

Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/25899090)

Journal of Translational Autoimmunity

journal homepage: www.sciencedirect.com/journal/journal-of-translational-autoimmunity

Unlocking therapeutic potential: Targeting lymphocyte activation Gene-3 (LAG-3) with fibrinogen-like protein 1 (FGL1) in systemic lupus erythematosus

Bing Wang, Biqing Zhang, Min Wu \degree , Ting Xu \degree^*

Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disorder of unknown etiology, characterized by abnormal activation and proliferation of lymphocytes [\[1\]](#page-7-0). Recent research has highlighted the multifaceted factors contributing to SLE incidence, encompassing infection, immunity, genetics, and more [\[2](#page-7-0)–4]. A prevailing perspective posits that the dysregulation of regulatory T cells (Tregs) and effector T cells (Teffs) disrupts the delicate immune balance, precipitating autoimmune phenomena [\[5](#page-7-0)–7].

For many years, the pursuit of targeting specific lymphocyte surface molecules has been a central focus in SLE treatment [8–[10](#page-7-0)]. Within the realm of autoimmunity, lymphocyte activation gene-3 (LAG-3), akin to PD-1, has garnered substantial scholarly attention. LAG-3, an inhibitory co-receptor, serves as a safeguard against autoimmunity and excessive immune responses [11–[13\]](#page-7-0). As a type I transmembrane protein, LAG-3 holds promise as a potential therapeutic target. Studies have demonstrated its capacity to effectively alleviate autoimmune symptoms in murine models of autoimmune diseases and its synergistic potential with PD-1 in mitigating autoimmunity [\[14,15](#page-7-0)]. Additionally, Ching-Tai Huang et al. have identified significant upregulation of LAG-3 in Tregs, where it curtails T-cell proliferation [[16\]](#page-7-0).

Fibrinogen-like-protein 1 (FGL1), as the principal immunosuppressive ligand of LAG-3, binds stably to p-major histocompatibility complex class II (MHC II), exerting a restraining influence on T cells and immune responses. Building on this unique property, we propose an innovative approach by harnessing FGL1 in conjunction with the emerging checkpoint LAG-3 to function as an "immune brake" through immune checkpoint targeting. This manuscript elucidates the potential of targeting FGL1/LAG3 as the next frontier in immune checkpoint therapy for SLE treatment. Finally, comprehensive coverage is provided regarding biosafety and immunotherapeutic considerations arising from targeted therapy.

2. Structure and biological function of LAG-3

In 1990, Triebel et al. have conducted a cDNA library screening and successfully identified LAG-3 [\[17](#page-7-0)-19], a type I transmembrane protein sharing structural similarities with CD4 and playing a crucial role in immune checkpoint regulation. LAG-3's selective expression has been

* Corresponding author

<https://doi.org/10.1016/j.jtauto.2024.100249>

^{**} Corresponding author

E-mail addresses: wuumin@163.com (M. Wu), daisy_tingting@163.com (T. Xu).

Available online 27 July 2024 Received 22 February 2024; Received in revised form 21 July 2024; Accepted 26 July 2024

^{2589-9090/© 2024} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license([http://creativecommons.org/licenses/by](http://creativecommons.org/licenses/by-nc-nd/4.0/)[nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/)).

observed in three distinct DNA clones [[11\]](#page-7-0).

In recent years, a growing body of research has illuminated the dynamic alterations in LAG-3 Treg populations across various autoimmune diseases [[16,20,21](#page-7-0),[22\]](#page-7-0). It is noteworthy that these changes not only bear relevance to disease pathogenesis but also exhibit close ties to treatment responses in autoimmune inflammatory conditions [23–[25\]](#page-7-0). The development of LAG-3 Tregs as a novel therapeutic approach for managing autoimmune diseases is currently underway, with animal models being designed for this purpose. Such endeavors hold promise in restoring equilibrium to immune-inflammatory responses and regulating associated immune response states [\[26](#page-8-0)–28].

The LAG-3 transmembrane protein comprises 525 mature proteins with a molecular weight of approximately 50 kDa. Within this structure, the D1 region serves as a ligand-binding LG-variable domain, capable of selective and stable binding to MHC II. This selective recognition of T cells is a result of this interaction, rendering LAG-3 preferentially inhibitory [[29\]](#page-8-0). Ligand binding occurs within the extracellular domains, designated as D1, D2, D3, and D4. While D1 is distinct, the internal structures of D2, D3, and D4 exhibit homology. Notably, several studies have suggested that LAG-3's functionality extends beyond MHC II binding, as it also transmits information through its cytoplasmic domains, thereby conveying inhibitory signals [\[29](#page-8-0)]. However, the specific characteristics of these signals remain an area of ongoing investigation.

LAG-3 is situated on human chromosome 12, and studies by Maruhashi T et al. have substantiated its stable expression on the surface of both Tregs and Teffs, implicating its pivotal role in T lymphocyte regulation and associated signaling pathways [[11](#page-7-0),[15,](#page-7-0)[30,31](#page-8-0)]. Upon stimulation by external antigens, LAG-3 maintains a heightened level of expression on the surface of $CD4^+$ and $CD8^+$ lymphocytes. Consequently, this heightened expression correlates with the inhibition of cytokine release, cytolytic activity, and cell proliferation potential [\[32](#page-8-0), [33\]](#page-8-0). Notably, Takumi Maruhashi et al. have observed that LAG-3 is induced on the surface of CD4 and CD8 cells upon antigen stimulation but not on the surface of naïve T cells [[11\]](#page-7-0). Furthermore, the inhibitory function of LAG-3 is closely associated with its surface expression level on T cells, underscoring the potential for therapeutic intervention in human diseases linked to T cells by modulating LAG-3 expression levels [[32,34](#page-8-0)].

Tregs hold a pivotal role in maintaining immune homeostasis by curbing autoimmunity and minimizing cellular and tissue selfdestruction. LAG-3, an integral member of the immunoglobulin superfamily, has been demonstrated to modulate T lymphocyte activity. Its fundamental structural components comprise the transmembrane region, the extracellular domain extending beyond the cell surface, and the region containing four Ig-like structural domains, encompassing a total of 498 amino acids [\[35](#page-8-0)[,20](#page-7-0)]. Notably, it's worth mentioning that LAG-3 shares 4 % of its amino acids with the extracellular domain of CD20 [[36,37](#page-8-0)].

Furthermore, the interaction between galectin-3 and liver sinusoidal endothelial cell lectins with lactose moieties on LAG-3's surface leads to extensive glycosylation of LAG-3. This glycosylation pattern is associated with the presence of multiple N-glycosylation sites on its surface [38–[40\]](#page-8-0). As a transmembrane protein closely homologous to CD4, LAG-3 possesses the ability to translocate from the cell membrane, facilitated by the metalloproteinases ADAM10/17. This translocation is instrumental in its regulatory function of immunosuppression [[41\]](#page-8-0). The cytoplasmic tail of LAG-3, which primarily mediates the intracellular transmission of negative signals, encompasses three conserved motifs known for their intracellular inhibitory capabilities: a phosphorylated serine residue (S484), a KIEELE motif, and a glutamate-proline dipeptide repeat motif (EP motif) [\[42](#page-8-0)–45]. These three motifs can interact with LAG-3-associated proteins, effectively countering the activation pathway of CD3-TCR.

Dr. Ching-Tai Huang and colleagues have conducted an analysis of purified CD4 cells using a microarray chip and initiated minimum threshold PCR amplification of effector/memory T cells utilizing LAG-3 primers. Remarkably, their findings indicate that LAG-3 expression can revert from a heightened level to baseline levels in approximately 20 days [[3](#page-7-0)]. Surprisingly, during the same timeframe, LAG-3 expression on Tregs escalates to 50 times the baseline level and remains elevated for a period of 4 weeks. Concurrently, their *in vitro* experiments have provided compelling evidence that LAG-3 is the pivotal molecule enabling Tregs to achieve maximal activity. Moreover, it emerges as an indispensable molecule for inducing Treg activity *in vivo* [[3](#page-7-0),[46\]](#page-8-0).

3. Mechanism and implications of LAG-3 in SLE

The pathogenesis of SLE is exceedingly intricate, often attributed to factors like infection and environmental elements that lead to cellular damage. This, in turn, triggers the activation of autoimmune responses involving T cells and B cells [47–[50\]](#page-8-0). Whether manifested through the release of cytokines, complement activation, or antibody production, these processes contribute to damage in multiple organs. Consequently, a critical challenge lies in treating SLE by curbing the inflammatory responses of the immune system and mitigating organ damage [\[51](#page-8-0)–54].

Recent investigations have unveiled the role of epigenetics and transcriptomics in recognizing the stability of Tregs in the peripheral blood serum of SLE patients. These studies have affirmed the notable plasticity of Tregs under specific conditions, capable of influencing the onset and intensity of inflammatory responses [\[55](#page-8-0)]. Building on this foundation, Clemens Scheinecker et al. have underscored the deficiency of Treg expression in autoimmune diseases like SLE. In 2022, Dr. Andreas Mackensen's team has pioneered the use of chimeric antigen receptor (CAR) T cells for expansion in SLE patients, successfully curtailing abnormal B cell proliferation and achieving clinical remission in three severely active SLE patients [\[56,57](#page-8-0)]. Collectively, these findings firmly establish the modification and targeted therapy of T cells and T cell surface molecules as an effective and promising approach to alleviate disease activity in SLE patients [\[58,59](#page-8-0)].

In recent years, LAG-3 has emerged as a prominent co-receptor and is poised to become a preferred inhibitory drug target alongside PD-1. Immune cells are subject to immune surveillance at multiple checkpoints to prevent excessive autoimmunity or unwarranted immune reactions, and LAG-3 serves as a pivotal checkpoint in modulating immune responses in autotissues [\[11](#page-7-0)] ([Fig.](#page-2-0) 1). Unlike the traditional immunosuppressive checkpoint PD-1, the absence of LAG-3 itself does not trigger autoimmune responses in non-autoimmune mouse models. However, in experimental autoimmune model mice, LAG-3 has been shown to alleviate autoimmune symptoms, suggesting the potential for treating autoimmune diseases by targeting T cells expressing LAG-3. Reports also indicate that the specific agonist (e.g., IMP761) can induce the inhibitory function of LAG-3 *in vivo or in vitro* [\[11](#page-7-0)]. Numerous clinical trials have been conducted to substantiate the effectiveness of targeted LAG-3 treatment. Building on these foundations, our aim is to elucidate the mechanism of LAG-3 in the context of the immune disease SLE and explore the feasibility of treating SLE by targeting this specific molecule.

Kubra Yuksel and colleagues have conducted an assessment of immune checkpoint proteins within the plasma of juvenile SLE patients. Their findings reveal a significant correlation between the activity of SLE (measured by SLEDAI) and the presence of immune checkpoint proteins, including LAG-3 [[60\]](#page-8-0). In the realm of autoimmune diseases, other researchers have corroborated these findings by demonstrating that mice lacking LAG-3 develop fatal autoimmune myocarditis [\[2,](#page-7-0)[61](#page-8-0)]. Ana C. Anderson and her team propose that the co-suppressor receptor LAG-3 has emerged as an effective target for chronic autoimmune diseases, owing to its pivotal role in T cell regulation [[21\]](#page-7-0). Consequently, the identification and exploration of pertinent regulatory proteins represent vital endeavors that advance the development of therapeutic strategies.

Fig. 1. The function and mechanism of LAG-3 in autoimmune diseases.

4. FGL1 is the main immunosuppressive ligand of LAG-3

FGL1, also known as liver fibrinogen associated Gene-1 (LFIRE-1)/ heparin (HPS) or hepatocellular derived fibrinogen associated protein-1 (HFREP-1), is a liver-derived protein associated with liver secretion, proliferation, and metabolism $[62-64]$ $[62-64]$. It has gained prominence as an emerging checkpoint ligand for LAG-3, playing a significant role in immune checkpoint regulation [[62,65,66](#page-8-0)].

FGL1 has surpassed classical ligands like MHC II and has become a hot topic in research [\[62](#page-8-0)]. In humans, FGL1 is situated on chromosome 8 and consists of homologous dimers comprising beta and gamma subunits, which can be detected in plasma during acute reactions [\[67](#page-8-0)]. In 2019, Dr. J Wang and colleagues have identified FGL1 as a novel high-affinity ligand for LAG-3. Dr. Katharina Aigner Radakovics' team has used a fluorescent human T-cell reporting system to report FGL1 as an additional binding partner alongside identified LAG-3 ligands such as MHC II [\[68](#page-8-0)]. Most fundamental studies have also demonstrated a high-affinity interaction between FGL1 and LAG-3 [\[4](#page-7-0),[36,69\]](#page-8-0).

Wan Ting Zhang and colleagues have developed and validated immunoassays based on nanoantibodies to accurately assess FGL1 expression levels. Nanoantibodies offer high affinity, solubility, and stability, enabling the determination of the active state of the FGL1-LAG-3 pathway with increased reliability and accuracy [\[69](#page-8-0)]. In addition, Dr. Somaya A Abdel Rahman's team has conducted a high-throughput TR-FRET screening experiment based on the LAG-3/FGL1 interaction this year. They have introduced a time-resolved fluorescence resonance energy transfer (TR-FRET) assay method, which provides insights into small molecule targeted drugs targeting the LAG-3/FGL1 pathway, potentially benefiting a broader range of patients undergoing immune checkpoint blockade therapy [\[70](#page-8-0)].

Certain scholars contend that the classical immunosuppressive pathway PD-1/PD-L1 can effectively regulate T cells, thereby mitigating autoimmune diseases [[71\]](#page-8-0). Recent research has unveiled that FGL1 is not only intricately linked to cell proliferation and metabolism but also serves as an emerging focal point for intervening in the inhibition of LAG-3 T cells [[2](#page-7-0),[69\]](#page-8-0). The FGL1/LAG-3 pathway constitutes an independent immune suppression pathway, and reports indicate that when the inhibitory receptor LAG-3 on T cell surfaces interacts with its ligand FGL1, the blockade of T cell activation and inhibition of inflammatory factor secretion are notably more pronounced [\[72](#page-8-0)].

Wen-Wei Lin and colleagues have administered FGL1 protein intraperitoneally to mice with induced arthritis, monitoring tissue levels of inflammatory cytokines. Their findings not only affirm the potential use of FGL1 protein in regulating immune homeostasis but also highlight its promise as a treatment modality for future autoimmune or inflammatory diseases predominantly driven by T cells [[73\]](#page-8-0). *In vivo,* experiments involving FGL1's role in restraining T cell activity and proliferation primarily rely on gene ablation and monoclonal antibody blocking. Dr. Wang's team has further suggested that FGL1 holds promise as a novel anti-inflammatory agent [\[73](#page-8-0)].

In light of the above reports and perspectives, it becomes evident that FGL1, as the linchpin in the LAG-3/FGL1 pathway, can be detected with high sensitivity and accurately quantified, a critical facet in advancing our understanding and potential interventions in this context.

5. LAG-3 can serve as a novel biomarker for SLE disease activity

Currently, the biomarkers used to predict the activity of SLE still lack sufficient sensitivity and specificity. This deficiency often results in sudden onset, rapid disease progression, poor prognosis, and the potential involvement of multiple organ systems in many clinical patients. Complications such as lupus crisis, severe lupus encephalopathy, and lupus-related thrombocytopenia are particularly common in this context [74–[77\]](#page-8-0). Hence, the discovery and application of novel biomarkers represent a crucial endeavor to enhance the clinical prognosis of SLE patients [\[78](#page-8-0)].

The utilization of CD4-like molecule LAG-3 as a predictor of autoimmune disease activity has been substantiated through numerous clinical trials and can be reasonably applied [[20\]](#page-7-0). Recent research has unveiled that LAG-3 is intricately connected not only to immunopathology but also to the potential outcomes of inflammatory diseases. Autoimmune disease pathogenesis is closely associated with the activation and proliferation of T cells, and mounting evidence underscores the distribution of inhibitory molecules and their correlations. LAG-3 molecules, being predominantly present on the surface of T cells, can effectively reflect these distributions [[20,](#page-7-0)[59](#page-8-0)].

Mathieu Angin's team has conducted proliferation assays using peripheral blood from healthy volunteers, employing primary T-cell binding assays to analyze the binding of recombinant human LAG-3Ig protein (IMP200) to captured antibodies at six different concentrations. This approach is taken to assess the binding affinity of LAG-3 [\[14](#page-7-0), [15,](#page-7-0)[79,80\]](#page-8-0). Additionally, the recombinant human LAG-3Ig protein (IMP200) is found to have the potential for gene labeling, inhibiting inflammation induced by tuberculin at DTH sites. Stephanie E. A. Burnell's team has also observed that the regulatory function of LAG-3 involves its lysis. When LAG-3 is removed from the cell surface, soluble LAG-3 is either degraded or secreted, and it ceases to exert further function [[81\]](#page-8-0). Consequently, quantifying the concentration of LAG-3 in serum plays a pivotal role in determining disease activity.

By sorting LAG-3 cells, conducting immunofluorescence staining, and quantifying the results, it becomes evident that LAG-3 cells are enriched in effector memory and central memory T cell populations. Pathway enrichment analysis confirms that LAG-3 cells constitute a heterogeneous group of activated T cells expressing cytokines. Subsequent gene analysis focusing on the clusters of CD8 and CD4 T cells with the highest expression levels reveals enrichment in TCR expression and related cytokine signaling pathways [\[82](#page-9-0),[83\]](#page-9-0).

According to reports, quantifying the number of LAG-3 cells can effectively demonstrate a close correlation with endoscopic inflammation. Compared to the normal group, the number of LAG-3 cells in the serum of the control group receiving biological treatment decreases. Interestingly, as tissue inflammation improves and tissue heals, the expression of LAG-3 gradually diminishes or even disappears [[84,85](#page-9-0)]. Conversely, in the population of patients with ongoing disease activity, the expression of LAG-3 remains persistently elevated despite treatment in the control group.

6. Therapeutic potential of targeting LAG-3 by FGL1 in SLE

SLE is an autoimmune disease characterized by multiple tissue damage mediated by autoantibodies. Research has shown that the incidence and clinical course of SLE are closely linked [\[61](#page-8-0)[,86](#page-9-0),[87\]](#page-9-0). While there is no clear inheritance pattern, familial heritability of SLE has been established, and over 100 polymorphic loci have been identified as associated with polygenic SLE [88–[92\]](#page-9-0).

Currently, there are 19 drugs targeting LAG-3 molecules undergoing evaluation in clinical trials, and they have exhibited promising results ([Table](#page-4-0) 1) [[93](#page-9-0)–96]. In 2018, the US Food and Drug Administration (FDA) has approved the first clinical development of LAG-3 inhibitors for the treatment of immune diseases, positioning LAG-3 as the most significant next-generation immune checkpoint since PD-1. This finding underscores the significance of molecular targeted therapy in immune disease treatment([Fig.](#page-6-0) 2) (see [Table](#page-6-0) 2).

Wen Wei Lin's team has discovered that soluble FGL1 can bind to LAG-3 induced expression on T cells using a collagen-induced arthritis mouse model. This interaction effectively inhibits the secretion of interleukin (IL)-2 and interferon-γ (IFN-γ) by T cells in the primary mouse model. Moreover, when FGL1 protein is administered through intraperitoneal injection, the results are highly remarkable: inflammatory cytokines such as IL-1β and IL-6 in tissue cells are significantly reduced, and the progression of joint inflammation and cellular infiltration is significantly attenuated [[73\]](#page-8-0).

In a phase I clinical trial focused on autoimmune diseases, specifically psoriasis, conducted by Joanne Ellis and colleagues, it is observed that targeting LAG-3 effectively suppresses the secretion of L-17. Interestingly, FGL1 exhibits the ability to bind to specific domains of LAG-3, inducing T-cell dysfunction. GSK2831781, a collaborative effort between GSK and Immunotep, demonstrated its efficacy in clinical trials by depleting activated T cells expressing LAG-3 in inflammatory diseases. This results in reductions in pro-inflammatory gene expression, including IL-17A, IL-17F, and IFN-γ, with notable pharmacological activity and a substantial safety profile. Remarkably, this clinical trial introduces the innovative concept of FGL1 as a potential novel biomarker associated with autoimmune diseases [\[4,](#page-7-0)97–[99\]](#page-9-0)[\(Fig.](#page-7-0) 3).

Dr. Vibha Jha and her team have reported findings from a mouse model of autoimmune diseases induced by heavy metals, drugs, and minerals. Their research indicates that LAG-3-deficient mice exhibit increased susceptibility to mercury-induced autoimmune diseases, marked by elevated levels of inflammatory factors such as IL-4, IL-6, and interferon release. However, this condition can be reversed through the adoption and implementation of transfer technologies [100–[102\]](#page-9-0).

Clinical practice has embraced a design aimed at mitigating immune rejection and treating autoimmune diseases: the development of extracellular vesicles as dual-targeted delivery systems for FGL1 and PD-L1 [[103](#page-9-0)]. These extracellular vesicles, composed of miRNA and proteins, possess excellent membrane-transmitting capabilities and can effectively inhibit the activity of CD8 T cells [\[104](#page-9-0)–106]. As is well-recognized, IL-6 plays a pivotal role in mediating inflammatory cascades in the pathogenesis of SLE. FGL1 exerts its inhibitory effect on autoimmunity by disrupting AKT signal transduction through IL-6-mediated JAK2/STAT3 signal activation [[65\]](#page-8-0).

7. Biosafety issues and future prospects

LAG-3 currently stands as a significant novel lymphocyte activation gene, ranking second only to PD-1, and serves as a suppressive immune checkpoint protein $[20,107-109]$ $[20,107-109]$ $[20,107-109]$ $[20,107-109]$. While the advantages and feasibility of targeting FGL1 to modulate LAG-3 in the treatment of SLE have been discussed previously, it is essential to acknowledge potential biological issues and clinical application risks.

FGL1, functioning as the principal inhibitory receptor of LAG-3, can facilitate stable binding with pMHC II, effectively dampening T-cell activation both *in vivo* and *in vitro*. Notably, this stable binding remains unaffected by the FGL1 protein itself [\[2\]](#page-7-0).

FGL1, secreted during acute liver injury, has been shown to promote liver cell proliferation [\[110](#page-9-0)–112]. However, evaluating its long-term systemic use in clinical practice poses challenges to assessing safety. Inappropriate FGL1 dosing may lead to dyslipidemia and disruptions in energy utilization, potentially affecting normal physiological functions [[113](#page-9-0)]. Furthermore, there remains a dearth of adequate clinical evidence and treatment cases to comprehensively evaluate adverse events and potential risks associated with FGL1-targeted LAG-3 therapy for SLE [[73](#page-8-0)[,97](#page-9-0)].

It is crucial to note that although targeting LAG-3 via FGL1 can partially inhibit T-cell activation and proliferation, dampen inflammatory responses, and maintain relative autoimmune response stability, it can also result in excessive T-cell depletion, rendering individuals vulnerable to infections, weakened immune surveillance, compromised defense mechanisms, and even an elevated risk of tumor development [[11,14](#page-7-0)[,46](#page-8-0)].

8. Conclusions

Over the years, the use of immunosuppressants and cytotoxic drugs in the clinical treatment of SLE has been associated with side effects such as nephrotoxicity, infections, bone marrow suppression, and gastrointestinal reactions [[93\]](#page-9-0). While biological agents targeting specific molecules have exhibited strong specificity, the variety of available drugs remains relatively limited. Hence, the development of new targeted drugs based on novel mechanisms is of paramount importance. Such drugs not only serve as a valuable addition to clinical treatment but also enhance the overall survival rates of lupus patients [[103](#page-9-0)].

Table 1

Preclinical and clinical development of targeted LAG-3 therapy.

Study

Table 1 (*continued*)

(*continued on next page*)

Table 1 (*continued*)

Table 2

Key points for FGL1 and LAG-3 participating in SLE.

Aspect	FGL1	$LAG-3$
Prevalence	Elevated levels observed in SLE patients	Expression increased in SLE
Expression	Upregulated in serum and tissues	Increased expression on T and B cells
Cell Types	Expressed by immune and non- immune cells	Predominantly expressed on T cells
Animal Models	Not extensively studied in SLE models	LAG3 knockout exacerbates lupus in mice
Function	Modulates immune response, promotes tolerance	Inhibits T cell activation and proliferation
Therapeutic Target	Potential therapeutic target in SLE.	Investigated for immunotherapy in cancer

LAG-3, functioning as a novel suppressive immune checkpoint molecule on T cells, represents a next-generation immunotherapy target [[114](#page-9-0),[115](#page-9-0)]. Precise targeted therapy can be achieved by leveraging the high binding affinity of the ligand FGL1. Although our understanding of its functions is still evolving, the development of therapies targeting this pathway has gained substantial momentum. Currently, the advantages of this innovative approach are apparent: traditional cytotoxic drugs or immunosuppressants do not possess the capacity to directly block or eliminate T-cell activation, whereas this targeted strategy can promptly halt new immune activation without resorting to widespread cytotoxicity.

Currently, at least 15 new molecules and biological agents targeting LAG-3 as a therapeutic target are in various stages of preclinical and clinical development. In the realm of autoimmune disease treatment, immune regulation through LAG-3 targeting has demonstrated promising therapeutic effects in conditions such as psoriasis and ulcerative colitis [\[12,14](#page-7-0),[38,](#page-8-0)[116](#page-9-0)]. Therefore, employing FGL1 to target LAG-3 in the treatment of SLE represents a highly promising treatment paradigm

Fig. 2. Research potential of LAG-3 and FGL1 in autoimmune diseases.

Fig. 3. Therapeutic potential of targeting LAG-3 by FGL1 in SLE.

that can significantly enhance the clinical outcomes of patients and expand the treatment options available to healthcare practitioners.

Funding

This work received support from the China Postdoctoral Science Foundation for COVID-19 [grant number 2020M670066ZX], the Jiangsu Postdoctoral Research Funding Program [grant number 2019K260], the Scientific Research Funding for Top Talents of the 'Six One Project' for High-level Health Talents in Jiangsu Province [grant numbers LGY2019023], and the Jiangsu Provincial High-level Health Talents 'Six One Project' Top Talent Research Award [grant numbers LGY2020038].

CRediT authorship contribution statement

Bing Wang: Writing – review & editing, Writing – original draft. **Biqing Zhang:** editing. **Min Wu:** Yue Jiang, Validation. **Ting Xu:** Writing – review $&$ editing, Writing – original draft.

Declaration of competing interest

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising, or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Data availability

No data was used for the research described in the article.

References

- [1] M.A. Ameer, H. [Chaudhry,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref1) J. Mushtaq, O.S. Khan, M. Babar, T. Hashim, et al., An overview of systemic lupus [erythematosus](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref1) (SLE) pathogenesis, classification, and [management,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref1) Cureus. 14 (10) (2022) e30330.
- [2] T. [Maruhashi,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref2) D. Sugiura, I.-M. Okazaki, K. Shimizu, T.K. Maeda, J. Ikubo, et al., Binding of LAG-3 to stable [peptide-MHC](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref2) class II limits T cell function and suppresses [autoimmunity](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref2) and anti-cancer immunity, Immunity 55 (5) (2022).
- [3] V. Aggarwal, C.J. Workman, D.A.A. Vignali, LAG-3 as the third [checkpoint](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref3) inhibitor, Nat. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref3) 24 (9) (2023) 1415–1422.
- [4] J. Wang, M.F. Sanmamed, I. Datar, T.T. Su, L. Ji, J. Sun, et al., [Fibrinogen-like](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref4) protein 1 is a major immune [inhibitory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref4) ligand of LAG-3, Cell 176 (1–2) (2019).
- [5] Z. Arif, A. [Tarannum,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref5) M.Y. Arfat, B. Arif, S. Shahab, M. Arif, et al., Impact of endogenous stress on albumin structure in systemic lupus [erythematosus](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref5) (SLE) patients, Int. J. Biol. [Macromol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref5) 151 (2020) 891–900.
- [6] P.E. Love, S.A. Santoro, [Antiphospholipid](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref6) antibodies: anticardiolipin and the lupus anticoagulant in systemic lupus [erythematosus](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref6) (SLE) and in non-SLE disorders. Prevalence and clinical [significance,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref6) Ann. Intern. Med. 112 (9) (1990) 682–[698](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref6).
- [7] R. Robl, A. Eudy, P.S. Bachali, J.L. Rogers, M. Clowse, D. [Pisetsky,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref7) et al., Molecular [endotypes](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref7) of type 1 and type 2 SLE, Lupus Sci Med 10 (1) (2023).
- [8] A. Doria, M. Zen, M. Canova, S. Bettio, N. Bassi, L. Nalotto, et al., SLE [diagnosis](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref8) and treatment: when early is early, [Autoimmun.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref8) Rev. 10 (1) (2010) 55–60.
- [9] V. [Laurynenka,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref9) L. Ding, K.M. Kaufman, J.A. James, J.B. Harley, A high prevalence of anti-EBNA1 [heteroantibodies](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref9) in systemic lupus erythematosus (SLE) supports anti-EBNA1 as an origin for SLE [autoantibodies,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref9) Front. Immunol. 13 (2022) [830993](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref9).
- [10] Z. Hu, L. Bie, J. Gao, X. Wang, Insights into selectin [inhibitor](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref10) design from [endogenous](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref10) isomeric ligands of SLea and SLex, J. Chem. Inf. Model. 61 (12) [\(2021\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref10) 6085–6093.
- [11] T. [Maruhashi,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref11) D. Sugiura, I.-M. Okazaki, T. Okazaki, LAG-3: from molecular functions to clinical [applications,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref11) J Immunother Cancer 8 (2) (2020).
- [12] M.P. Lythgoe, D.S.K. Liu, N.E. Annels, J. Krell, A.E. [Frampton,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref12) Gene of the month: [lymphocyte-activation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref12) gene 3 (LAG-3), J. Clin. Pathol. 74 (9) (2021) 543–547.
- [13] C. Shan, X. Li, J. Zhang, Progress of immune [checkpoint](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref13) LAG-3 in [immunotherapy,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref13) Oncol. Lett. 20 (5) (2020) 207.
- [14] M. Angin, C. Brignone, F. Triebel, A [LAG-3-specific](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref14) agonist antibody for the treatment of T cell-induced [autoimmune](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref14) diseases, J. Immunol. 204 (4) (2020) 810–[818.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref14)
- [15] S.E.A. Burnell, L. Capitani, B.J. [MacLachlan,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref15) G.H. Mason, A.M. Gallimore, A. Godkin, Seven mysteries of LAG-3: a [multifaceted](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref15) immune receptor of increasing complexity, [Immunother](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref15) Adv 2 (1) (2022) ltab025.
- [16] C.-T. Huang, C.J. [Workman,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref16) D. Flies, X. Pan, A.L. Marson, G. Zhou, et al., Role of LAG-3 in [regulatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref16) T cells, Immunity 21 (4) (2004) 503–513.
- [17] F. Triebel, S. Jitsukawa, E. Baixeras, S. [Roman-Roman,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref17) C. Genevee, E. Viegas-Pequignot, et al., LAG-3, a novel [lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref17) activation gene closely related to CD4, J. Exp. Med. 171 (5) [\(1990\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref17) 1393–1405.
- [18] I. Visan, New ligand for LAG-3, Nat. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref18) 20 (2) (2019) 111.
- [19] T. Lobatón, M. Truyens, Editorial: [LAG-3-depleting](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref19) monoclonal antibody: a potential treatment for patients with ulcerative colitis? Aliment. [Pharmacol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref19) Ther. 58 (3) [\(2023\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref19) 359–360.
- [20] S. Gertel, A. Polachek, O. Elkayam, V. Furer, [Lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref21) activation gene-3 (LAG-3) [regulatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref21) T cells: an evolving biomarker for treatment response in [autoimmune](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref21) diseases, Autoimmun. Rev. 21 (6) (2022) 103085.
- [21] A.C. Anderson, N. Joller, V.K. Kuchroo, Lag-3, Tim-3, and TIGIT: [Co-inhibitory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref39) receptors with [specialized](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref39) functions in immune regulation, Immunity 44 (5) [\(2016\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref39).
- [22] F. Triebel, LAG-3: a regulator of T-cell and DC responses and its use in [therapeutic](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref40) accination, Trends Immunol. 24 (12) (2003) 619-622.
- [23] I.B. McInnes, G. Schett, [Pathogenetic](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref41) insights from the treatment of rheumatoid [arthritis,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref41) Lancet 389 (10086) (2017) 2328–2337.

B. Wang et al.

- [24] J. Kim, J. Lee, J. Gonzalez, J. [Fuentes-Duculan,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref42) S. Garcet, J.G. Krueger, [Proportion](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref42) of CD4+CD49b+LAG-3+ type 1 regulatory T cells in the blood of psoriasis patients inversely [correlates](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref42) with psoriasis area and severity index, J. Invest. [Dermatol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref42) 138 (12) (2018) 2669–2672.
- [25] Y. Yu, Z. Chen, Y. Wang, Y. Li, J. Lu, L. Cui, et al., Infliximab modifies [regulatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref43) T cells and [co-inhibitory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref43) receptor expression on circulating T cells in psoriasis, Int. [Immunopharm.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref43) 96 (2021) 107722.
- [26] M.-G. Roncarolo, M. Battaglia, Regulatory T-cell [immunotherapy](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref44) for tolerance to self antigens and [alloantigens](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref44) in humans, Nat. Rev. Immunol. 7 (8) (2007) 585–[598.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref44)
- [27] U. Fiocco, P. Sfriso, F. Oliviero, E. Pagnin, E. Scagliori, C. [Campana,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref45) et al., Costimulatory modulation in [rheumatoid](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref45) arthritis: the role of (CTLA4-Ig) abatacept, [Autoimmun.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref45) Rev. 8 (1) (2008) 76–82.
- [28] X. Zhang, X. Zhang, L. Zhuang, C. Xu, T. Li, G. Zhang, et al., Decreased [regulatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref46) T-cell frequency and [interleukin-35](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref46) levels in patients with rheumatoid arthritis, Exp. Ther. Med. 16 (6) [\(2018\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref46) 5366–5372.
- [29] B. Huard, P. Prigent, M. Tournier, D. Bruniquel, F. Triebel, [CD4/major](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref32) [histocompatibility](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref32) complex class II interaction analyzed with CD4- and [lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref32) activation gene-3 (LAG-3)-Ig fusion proteins, Eur. J. Immunol. 25 (9) [\(1995\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref32) 2718–2721.
- [30] B.E. Jones, M.D. Maerz, H.T. Bahnson, A. [Somasundaram,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref33) L.H. McCarthy, C. Speake, et al., Fewer LAG-3+ T cells in [relapsing-remitting](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref33) multiple sclerosis and type 1 diabetes, J. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref33) 208 (3) (2022) 594–602.
- [31] L.A. Friedman, K.L. Ring, A.M. Mills, LAG-3 and GAL-3 in [endometrial](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref34) carcinoma: emerging candidates for [immunotherapy,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref34) Int. J. Gynecol. Pathol. 39 (3) (2020) 203–[212.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref34)
- [32] L. [Rodríguez-Guilarte,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref35) M.A. Ramírez, C.A. Andrade, A.M. Kalergis, LAG-3 contribution to T cell [downmodulation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref35) during acute respiratory viral infections, [Viruses](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref35) 15 (1) (2023).
- [33] E.A. Tivol, F. Borriello, A.N. [Schweitzer,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref36) W.P. Lynch, J.A. Bluestone, A.H. Sharpe, Loss of CTLA-4 leads to massive [lymphoproliferation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref36) and fatal multiorgan tissue [destruction,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref36) revealing a critical negative regulatory role of CTLA-4, Immunity 3 (5) [\(1995\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref36) 541–547.
- [34] A.C. Lino, V.D. Dang, V. [Lampropoulou,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref37) A. Welle, J. Joedicke, J. Pohar, et al., LAG-3 inhibitory receptor expression identifies [immunosuppressive](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref37) natural [regulatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref37) plasma cells, Immunity 49 (1) (2018).
- [35] N. Joller, V.K. Kuchroo, Tim-3, lag-3, and TIGIT, Curr. Top. [Microbiol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref20) Immunol. 410 [\(2017\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref20) 127–156.
- [36] J.-L. Huo, Y.-T. Wang, W.-J. Fu, N. Lu, Z.-S. Liu, The [promising](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref22) immune checkpoint LAG-3 in cancer [immunotherapy:](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref22) from basic research to clinical [application,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref22) Front. Immunol. 13 (2022) 956090.
- [37] S. Sierro, P. Romero, D.E. Speiser, The CD4-like [molecule](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref23) LAG-3, biology and therapeutic [applications,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref23) Expert Opin. Ther. Targets 15 (1) (2011).
- [38] E. Baixeras, B. Huard, C. Miossec, S. [Jitsukawa,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref24) M. Martin, T. Hercend, et al., [Characterization](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref24) of the lymphocyte activation gene 3-encoded protein. A new ligand for human [leukocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref24) antigen class II antigens, J. Exp. Med. 176 (2) (1992) 327–[337.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref24)
- [39] T. Kouo, L. Huang, A.B. Pucsek, M. Cao, S. Solt, T. [Armstrong,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref25) et al., Galectin-3 shapes antitumor immune responses by [suppressing](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref25) CD8+ T cells via LAG-3 and inhibiting expansion of [plasmacytoid](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref25) dendritic cells, Cancer Immunol. Res. 3 (4) [\(2015\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref25) 412–423.
- [40] F. Xu, J. Liu, D. Liu, B. Liu, M. Wang, Z. Hu, et al., LSECtin [expressed](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref26) on melanoma cells promotes tumor [progression](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref26) by inhibiting antitumor T-cell [responses,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref26) Cancer Res. 74 (13) (2014) 3418–3428.
- [41] C.J. [Workman,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref27) K.J. Dugger, D.A.A. Vignali, Cutting edge: molecular analysis of the negative regulatory function of [lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref27) activation gene-3, J. Immunol. 169 (10) [\(2002\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref27) 5392–5395.
- [42] L. Chocarro, E. Blanco, M. Zuazo, H. Arasanz, A. Bocanegra, L. Fernández-Rubio, et al., [Understanding](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref28) LAG-3 signaling, Int. J. Mol. Sci. 22 (10) (2021).
- [43] S. Sumitomo, K. Yamamoto, CD4+[CD25-LAG-3](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref29)+ T cells in mouse and human, Nihon Rinsho [Meneki](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref29) Gakkai Kaishi 33 (2) (2010) 92–98.
- [44] K. Fujio, K. Yamamoto, T. Okamura, Overview of [LAG-3-expressing,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref30) IL-10 producing [regulatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref30) T cells, Curr. Top. Microbiol. Immunol. 410 (2017) 29–45. [45] L. [Karapetyan,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref31) J.J. Luke, Interferon biology and LAG-3 shedding in PD-(L)1 plus
- LAG-3 [immunotherapy,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref31) Clin. Cancer Res. 29 (5) (2023) 835–837. [46] N. Poirier, T. [Haudebourg,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref38) C. Brignone, N. Dilek, J. Hervouet, D. Minault, et al., Antibody-mediated depletion of [lymphocyte-activation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref38) gene-3 (LAG-3(+))-
- activated T lymphocytes prevents delayed-type [hypersensitivity](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref38) in non-human primates, Clin. Exp. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref38) 164 (2) (2011) 265–274.
- [47] V. Sandhu, M. Quan, SLE and serum [complement:](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref47) causative, concomitant or [coincidental?](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref47) Open Rheumatol. J. 11 (2017) 113–122.
- [48] A.H. Lazarus, J. Ellis, J.W. Semple, M. Mody, A.R. Crow, J. [Freedman,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref48) [Comparison](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref48) of platelet immunity in patients with SLE and with ITP, Transfus. Sci. 22 (1–2) [\(2000\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref48) 19–27.
- [49] S.R. Moe, H. [Haukeland,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref49) C. Brunborg, A. Botea, N. Damjanic, G.Å. Wivestad, et al., Persisting mortality gap in systemic lupus erythematosus; a [population-based](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref49) study on juvenile- and adult-onset SLE in Norway 1999-2022, [Rheumatology](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref49) 19 (8) [\(2023\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref49) 2019–2028.
- [50] R.C. Stone, P. Du, D. Feng, K. Dhawan, L. Rönnblom, M.-L. Eloranta, et al., RNA-Seq for [enrichment](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref50) and analysis of IRF5 transcript expression in SLE, PLoS One 8 (1) (2013) [e54487.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref50)
- [51] L.M. Wise, W. Stohl, Belimumab and rituximab in systemic lupus [erythematosus:](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref51) a tale of two B [cell-targeting](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref51) agents, Front. Med. 7 (2020) 303.
- [52] T. Takeuchi, T. Abe, M. Kiyotaki, T. Toguchi, J. Koide, C. [Morimoto,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref52) et al., In vitro immune response of SLE [lymphocytes.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref52) The mechanism involved in B-cell [activation,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref52) Scand. J. Immunol. 16 (5) (1982) 369–377.
- [53] R. Deniz, G. Ozen, S. [Yilmaz-Oner,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref53) F. Alibaz-Oner, C. Erzik, S.Z. Aydin, et al., Familial [Mediterranean](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref53) fever gene (MEFV) mutations and disease severity in systemic lupus [erythematosus](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref53) (SLE): implications for the role of the E148Q MEFV allele in [inflammation,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref53) Lupus 24 (7) (2015) 705–711.
- [54] T.A. Gottschalk, E. Tsantikos, M.L. Hibbs, Pathogenic [inflammation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref54) and its therapeutic targeting in systemic lupus [erythematosus,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref54) Front. Immunol. 6 (2015) [550.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref54)
- [55] C. [Scheinecker,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref55) L. Göschl, M. Bonelli, Treg cells in health and autoimmune diseases: new insights from single cell analysis, J. [Autoimmun.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref55) 110 (2020) [102376.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref55)
- [56] A. Mackensen, F. Müller, D. [Mougiakakos,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref56) S. Böltz, A. Wilhelm, M. Aigner, et al., Anti-CD19 CAR T cell therapy for refractory systemic lupus [erythematosus,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref56) Nat Med 28 (10) [\(2022\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref56) 2124–2132.
- [57] E.F. Carney, [Treatment](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref57) of SLE with anti-CD19 CAR-T cells, Nat. Rev. Nephrol. 18 (12) [\(2022\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref57) 743.
- [58] V. Golder, M.W.P. [Tsang-A-Sjoe,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref58) Treatment targets in SLE: remission and low disease activity state, [Rheumatology](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref58) 59 (Suppl5) (2020) v19–v28.
- [59] R. Ibrahim, K. Saleh, C. [Chahine,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref59) R. Khoury, N. Khalife, A.L. Cesne, LAG-3 inhibitors: novel immune [checkpoint](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref59) inhibitors changing the landscape of [immunotherapy,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref59) Biomedicines 11 (7) (2023).
- [60] K. [Yuksel,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref60) E. Sag, S. Demir, S. Özdel, U.A. Kaya, E. Atalay, et al., Plasma [checkpoint](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref60) protein levels and galectin-9 in juvenile systemic lupus [erythematosus,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref60) Lupus 30 (6) (2021).
- [61] N.S. Butler, J. Moebius, L.L. Pewe, B. Traore, O.K. [Doumbo,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref61) L.T. Tygrett, et al., [Therapeutic](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref61) blockade of PD-L1 and LAG-3 rapidly clears established blood-stage [Plasmodium](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref61) infection, Nat. Immunol. 13 (2) (2011) 188–195.
- [62] W. Qian, M. Zhao, R. Wang, H. Li, [Fibrinogen-like](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref62) protein 1 (FGL1): the next immune [checkpoint](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref62) target, J. Hematol. Oncol. 14 (1) (2021) 147.
- [63] L.P. Andrews, A.E. [Marciscano,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref63) C.G. Drake, D.A.A. Vignali, LAG3 (CD223) as a cancer [immunotherapy](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref63) target, Immunol. Rev. 276 (1) (2017) 80–96.
- [64] B. Huard, M. Tournier, T. Hercend, F. Triebel, F. Faure, [Lymphocyte-activation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref64) gene 3/major [histocompatibility](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref64) complex class II interaction modulates the antigenic response of CD4+ T [lymphocytes,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref64) Eur. J. Immunol. 24 (12) (1994) [3216](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref64)–3221.
- [65] E.A. Goethe, A.B. Heimberger, G. Rao, Aspirin and [immunotherapy:](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref65) a Faustian [bargain?](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref65) J. Clin. Invest. 133 (9) (2023).
- [66] C. Casati, C. [Camisaschi,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref66) L. Novellino, A. Mazzocchi, F. Triebel, L. Rivoltini, et al., Human [lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref66) activation gene-3 molecules expressed by activated T cells deliver [costimulation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref66) signal for dendritic cell activation, J. Immunol. 180 (6) [\(2008\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref66) 3782–3788.
- [67] Q. Ming, D.P. Celias, C. Wu, A.R. Cole, S. Singh, C. [Mason,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref67) et al., LAG3 [ectodomain](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref67) structure reveals functional interfaces for ligand and antibody [recognition,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref67) Nat. Immunol. 23 (7) (2022) 1031–1041.
- [68] K. [Aigner-Radakovics,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref68) A. De Sousa Linhares, B. Salzer, M. Lehner, S. Izadi, A. Castilho, et al., The [ligand-dependent](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref68) suppression of TCR signaling by the immune checkpoint receptor LAG3 depends on the [cytoplasmic](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref68) RRFSALE motif, Sci. Signal. 16 (805) (2023) [eadg2610](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref68).
- [69] W.-T. Zhang, T.-T. Liu, M. Wu, X.-C. Chen, L. Han, Z.-Z. Shi, et al., [Development](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref69) of a [nanobody-based](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref69) immunoassay for the sensitive detection of fibrinogen-like protein 1, Acta [Pharmacol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref69) Sin. 42 (11) (2021) 1921–1929.
- [70] S.A. Abdel-Rahman, L. Zhang, M.T. Gabr, Development of a [high-throughput](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref70) TR-FRET screening assay for [LAG-3/FGL1](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref70) interaction, SLAS Discov 28 (4) (2023) 188–[192.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref70)
- [71] B. Wang, C. Chen, X. Liu, S. Zhou, T. Xu, M. Wu, The effect of [combining](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref71) PD-1 agonist and low-dose Interleukin-2 on treating systemic lupus [erythematosus,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref71) Front. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref71) 14 (2023) 1111005.
- [72] F.S. [Lichtenegger,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref72) M. Rothe, F.M. Schnorfeil, K. Deiser, C. Krupka, C. Augsberger, et al., Targeting LAG-3 and PD-1 to enhance T cell [activation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref72) by antigen[presenting](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref72) cells, Front. Immunol. 9 (2018) 385.
- [73] W.-W. Lin, K.-W. Ho, H.-H. Su, T.-F. Fang, S.-C. Tzou, I.J. Chen, et al., [Fibrinogen](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref73)like protein 1 serves as an [anti-inflammatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref73) agent for collagen-induced arthritis therapy in mice, Front. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref73) 12 (2021) 767868.
- [74] E. Dolgin, Lupus in crisis: as failures pile up, [clinicians](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref74) call for new tools, Nat. [Biotechnol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref74) 37 (1) (2019) 7–8.
- [75] L.A. Gutiérrez-González, [Rheumatologic](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref75) emergencies, Clin. Rheumatol. 34 (12) [\(2015\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref75) 2011–2019.
- [76] E. Kiss, T. Tarr, P. Soltész, G. Szegedi, [Crisis states in [systemic](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref76) lupus [erythematosus\],](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref76) Orv. Hetil. 147 (51) (2006) 2469–2473.
- [77] G.R. [Herrnstadt,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref77) M.-T. Holzer, O.M. Steinmetz, I. Kötter, S. Melderis, [Renal [manifestations](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref77) in connective tissue diseases], Z. Rheumatol. 81 (10) (2022) 829–[844.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref77)
- [78] X.-W. Meng, Z.-L. [Cheng,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref78) Z.-Y. Lu, Y.-N. Tan, X.-Y. Jia, M. Zhang, MX2: identification and systematic mechanistic analysis of a novel [immune-related](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref78) biomarker for systemic lupus [erythematosus,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref78) Front. Immunol. 13 (2022) 978851.
- [79] N. Li, Y. Wang, K. Forbes, K.M. [Vignali,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref79) B.S. Heale, P. Saftig, et al., [Metalloproteases](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref79) regulate T-cell proliferation and effector function via LAG-3, EMBO J. 26 (2) [\(2007\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref79) 494–504.
- [80] N. Li, C.J. Workman, S.M. Martin, D.A.A. Vignali, [Biochemical](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref80) analysis of the regulatory T cell protein [lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref80) activation gene-3 (LAG-3; CD223), J. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref80) 173 (11) (2004) 6806–6812.
- [81] N. Iouzalen, S. Andreae, S. Hannier, F. Triebel, LAP, a [lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref81) activation gene-3 [\(LAG-3\)-associated](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref81) protein that binds to a repeated EP motif in the intracellular region of LAG-3, may participate in the [down-regulation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref81) of the CD3/ TCR [activation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref81) pathway, Eur. J. Immunol. 31 (10) (2001) 2885–2891.
- [82] N. Gagliani, C.F. Magnani, S. Huber, M.E. Gianolini, M. Pala, P. [Licona-Limon,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref82) et al., [Coexpression](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref82) of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells, Nat Med 19 (6) [\(2013\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref82) 739–746.
- [83] M. Zhao, Y. Tan, Q. Peng, C. Huang, Y. Guo, G. Liang, et al., [IL-6/STAT3](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref83) pathway induced deficiency of RFX1 contributes to [Th17-dependent](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref83) autoimmune diseases via epigenetic [regulation,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref83) Nat. Commun. 9 (1) (2018) 583.
- [84] S.M. Slevin, L.C. [Garner,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref84) C. Lahiff, M. Tan, L.M. Wang, H. Ferry, et al., Lymphocyte activation gene (LAG)-3 is associated with mucosal [inflammation](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref84) and disease activity in [ulcerative](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref84) colitis, J Crohns Colitis 14 (10) (2020) [1446](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref84)–1461.
- [85] A.M. White, D.C. Wraith, Tr1-Like T cells an enigmatic [regulatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref85) T cell lineage, Front. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref85) 7 (2016) 355.
- [86] V. [Moreno-Torres,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref86) R. Castejón, S. Mellor-Pita, P. Tutor-Ureta, P. Durán-Del Campo, M. [Martínez-Urbistondo,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref86) et al., Usefulness of the hemogram as a measure of clinical and serological activity in systemic lupus [erythematosus,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref86) J Transl [Autoimmun](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref86) 5 (2022) 100157.
- [87] C. Sieiro Santos, C. Moriano [Morales,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref87) C. Álvarez Castro, E. Díez Alvarez, [Polyautoimmunity](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref87) in systemic lupus erythematosus: secondary Sjogren syndrome, Z. [Rheumatol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref87) 82 (Suppl 1) (2023) 68–73.
- [88] E. Gómez-Bañuelos, A. Fava, F. Andrade, An update on [autoantibodies](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref88) in systemic lupus [erythematosus,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref88) Curr. Opin. Rheumatol. 35 (2) (2023) 61–67.
- [89] I. Chepelev, I.T.W. Harley, J.B. Harley, Modeling of horizontal [pleiotropy](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref89) identifies possible causal gene expression in systemic lupus [erythematosus,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref89) Front Lupus. 1 [\(2023\).](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref89)
- [90] X.-B. Li, X.-J. Chu, N.-W. Cao, H. Wang, X.-Y. Fang, Y.-G. Fan, et al., [Proton](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref90) pump inhibitors induce changes in the gut microbiome [composition](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref90) of systemic lupus [erythematosus](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref90) patients, BMC Microbiol. 22 (1) (2022) 117.
- [91] L. Wang, C. Wang, X. Jia, M. Yang, J. Yu, Relationship between [neutrophil-to](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref91)lymphocyte ratio and systemic lupus [erythematosus:](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref91) a meta-analysis, Clinics 75 [\(2020\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref91) e1450.
- [92] D.A. Russell, M. Markiewicz, J.C. Oates, Lupus serum induces [inflammatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref92) interaction with [neutrophils](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref92) in human glomerular endothelial cells, Lupus Sci Med 7 (1) [\(2020\).](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref92)
- [93] L. Chocarro, E. Blanco, H. Arasanz, L. Fernández-Rubio, A. Bocanegra, M. Echaide, et al., Clinical landscape of [LAG-3-targeted](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref93) therapy, Immunooncol [Technol](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref93) 14 (2022) 100079.
- [94] C.J. Workman, L.S. Cauley, I.-J. Kim, M.A. Blackman, D.L. [Woodland,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref94) D.A. A. Vignali, [Lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref94) activation gene-3 (CD223) regulates the size of the expanding T cell [population](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref94) following antigen activation in vivo, J. Immunol. 172 (9) [\(2004\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref94) 5450–5455.
- [95] N. Chihara, A. Madi, T. Kondo, H. Zhang, N. Acharya, M. Singer, et al., [Induction](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref95) and [transcriptional](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref95) regulation of the co-inhibitory gene module in T cells, Nature 558 [\(7710\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref95) (2018) 454–459.
- [96] M. Kisielow, J. Kisielow, G. [Capoferri-Sollami,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref96) K. Karjalainen, Expression of [lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref96) activation gene 3 (LAG-3) on B cells is induced by T cells, Eur. J. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref96) 35 (7) (2005) 2081–2088.
- [97] X. Sun, L. Liu, S. Chen, J. Wang, X. Cai, J. Song, et al., [Fibrinogen-like](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref97) protein 1 as a novel [biomarker](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref97) of psoriasis severity, J. Inflamm. Res. 15 (2022) 4637–4647. [98] J. Ellis, B. J, D. Marks, N. [Srinivasan,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref98) C. Barrett, T.G. Hopkins, A. Richards, et al.,
- Depletion of LAG-3+ T cells translated to [pharmacology](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref98) and improvement in psoriasis disease activity: a phase I randomized study of mAb [GSK2831781,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref98) Clin. [Pharmacol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref98) Ther. 109 (5) (2021) 1293–1303.
- [99] S. Liu, Y. Guo, L. Lu, J. Lu, M. Ke, T. Xu, et al., [Fibrinogen-like](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref99) protein 1 is a novel biomarker for predicting disease activity and prognosis of [rheumatoid](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref99) arthritis, Front. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref99) 11 (2020) 579228.
- [100] V. Jha, C.J. [Workman,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref100) T.L. McGaha, L. Li, J. Vas, D.A.A. Vignali, et al. Lymphocyte Activation Gene-3 (LAG-3) negatively regulates [environmentally](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref100)induced [autoimmunity,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref100) PLoS One 9 (8) (2014) e104484.
- [101] T. Miyazaki, A. Dierich, C. Benoist, D. Mathis, [Independent](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref101) modes of natural killing [distinguished](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref101) in mice lacking Lag3, Science 272 (5260) (1996) 405–408.
- [102] C.J. Workman, D.A.A. Vignali, Negative regulation of T cell [homeostasis](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref102) by [lymphocyte](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref102) activation gene-3 (CD223), J. Immunol. 174 (2) (2005) 688–695.
- [103] H.-I. Tsai, Y. Wu, X. Liu, Z. Xu, L. Liu, C. Wang, et al., [Engineered](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref103) small extracellular vesicles as a FGL1/PD-L1 [dual-targeting](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref103) delivery system for [alleviating](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref103) immune rejection, Adv. Sci. 9 (3) (2022) e2102634.
- [104] J. Meldolesi, Exosomes and ectosomes in intercellular [communication,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref104) Curr. Biol. 28 (8) [\(2018\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref104) R435–R444.
- [105] Z. Xu, H.-I. Tsai, Y. Xiao, Y. Wu, D. Su, M. Yang, et al., Engineering [programmed](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref105) death ligand-1/cytotoxic [T-lymphocyte-associated](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref105) antigen-4 dual-targeting nanovesicles for [immunosuppressive](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref105) therapy in transplantation, ACS Nano 14 (7) [\(2020\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref105) 7959–7969.
- [106] P.D. Robbins, A. Dorronsoro, C.N. Booker, Regulation of chronic [inflammatory](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref106) and immune processes by [extracellular](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref106) vesicles, J. Clin. Invest. 126 (4) (2016) 1173–[1180.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref106)
- [107] H. Jiang, H. Ni, P. Zhang, X. Guo, M. Wu, H. Shen, et al., [PD-L1/LAG-3](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref107) bispecific antibody enhances tumor-specific immunity, [OncoImmunology](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref107) 10 (1) (2021) [1943180.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref107)
- [108] M. Kozłowski, D. [Borzyszkowska,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref108) A. Cymbaluk-Płoska, The role of TIM-3 and LAG-3 in the [microenvironment](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref108) and immunotherapy of ovarian cancer, [Biomedicines](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref108) 10 (11) (2022).
- [109] S.-J. Abi-Aad, J. Zouein, A. Chartouni, N. Naim, H.R. Kourie, [Simultaneous](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref109) inhibition of PD-1 and LAG-3: the future of [immunotherapy?](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref109) Immunotherapy 15 (8) [\(2023\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref109) 611–618.
- [110] F. Thibord, C. Song, J. Pattee, B.A.T. [Rodriguez,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref110) M.-H. Chen, C.J. O'Donnell, et al., FGL1 as a modulator of plasma D-dimer levels: [exome-wide](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref110) marker analysis of plasma tPA, PAI-1, and D-dimer, J. Thromb. [Haemostasis](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref110) 19 (8) (2021) 2019–[2028.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref110)
- [111] U. Sardo, P. Perrier, K. Cormier, M. Sotin, A. [Desquesnes,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref111) L. Cannizzo, et al., The hepatokine FGL1 regulates hepcidin and iron [metabolism](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref111) during the recovery from [hemorrhage-induced](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref111) anemia in mice, bioRxiv (2023).
- [112] F. Bie, G. Wang, X. Qu, Y. Wang, C. Huang, Y. Wang, et al., Loss of FGL1 [induces](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref112) [epithelial-mesenchymal](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref112) transition and angiogenesis in LKB1 mutant lung [adenocarcinoma,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref112) Int. J. Oncol. 55 (3) (2019) 697–707.
- [113] M.A. Postow, R. Sidlow, M.D. Hellmann, [Immune-related](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref113) adverse events associated with immune [checkpoint](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref113) blockade, N. Engl. J. Med. 378 (2) (2018) [158](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref113)–168.
- [114] D. Bauché, B. Joyce-Shaikh, R. Jain, J. Grein, K.S. Ku, W.M. [Blumenschein,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref114) et al., LAG3+ regulatory T cells restrain [interleukin-23-Producing](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref114) CX3CR1+ gutresident [macrophages](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref114) during group 3 innate lymphoid cell-driven colitis, [Immunity](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref114) 49 (2) (2018).
- [115] M. Bettini, A.L. [Szymczak-Workman,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref115) K. Forbes, A.H. Castellaw, M. Selby, X. Pan, et al., Cutting edge: accelerated [autoimmune](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref115) diabetes in the absence of LAG-3, J. [Immunol.](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref115) 187 (7) (2011) 3493–3498.
- [116] K. Klocke, S. Sakaguchi, R. Holmdahl, K. Wing, Induction of [autoimmune](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref116) disease by deletion of CTLA-4 in mice in [adulthood,](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref116) Proc Natl Acad Sci U S A 113 (17) [\(2016\)](http://refhub.elsevier.com/S2589-9090(24)00019-4/sref116) E2383–E2392.