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Abstract

Cutaneous wound healing is a normal physiological process and comprises different phases. Among these phases,
angiogenesis or new blood vessel formation in wound tissue plays an important role. Skin is richly supplied by sympathetic
nerves and evidences indicate the significant role of the sympathetic nervous system in cutaneous wound healing.
Dopamine (DA) is an important catecholamine neurotransmitter released by the sympathetic nerve endings and recent
studies have demonstrated the potent anti-angiogenic action of DA, which is mediated through its D2 DA receptors. We
therefore postulate that this endogenous catecholamine neurotransmitter may have a role in the neovascularization of
dermal wound tissues and subsequently in the process of wound healing. In the present study, the therapeutic efficacy of
D2 DA receptor antagonist has been investigated for faster wound healing in a murine model of full thickness dermal
wound. Our results indicate that treatment with specific D2 DA receptor antagonist significantly expedites the process of full
thickness normal dermal wound healing in mice by inducing angiogenesis in wound tissues. The underlined mechanisms
have been attributed to the up-regulation of homeobox transcription factor HoxD3 and its target a5b1 integrin, which play
a pivotal role in wound angiogenesis. Since D2 DA receptor antagonists are already in clinical use for other disorders, these
results have significant translational value from the bench to the bedside for efficient wound management along with other
conventional treatment modalities.

Citation: Shome S, Rana T, Ganguly S, Basu B, Chaki Choudhury S, et al. (2011) Dopamine Regulates Angiogenesis in Normal Dermal Wound Tissues. PLoS
ONE 6(9): e25215. doi:10.1371/journal.pone.0025215

Editor: Soumitro Pal, Children’s Hospital Boston & Harvard Medical School, United States of America

Received August 15, 2011; Accepted August 26, 2011; Published September 20, 2011

Copyright: � 2011 Shome et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported in part by DRDO (Defence Research and Development Organisation, Government of India) Grants DLS/81/48222/LSRB-117/
ID/2006 to PSD and National Institutes of Health, USA R01-CA124763 to SB; CSIR (Council of Scientific and Industrial Research, Government of India) Pre-doctoral
Fellowship 9/30(54)/2009-EMR-1 (S.S.). No additional external funding was received for this study. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: partha42002@yahoo.com (PSD); sujit.basu@osumc.edu (SB)

Introduction

Angiogenesis is an important process of new blood vessel

formation that occurs in the body, both in health and in diseases.

This process is further controlled by precise balance between pro-

and anti-angiogenic factors in different normal physiological

conditions like wound healing. Shifts in the finely tuned equilibrium

between angiogenic stimulators and inhibitors that regulate

angiogenesis lead to either excessive or insufficient angiogenesis,

thereby causing many angiogenesis-dependent diseases, including

cancer and other diseases such as atherosclerosis, age-related

macular degeneration and rheumatoid arthritis [1].

Reports from our laboratory have shown that peripheral

endogenous neurotransmitter dopamine by acting through its D2

DA receptors present in the endothelial cells (ECs) can significantly

suppress vascular permeability factor/vascular endothelial growth

factor (VEGF/VPF) induced tumor angiogenesis by inhibiting

phosphorylation of vascular endothelial growth factor receptor 2

(VEGFR2), the principal VEGF receptor mediating the angio-

genic effects of VEGF, focal adhesion kinase (FAK) and mitogen-

activated protein kinase (MAPK) [2–5]. Moreover, DA can also

suppress neovascularization in tumors by inhibiting mobilization

of endothelial progenitor cells (EPCs) from the bone marrow to

tumor vascular bed via DA D2 receptor-mediated inhibition of

matrix metalloproteinase 9 (MMP-9) synthesis and ERK-1/ERK-

2 signaling pathways in these cells [6]. These studies have

conclusively demonstrated DA as a novel endogenous inhibitor of

angiogenesis in malignant tumors.

In contrast to tumor angiogenesis, neovascularization in wound

tissue is a normal physiological process essential for the

regeneration of damaged tissues by formation of new blood vessels

to maintain tissue viability, provide nutrients, and oxygen supply

to the growing tissues, thereby aiding in the formation of

provisional wound matrix or granulation tissue [7–11]. However,

the regulatory role of DA, if any, in this process of physiological

angiogenesis during wound tissue repair is not yet known. Dermal

tissues are richly innervated by sympathetic nerves and recent

reports indicate important role of these nerves in cutaneous wound

healing [12–18]. Furthermore, dopamine is an important

neurotransmitter in the sympathetic nervous system and DA has

been established as an endogenous inhibitor of angiogenesis [2–

6,12–14]. Because DA mediates its anti-angiogenic effects by

acting through its D2 receptors present in endothelial cells [2], we

therefore investigated whether treatment with D2 DA receptor
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antagonist can stimulate angiogenesis in wound tissues to expedite

the process of healing in a murine model of full thickness dermal

wound.

Results

Treatment with specific D2 DA receptor antagonist
accelerates dermal wound healing in mice

As angiogenesis is critical to successful wound repair and DA is

an endogenous inhibitor of angiogenesis [2–6], the therapeutic

efficacy of specific D2 DA receptor antagonist eticlopride in vivo

was evaluated for faster wound healing in a murine model of full

thickness dermal wound. Our results indicated that treatment with

eticlopride (10 mg/kg/4 day i.p.), significantly improved the rate

of wound healing in normal Swiss mice with resurfacing of intact,

new skin occurring by 9 days (Fig. 1A), whereas the full thickness

dermal wounds on the back of vehicle treated control Swiss mice

required 14 days for complete closure. These results thus indicated

that treatment with eticlopride significantly sped up (p,0.05) the

healing process in wound bearing normal Swiss mice than vehicle

treated control mice. The total surface area of the wound also

decreased significantly after completion of the treatment on day 4

in comparison to saline treated controls (Fig. 1B). On day 5, the

percent of wound closure was 53.4% in treated groups versus

25.5% in control groups, whereas it was 78.3% in treated versus

38.2% in controls on day 7 (Fig. 1B). Also the mean wound size of

the treated group was always significantly smaller at all time points

(p,0.05) than untreated groups from day 2 until the day of

complete healing (Fig. 1B). Like eticlopride, treatment with

domperidone, another D2 DA receptor specific antagonist also

significantly accelerated the rate of wound healing in murine

model of full thickness dermal wounds (data not shown). However,

no significant changes were observed in the rate of wound healing

when other dopamine receptor antagonists (D1, D3, D4 and D5)

were used (data not shown). This data confirmed that the action of

DA was specific and was through its D2 receptors.

Significantly increased angiogenesis in wound bed of
specific D2 DA receptor antagonist treated group than
vehicle treated controls

As angiogenesis plays a pivotal role in wound healing and

endogenous DA by acting through its D2 receptors acts as a potent

inhibitor of angiogenesis, we therefore investigated whether the

eticlopride mediated faster wound healing was associated with

significantly increased angiogenesis in wound tissues. At day 5

after the completion of 4 day treatment schedule of eticlopride, the

number of microvessels was significantly higher (p,0.05) in

wound beds of eticlopride treated mice than vehicle treated

controls (Fig. 1C and 1D). This significantly enhanced angiogen-

esis in wound tissues also correlated well with the faster wound

healing in eticlopride treated mice. Microvessel density was

calculated by counting the number of CD31 positive cells after

performing immunohistochemistry of frozen wound tissue sections

[6].

Increased expression of HoxD3, a regulator of
angiogenesis and its target gene a5b1 in wound bed
following treatment with specific D2 DA receptor
antagonist

Among the different genes regulating the process of angiogen-

esis, HoxD3, a homeobox transcription factor, plays a critical role

in regulating neovascularization in wounds [19–21]. HoxD3 is a

member of the homeobox (Hox) family of master transcription

factors that are expressed during normal embryogenesis, skin

development and during fetal wound healing [22–24]. Further-

more, HoxD3 can modulate the expression of number of genes,

among which a5b1 integrin is well associated with angiogenesis

[20,25,26]. Therefore, the mechanism of D2 dopamine receptor

antagonist eticlopride mediated increased angiogenesis in wound

tissue as observed in the present study was explored by

determining the expression of HoxD3 and a5b1 integrin in

wound bed.

Our results indicate that eticlopride treatment, which acceler-

ated wound tissue neovascularization had significant positive

regulatory effect on the expression of this master transcription

factor (HoxD3) in wound tissue as evident from immunoblot

analysis at day 5 post wounding (24 hours after completion of 4

day schedule of eticlopride treatment) (Fig. 2A and 2B). In

addition, on day 5, following completion of eticlopride treatment,

the expression of a5b1 integrin, target gene of the transcription

factor HoxD3 was also significantly up-regulated in these wound

tissues as determined by immunohistochemistry (Fig. 2C).

DA inhibits the expression of HoxD3 and its target genes
a5 and b1 integrins in HUVEC

Endothelial cells are principal cellular components of the blood

vessels and proliferation and migration of these cells play a central

role in angiogenesis [1,7]. Our in vivo results indicated increased

expressions of HoxD3 transcription factor along with a5b1

integrin in wound tissues following eticlopride treatment, which

in turn was associated with increased angiogenesis in wound bed.

It was also reported that in endothelial cells, up-regulation of

HoxD3 and its target gene a5b1 integrin were closely associated

with angiogenic processes like proliferation and migration of these

cells following exposure to growth factors [20,25]. Among the

different growth factors that regulate wound angiogenesis, VEGF

plays a critical role in inducing angiogenesis in wound tissues.

Furthermore VEGF is thought to regulate different processes like

vascular permeability, migration and proliferation of endothelial

cells during wound repair [27–29]. Therefore, experiments were

designed in vitro to examine the direct effects of DA on the

expressions of HoxD3 and a5b1 integrin in endothelial cells

following treatment with VEGF. Since dermal tissues are richly

supplied with sympathetic nerves and because 1 mM of DA is

present in the extracellular fluid surrounding neural synapses [30],

we therefore used this concentration of DA for our in vitro

experiments. HUVEC were especially selected because these cells

express both HoxD3 and D2 DA receptors [2,20,31]. It is also to

be noted here that murine dermal angiogenic endothelial cells

express D2 DA receptors [2]. Immunoblot of HUVEC showed

presence of D2 DA receptors in these cells (Fig. 3A). This was

further confirmed by flow cytometry analysis which revealed that

over 81% cells of the total HUVEC population express D2

dopamine receptors on their surfaces (Fig. 3B).

Although serum starved HUVEC did not show any expression

of HoxD3, significant expressions of both HoxD3 and its target

genes a5 and b1 integrins were observed 8 hrs after treatment with

VEGF at a concentration of 10ng/ml. In contrast, when exposed

to DA (1 mM), the expressions of both HoxD3 and its target genes

a5 and b1 integrins were significantly down-regulated. However,

pre-treatment with specific D2 DA receptor antagonist eticlopride

abrogated the effects of DA (Fig. 4A-4C) thus further indicating

that inhibition of this growth factor induced HoxD3 expression by

DA was mediated through its D2 receptors. These results

corroborate with our in vivo experiments where eticlopride

treatment was associated with increased expressions of HoxD3

and a5b1 integrin along with stimulation of angiogenesis in wound

Dopamine and Cutaneous Wound
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Figure 2. Effect of eticlopride treatment on expression of HoxD3 and its target a5b1 integrin in cutaneous wound tissue of mice. (A)
Immunoprecipitation followed by immunoblot analysis of HoxD3 expression in wound tissues of both eticlopride and saline treated wound bearing
mice at day 5 post wounding. The immunoblot analysis shows significantly higher expression of HoxD3 protein in wound tissues of eticlopride
treated mice than vehicle treated controls at 5th day after creation of wounds. (B) The bar graphs represent the density of each HoxD3 protein band
relative to the IgG expression as quantified by ImageJ (NIH), *, P,0.05. (C) Immunohistochemical analysis of the expression of a5b1 integrin in
cutaneous wound tissues of both control and eticlopride treated mice at day 5 post wounding. Frozen sections were immunostained with anti-a5b1
integrin antibodies followed by biotin conjugated secondary antibodies. The sections were stained using ABC staining kit and Nova-Red substrate
solution to develop color. Significantly more areas of wound bed show positive staining (reddish brown color) for a5b1 integrin following eticlopride
treatment. Original magnifications, x 100. Results are representative of six separate experiments each yielding similar results.
doi:10.1371/journal.pone.0025215.g002

Figure 1. Effect of eticlopride treatment on macroscopic aspect of wound closure and formation of new blood vessels in wound
bed. (A) The treatment with eticlopride, a specific D2 dopamine receptor antagonist; 10 mg/kg/4 days/i.p. significantly accelerated the rate of wound
healing with resurfacing occurring by 9 days whereas complete wound closure in controls occurred on day 14. The control group received similar
volume of normal saline only. (B) Wound closure analysis. In treatment group of mice eticlopride significantly accelerated wound closure compared
to vehicle treated control (each group, n = 6; *, P,0.05). Time to wound closure was defined as the time until the re-epithelialization process was
complete and the wound bed was filled with new tissues. The percentage of wound closure was calculated as: (area of original wound 2 area of
actual wound) x100/area of original wound and were measured by analyzing images using an image analysis program (ImageJ, NIH). (C)
Immunohistochemical staining of CD31, a specific endothelial cell surface marker to enumerate the number of microvessels. The figure shows
significantly greater number of microvessels (reddish brown in color) in wound tissue sections of eticlopride treated mice in comparison to vehicle
treated controls. Original magnifications,6100. (D) Graphical representation shows significantly higher number of microvessels in eticlopride treated
groups when compared to vehicle treated controls at day 5, 24 hours after completion of treatment schedule. Microvessel density was measured by
counting the number of microvessels in 10 randomly chosen high power microscopic fields within the sections,*, P,0.05). Results are representative
of six separate experiments each yielding similar results.
doi:10.1371/journal.pone.0025215.g001
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Figure 3. D2 Dopamine receptors are present on the surface of human umbilical vein endothelial cells. (A) Immunoblot shows presence
of D2 dopamine receptors in HUVEC. (B) Flow cytometric analysis of D2 dopamine Receptors in HUVEC. Over 81% cells of the total HUVEC population
express D2 dopamine receptors on their surfaces as evident from the lower right quadrant.
doi:10.1371/journal.pone.0025215.g003

Figure 4. Dopamine through its D2 receptors can significantly downregulate VEGF induced expressions of HoxD3 and its target
genes a5 and b1 integrins in HUVEC. (A, B and C) Western blot analysis of the effect of dopamine on VEGF induced expressions of HoxD3 and
its target genes a5 and b1 integrins in HUVEC. Lane 1: Serum starved Human Umbilical Vein Endothelial Cells show no expression of HoxD3. However
expression of both a5 and b1 integrins was observed. Lane 2: Cells stimulated with VEGF (10 ng/ml) show significant expression of HoxD3 and both
the integrins after 8 hours of stimulation. Lane 3: Cells pretreated with 1 mM dopamine (concentration of DA found in synaptic clefts) 5 minutes
before being exposed to VEGF (10 ng/ml) show significantly down-regulated VEGF induced expression of HoxD3 and both a5 and b1 integrins
compared with VEGF treated controls. Lane 4: Cells treated with 100 mM eticlopride followed by dopamine and VEGF. Pre-treatment with eticlopride
abrogated dopamine-induced down-regulation of HoxD3 and its target a5 and b1 integrin expression in HUVEC. b-actin was used as loading controls.
Results are representative of six separate experiments each yielding similar results. (D, E and F) The bar graphs represent the density of each protein
band relative to the b-actin expression. These have been quantified by ImageJ (NIH), *, P,0.05.
doi:10.1371/journal.pone.0025215.g004
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tissue. These results also for the first time demonstrated that

endogenous DA acts as a negative regulator of wound angiogenesis

and treatment with D2 DA receptor specific antagonist abrogates

this negative effect of DA as increased angiogenesis was observed

in the wound tissues of eticlopride treated animals.

Discussion

Skin is richly innervated by sympathetic nerves and there are

now several reports which indicate that these nerves can regulate

healing of cutaneous wounds [12,15–18]. It is also now well

established that angiogenesis plays a central role in cutaneous

wound tissue repair by influencing different facets of wound

healing [9–11]. DA is one of the catecholamine neurotransmitters

released from the sympathetic nerve endings [12–14] and we had

earlier demonstrated DA to be an endogenous inhibitor of tumor

angiogenesis [2–6].

Our present results have shown that treatment with eticlopride,

a specific D2 DA receptor antagonist significantly accelerates

angiogenesis in wound tissues, thereby inducing faster healing of

full thickness dermal wounds in normal mice. As angiogenesis

induces rapid and successful wound healing [19,27,32], therefore,

it can be suggested that eticlopride by augmenting neovascular-

ization induces an ambient microenvironment in the wound bed

favorable for implementing the other major steps required for

wound healing.

Moreover recent studies have demonstrated the important roles

of HoxD3, a member of homeobox (Hox) family of transcription

factors, in wound angiogenesis [19–21]. The expression of HoxD3

is up-regulated in normal wound tissues, whereas its expression is

decreased in poorly healing wounds of genetically diabetic (db/db)

mice [19–21]. Interestingly, restoration of HoxD3 by gene transfer

has been reported to accelerate diabetic wound healing by

modulating the expressions of number of genes associated with

wound angiogenesis [19–21,25–26]. Therefore, to understand the

molecular basis of this increased angiogenesis in wound bed

following D2 DA receptor antagonist treatment, the expressions of

HoxD3 and its principal target gene a5b1 integrin in wound

tissues were examined. In vivo results revealed a direct correlation

between significant up-regulation of HoxD3 and its target gene

a5b1 integrin in wound tissues and wound neovascularization

following eticlopride treatment. This present data also corrobo-

rates well with the previous observations by Boudreau and Varner

demonstrating the regulatory role of the transcription factor

HoxD3 in the expression of a5b1, an important initiator of

angiogenesis [25]. It has been reported that HoxD3 binds directly

to the promoters of integrin a and b subunits and induces their

expressions in endothelial cells during angiogenesis, whereas knock

down of HoxD3 by antisense treatment, significantly down-

regulates the expression of a5b1 in endothelial cells [25]. As the

results of our in vivo experiments had indicated increased

expression of HoxD3 and its target a5b1 integrin in wound beds

of mice following eticlopride treatment, further experiments were

designed in vitro to confirm the in vivo results. Recent studies have

indicated that growth factors can induce HoxD3 expression in

endothelial cells, which in turn is associated with increased

proliferation and migration of endothelial cells, a prerequisite for

formation of new blood vessels [19,20,25]. Our in vitro experiments

demonstrate that activation of D2 dopamine receptors significantly

inhibited VEGF-induced expression of HoxD3 and its target genes

a5 and b1 integrins in endothelial cells. In contrast, pre-treatment

with eticlopride, abrogated this DA induced down-regulation of

both HoxD3 and its target integrins. These in vitro results also

correlated well and confirmed our in vivo results showing

eticlopride induced increased expression of HoxD3 and its target

integrins in wound tissues, thus indicating a novel association

between endogenous DA and wound angiogenesis. However,

angiogenesis in wound tissue is a complex process, involving

multiple growth factors and cytokines, therefore besides influenc-

ing HoxD3 expression, the possibility of involvement of DA

through its D2 receptors to interact with other growth factors and

their down stream pro-angiogenic target genes cannot be ruled

out.

Taken together, the information generated from the present

study thus has shown for the first time that in addition to

regulating pathological angiogenesis in tumors [5–6], DA through

its D2 receptors can also negatively influence physiological

angiogenesis in wounds and treatment with a specific D2

dopamine receptor antagonist can significantly increase wound

angiogenesis and thereby, expedite the process of wound tissue

repair. This novel information has immense translational value in

respect to better and efficient wound management by using D2 DA

receptor antagonists along with other conventional therapy for the

repair of damaged wound tissues.

Materials and Methods

Experimental wound model
All animal experiments were performed after approval by the

Institutional Animal Care and Use Committees. In the present

investigation, the experiments were carried out in full thickness

dermal wound bearing normal Swiss mice (4–6 weeks and

weighing 22–25 g). The animals were anesthetized with intraper-

itoneal (i.p.) injection of 100 ml solution containing ketamine and

xylazine mixture (2.215 and 0.175 mg, respectively; all from

Sigma, St. Louis). The dorsal hair of the mouse was shaved and

disinfected with an alcohol (70% ethanol) swab to prepare the back

skin for generation of a standardized full-thickness dermal wound.

Using an 8 mm dermal punch biopsy, two excisional wounds were

created at the same cranial-caudal level on the dorso-medial back

of each animal. At the end of the surgical procedure, cages were

placed on a heating pad until mice fully recovered from anesthesia

[33].

Treatment schedule with eticlopride, a specific D2 DA
receptor antagonist

After creation of wounds, the wound bearing mice were divided

into two equal groups. Immediately after wounding, mice of the

treatment group were given 10 mg/kg i.p. of eticlopride

hydrochloride (Sigma, USA) in 300 ml normal saline and

continued for four consecutive days with 24 hours interval [2].

The control group received similar volume of normal saline only.

Wound Healing Studies
Wound closure was documented with a digital camera. Time to

wound closure was defined as the time until the re-epithelialization

process was complete and the wound bed was filled with new

tissues. Wound area was measured by analyzing images using an

image analysis program (ImageJ, NIH) by tracing the wound

margin and calculating the pixel area. The pixel counts were then

related to a circular filter paper having the same diameter as the

original wound, which served as a reference for every wound

healing image assessment. The measurements were performed in

triplicate and mean values of consecutive tracings were computed

and expressed as percentage of closure from the original wound.

The percentage of wound closure was calculated as: (area of

original wound 2 area of actual wound) x 100/area of original

wound [33,34].

Dopamine and Cutaneous Wound
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Examination of wound vascularity, HoxD3 and integrin
expression

On day 5, after completion of eticlopride treatment for four

consecutive days, the extent of wound tissue neovascularization

and integrin expressions were examined in both vehicle treated

controls and eticlopride treated mice. Wound tissues from both the

groups were collected, washed in PBS and fixed in OCT

compound at 220uC for 1 hour and 5 mm cryostat sections were

cut from the mid-portion of the wounds with a cryomicrotome.

Sections were taken onto Poly-L-Lysine coated glass slides and

fixed in methanol at 220uC for 20 minutes and the slides were

stored at 280uC until assayed. The sections were stained with

anti-CD31 antibody (Goat anti-mouse IgG; R&D Systems, MN)

or anti-integrin a5b1 antibody (Rat anti-mouse IgG; Millipore,

MA) and biotin conjugated secondary antibodies (Rabbit anti-goat

IgG; Millipore, MA and Goat anti-rat; BD Pharmingen, CA) and

treated with ABC staining kit (Vector Laboratories, CA) and

Nova-Red substrate solution (Vector Laboratories, CA) to develop

color. Microvessel density (CD31 positive cells) in wound bed was

measured by counting the number of microvessels in 10 randomly

chosen high power microscopic fields within the sections [6].

For immunoblot analysis of HoxD3 in wound tissue, the entire

wound, as well as a ,2 mm margin of surrounding normal skin

were excised, cut into small pieces with the help of a clean sharp

razor blade, homogenized and the protein extracts from cells were

immunoprecipitated with anti-HoxD3 antibody (Santa Cruz, CA)

and immunoprecipitates were captured on protein A-agarose

beads. The immunocomplexes were then subjected to SDS-PAGE

and then transferred to polyvinyl difluoride membranes (Millipore,

MA) and immunoblotted. Goat anti-rabbit IgG HRP conjugated

(Santa Cruz, CA) was used as secondary antibody. Antibody

reactive bands were detected by enzyme - linked chemilumines-

cence (Pierce IL) [4].

Determination of D2 DA receptors in HUVEC by
immunoblotting and flow cytometry

HUVEC (human umbilical vein endothelial cells) (HUV-EC-C;

ATCC Number: CRL-1730) were cultured in ATCC formulated

F-12K Medium (Catalog No. 30-2004). To make the complete

growth medium, the following components were added to the base

medium: 0.1mg/ml heparin; 0.03–0.05 mg/ml endothelial cell

growth supplement (ECGS; Millipore, MA) & adjusted to a final

concentration of 10% fetal bovine serum. The presence of D2 DA

receptors in HUVEC were determined by both immunoblot and

flow cytometry analysis.

In vitro expanded HUVEC were lysed and the protein extracts

from cells were immunoprecipitated with mouse anti-D2 DA

receptor antibody (Santa Cruz, CA) and immunoprecipitates were

captured on protein A-agarose beads. Thereafter, the immuno-

complexes were subjected to SDS-PAGE and then transferred to

polyvinyl difluoride membranes (Millipore, MA) and immuno-

blotted. Goat anti-mouse IgG HRP conjugated (Santa Cruz, CA)

was used as secondary antibody. Antibody reactive bands were

detected by enzyme - linked chemiluminescence (Pierce, IL) [4].

Cultured HUVEC were further analyzed by flow cytometry

(FACS Calibur; BD Biosciences) to determine the presence of D2

DA receptors in these cells. HUVEC were incubated with mouse

anti-D2 DA receptor antibody, (Santa Cruz, CA). After incubation

with the primary antibody, FITC conjugated rat anti-mouse IgG

(eBioscience, CA) against the primary anti-D2 DA receptor

antibody was also added. Initial analysis gates were designed to

exclude dead cells and debris. Analyses were considered as

informative when adequate numbers of events (after acquisition of

10000 cells per sample) were collected in the gated cells.

Percentage of D2 DA receptor positive cells was finally determined

after comparing them with matched isotype controls [6].

Effects of DA on expressions of HoxD3 and its target
genes a5 and b1 integrins in HUVEC

To determine effect of DA receptor activation on HoxD3

expression in vitro, HUVEC were serum-starved for 24 hours and

then treated with 1 mM DA followed by addition of 10 ng/ml

VEGF (Millipore, MA) 5 minutes later. After incubation for

8 hours, cells were collected for protein isolation [2].

The protein extracts from cells of various experimental groups

were subjected to SDS-PAGE (non-reducing condition in case of

a5 integrin only) separately for each of these proteins and blotted

onto PVDF membranes (Millipore, MA). Primary antibody used

in western blots were rabbit anti-HoxD3 IgG (Santa Cruz, CA),

rabbit anti-Integrin a5 (Millipore, MA) and rabbit anti-Integrin b1

(Millipore, MA). Goat anti-rabbit IgG HRP conjugated (Santa

Cruz, CA) was used as secondary antibody for the western blots

[31].

Statistical analysis
Data are means of at least 6 different experiments 6 SEM.

Student’s t-test was used to analyze differences between groups. p

value ,0.05 was considered statistically significant [33,34].
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