglycemia. For example, for patients with both DM and
high cardiovascular risk, in particular, those who are vulnerable
to cardiac arrhythmias, using ECGs for detecting hypoglycemia
is useful considering that a hypoglycemia-induced arrhythmia
could contribute to increased cardiovascular mortality [57].
Similarly, for patients with repeated episodes of hypoglycemia,
the combination of ML and EEG was indicated to be beneficial
to prevent hypoglycemia-induced neuroglycopenia resulting in
cognitive impairment and ultimately death, because blood
glucose levels alone do not appear to predict that condition [58].
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Thus, the clinical applicability of these devices should be
evaluated by the individual’s risk of hypoglycemia and its
related arrhythmia and neuroglycopenia as well as the overall
ability of algorithms for ML.

The overall sensitivity, specificity, PLR, and NLR for predicting
hypoglycemia were 0.80, 0.92. 10.42, and 0.22, respectively.
Applying the above described guidelines for diagnostic tests to
these results, it is worth considering the use of current ML
algorithms as a tool for alerting patients to impending
hypoglycemic events. In addition, it is considered that a test
with a PLR over 10 has a particularly strong power to alter
posttest probability of the targeted disease compared with pretest
probability [56]. If a positive test result were to be received,
patients with DM who are administered hypoglycemic
treatments would be strongly recommended to pay more
attention to the possibility of impeding hypoglycemic events
than they would before receiving the predictive test for
hypoglycemia. However, considering that the PLR and NLR
values indicate relative risk (ie, risk of disease at posttest
compared with that at pretest), the accuracy of predictive ability
depends on patients’ risk of hypoglycemia in daily life. For
example, even a less than 10% false-positive rate (8% in this
meta-analysis) may be acceptable in patients at high risk of
hypoglycemia but not in low-risk individuals due to too frequent
false alarms. In such a case, there is fear that these patients will
ignore the alarms and therefore miss the opportunity to take
corrective action when the alarm is indeed true [59]. It is
emphasized that the utility of ML algorithm depends on the
extent of the patient’s risk of hypoglycemia. In addition, as
indicated in the “Results” section, there was high between-study
heterogeneity among studies. Specifically, when limiting
analyses to the studies that predicted nocturnal hypoglycemia,
the predictive ability was insufficient (pooled estimate: 3.98 for
PLR; 0.31 for NLR). Considering that nocturnal hypoglycemia
is the most common type of hypoglycemia among all
hypoglycemic episodes [60], continued research is needed for
further development of ML algorithms to predict hypoglycemia.

Several limitations of this meta-analysis should be addressed.
First, the principal major limitation is the pooling of studies
among which there was much variability in the type of DM,
profiling data for detecting or predicting hypoglycemia, time
of day when hypoglycemic events occurred, setting of supposed
hypoglycemic events, and ML classification methods. In

particular, although the ability for predicting hypoglycemia
depended largely on the ML classification methods [33], this
meta-analysis did not consider the difference in the test
performance among various ML methods. Instead, the
meta-analysis focused on ML’s comprehensive ability across
studies using data in relation to the best model in each study, if
2 or more models existed, rather than comparisons among 2 or
more models within 1 study. Given that generalization of
evidence is among the most important roles in all meta-analyses,
the issue of the variation in ML methods, in particular, the
difference between old and new ML techniques, might be
beyond the scope of this meta-analysis. Nevertheless, it should
be emphasized that successful application of ML lies in the
correct understanding of the advantages and disadvantages of
different ML methods. Second, only 3 studies exclusively
targeted patients with type 2 DM. With the increasing use of
insulin to treat type 2 DM in the elderly, the prevalence of
hypoglycemia is likely to escalate. In addition, the response to
hypoglycemia is different between type 1 and type 2 DM [61].
Future studies should aim to develop and validate ML algorithms
for detecting or predicting hypoglycemia in type 2 DM. Third,
in most of the included studies, the ML classification models
were developed in an experimental setting or by using previously
recorded data as training and testing data instead of live data.
Future studies need to train and test the algorithm on data from
DM patients in everyday clinical practice to determine
feasibility.

Conclusion
Overall, current ML algorithms have insufficient ability to detect
ongoing hypoglycemia and considerable ability to predict
hypoglycemia in patients with DM receiving hypoglycemic
treatments. However, the clinical applicability of these ML
algorithms should be evaluated according to patients’ risk
profiles such as for hypoglycemia and its associated
complications (eg, arrhythmia, neuroglycopenia) as well as the
average ability of the ML algorithm. Continued research is
required to further develop ML algorithms to enhance their
feasibility, considering the inaccuracy of CGM in the
hypoglycemic range, the increased prevalence of hypoglycemia
in the elderly, and increasing evidence for the effectiveness of
tight glycemic control in preventing microvascular
complications [62].
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