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Abstract

Analysis using human body models has been performed to reduce the impact of accidents;

however, no analysis has shown a relationship between lumbar and pelvic/spine angle and

seat belts in reducing human damage from accidents. Lumbar and pelvic/spine angles were

measured in 75 individuals and the measurements were used to create three different

angles for the Total Human Model for Safety model. In the present study, we focused on

lumber lordosis (LL) and pelvic angle (PA). A normal distribution and histogram were used

for analysis of PA (01, 10, and 50). The Total Human Model for Safety, including LL and PA,

was corrected using finite element software. Simulations were conducted under the condi-

tions of the Japan New Car Assessment Programme (JNCAP) 56 kph full lap frontal impact.

Using the results of the FEM, the amount of lap-belt cranial sliding-up, anterior movement of

the pelvis, posterior tilt of the pelvis, head injury criterion (HIC), second cervical vertebrae

(C2) compressive load, C2 moment, chest deflectiou (upper, middle, and lower), left and

right femur load, and shoulder belt force were measured. The lap-belt cranial sliding-up was

1.91 and 2.37 for PA10 and PA01, respectively, compared to PA50; the anterior movement

of the pelvis was 1.08 and 1.12 for PA10 and PA01, respectively; and the posterior tilt of the

pelvis was 1.1 and 1.18 for PA10 and PA01, respectively. HIC was 1.13 for PA10 and 1.58

for PA01; there was no difference in C2 compressive load by PA, but C2 moment increased

to 1.59 for PA10 and 2.72 for PA01. It was found that as LL increases and the PA decreases,

the seat belt becomes likely to catch the iliac bone, making it harder to cause injury. This

study could help to reconsider the safe seat and seatbelt position in the future.
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Introduction

Although the global death rate from motor vehicle accidents is declining, approximately 1.35

million people are killed each year as a result of road traffic crashes according to the World

Health Organization’s Road Traffic Crashes database. Whiplash injury can reduce an accident

victim’s quality of life for a significant amount of time, ranging from weeks to a few months,

with symptoms persisting for years in some cases [1]. Various efforts have been made to

reduce human injuries from car accidents by improving car seat belts and the car itself, includ-

ing the materials used in manufacture, as well as by analyzing car accidents. Seat belts have

proven to be important in reducing injuries to car occupants during crashes [2]. However,

deaths and injuries from car accidents are still too frequent and there remains considerable

scope for improving car seats and seat belts, especially since there are clinical reports of injury

resulting from seat belts during accidents [3–5]. These studies do not refer to the mechanism

by which seat belts, which are meant to protect humans, can also cause injuries in some cir-

cumstances. Actual crash studies using humans are not practical or ethically feasible. Crash

analysis using dummy dolls in cars is important, but this is quite expensive and can’t be done

more than once [6]. Computer simulation using the finite element method (FEM) is an impor-

tant way to analyze injury from car accidents, but so far there are few published reports. Kim-

pira analyzed injuries from car accidents and used FEM human body models to simulate the

safety profile of various seats and seat belts (HBMs) [7].

They did this by adapting a previously used male FEM model to a female FEM model. In

addition, Danelson et al. performed a pediatric-sized FEM and brain injury analysis for a car

crash [8]. Davis et al. performed a seated FEM analysis and reported that pelvic fractures were

more likely to occur in female models [9].

However, it is difficult to fully replicate injuries from car accidents. To make the analysis

more thorough, we considered the possibility that the occupant’s seating alignment was also

involved. As a basis for this hypothesis, it is well known that changing from a standing to a sit-

ting position causes changes in lumbar and pelvic alignment [10–17]. Individual differences in

skeletal and seated alignment may explain why simulations do not fully replicate accidents.

In the present study we investigated factors that influenced FEM simulation and the effect

of angle of the spine and pelvis on the injury to a person in an accident when sitting in a car

seat.

THUMS version 4.0 (THUMS ver. 4.0; TOYOTA MOTOR CORPORATION, Toyota,

Aichi, Japan) and the finite element method (FEM) were used to analyze the impact to seat

belts and the human body at the time of a collision by modeling the skeletal radiological data

of a person sitting in a car seat. A better understanding of human and seat belt movement

according to the angle of the spine and pelvis should lead to improved analysis of human

injury mechanisms and risk reduction.

Material and methods

This study was conducted in collaboration with project partner Mazda Motor Corporation

(Aki-gun, Hiroshima, Japan). The research was approved by the ethics committee at the Cen-

ter for Clinical Research, Yamaguchi University Hospital (Ube, Japan; approval no. H29-052

and 2021–053). Written informed consent for this study and its publication was obtained from

all subjects. And, the individual (for example Fig 1) in this manuscript has given written

informed consent (as outlined in PLOS consent form) to publish these case details.

To measure lumbar and pelvic alignment in the sitting position, seventy-five adult partici-

pants (45 men and 30 women) with no history of spine disease, lower limb surgery, or current

lower back or leg pain were included in this study. Their mean age was 45.8 years (range, 24–
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70 years), their mean height was 164.8 cm (range, 149–187 cm), and their mean body mass

index (BMI) was 24.0 kg/m2 (range, 17.5–42.6 kg/m2).

Lateral x-ray images of the global spine alignment in the sitting position were acquired with

participants in a car seat (same as the driver’s side seat of Mazda3). The car seat size was

designed to fit in the radiography room, and the seat height was adjusted to allow lateral x-ray

imaging of the spine and pelvis, with the steering wheel and pedals positioned similarly to

those in a Mazda 3 vehicle. The seat’s surface and reclining angles were fixed, but slight back-

and-forth adjustments were possible (Fig 1). To limit x-ray exposure, imaging was performed

only once with the car seat in a fixed position.

In the present study, we focused on lumbar lordosis (LL), the sacral slope (SS), and pelvic

angle (PA). After imaging of the spine, the following angles were measured in the sitting posi-

tion: lumbar lordosis (LL) between the superior end plate of the 1st to the superior end plate of

the 5th lumbar vertebrae; the sacral slope (SS) between sacrum and the horizontal line; pelvic

angle (PA) between the line from the pubic symphysis to the anterior superior iliac spine

(ASIS) and perpendicular line were measured [18–20] (Fig 2). This data were reflected in the

FE analysis models.

FE analysis

The human model for collision analysis, THUMS ver. 4.0 AM50, was used. Alignment of

THUMS was modified using the pre-processing software Oasys PRIMERTM (ARUP, London,

UK). Both software packages were purchased.

Since the analysis of each subject’s data was time consuming, we focused on PA. In order to

select representative PA values, a normal distribution and histogram were used for PA analysis

(Fig 3). The results showed that the 1st percentile of the PA was 67˚, the 10th percentile was

57˚, and the 50th percentile was 45˚. The LL angles of the volunteers for each PA angle were

-8˚, -8˚, and 27˚, while the SS angles for each PA angle were -20˚, -10˚, and 5˚. To create a

model corresponding to those angles, skeletal alignment in the THUMS model was modified

Fig 1. The positions taken by study participants for seat (left) and sitting position (right).

https://doi.org/10.1371/journal.pone.0254120.g001
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by giving Prescribed-Motion (enforced displacement) to the vertebrae of the thoracic spine,

lumbar spine and pelvis.

In this study, simulations were conducted under the conditions of the Japan New Car

Assessment Programme (JNCAP) 56 kph full lap frontal impact. Car models, the position of

HBMs, and restraint state by seat belt were the same as the simulation conditions. The shoul-

der belt was set at the chest and the lap belt was set to fit the pelvis (Fig 3). For certain condi-

tions, below the wrist, below the knee, and the cervical spine of THUMS were restrained. The

hip joint was not restrained for flexion and extension, but was restrained for abduction, adduc-

tion, and rotation (Fig 4).

Using the results of the FEM, the amount of lap-belt cranial sliding-up anterior movement

of the pelvis, posterior tilt of the pelvis for seeing abdominal, aorta sand spine injury. Head

injury criterion (HIC), second cervical vertebrae (C2) compressive load, C moment for seeing

cervical spine injury, chest deflectiou (upper, middle, and lower) for seeing chest injury and

rib injury, left and right femur load, and shoulder belt force for seeing limbs injury were mea-

sured. Analysis and animation creation were performed using Animator software (CDH-Japan

Fig 2. Lateral radiographs of three volunteers (left). There were volunteers with a lumbar lordosis (center) and volunteers with decreasing lumbar lordosis and pelvic tilt

(right).

https://doi.org/10.1371/journal.pone.0254120.g002
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LTD., Yokohama, Kanagawa, Japan). Using the alignment, we measured the movement and

rotation of the body and seatbelt during car crash and analyzed the injury risk.

Results

Radiological data

The mean values of alignment in the sitting position were as follows: LL, -0.49˚±9.58˚(range,

-26˚ to 26.6˚); SS, -16.5˚±8.64˚ (range, -41˚ to 4.3˚); and PA, -45.57˚ ±9.80˚(range, -67.0˚ to

-20.0˚).

FEM

Fig 5 shows a whole human model of a collision from the riding situation and the extracted

seat belts, vertebral pelvis, and head.

The measurements are shown in Table 1. At the time of the collision, all parameter had

increased. Lap-belt cranial sliding-up was 10.8, 20.6, and 25.7mm, anterior movement of pelvis

was 139.8, 154.0, and 165.1mm for PA50, PA10, and PA01, posterior tilt of the pelvis was

41.75, 45.05, and 46.78˚, HIC was 532.9, 601.4, and 840.9, C2 moment was 1.88, 2.99, 5.11mm,

Fig 3. Normal distribution and histogram of PA (upper figure). Angle correction model of each model (middle figure). PA01; PA 67˚, LL -8˚, SS -20˚. PA10; PA 57˚, LL

-8˚, SS -10˚. PA50; PA 45˚, LL 27˚, SS 5˚. Diagram of the seat of each model and the position of the lap-belt (below).

https://doi.org/10.1371/journal.pone.0254120.g003
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and chest deflection lower was 25.4, 28.7 and 30.5 for PA50, PA10, and PA01. These parameter

were gradually increased by from PA50 to PA01. The other parameters did not show a gradual

increasing trend with PA.

C2 compressive load, chest deflectiou, and femur and shoulder was 1.66, 1.55, and 1.88N,

The graph shows the ratio of damage to PA10 and PA01 when the damage to PA50 was set to

1. The lap-belt cranial sliding-up was 1.91 and 2.37 for PA10 and PA01, respectively, compared

Fig 4. Initial posture of THUMS (above). Below the wrist, below the knee, and the cervical spine of THUMS were

restrained (arrows). In addition, the hip joint was not restrained to flexion and extension; however, abduction,

adduction, and rotation were restrained (see below).

https://doi.org/10.1371/journal.pone.0254120.g004
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Fig 5. Initial position of the collision analysis. The upper two figures show the whole model and the lower figures shows only the spine and head. The

left image shows the position before the experiment started and the right image shows the position after the collision. Overall, it shifted forward.

https://doi.org/10.1371/journal.pone.0254120.g005

Table 1. Measured values for each parameter.

Parameter PA50 PA10 PA01

Lap-belt cranial sliding-up (mm) 10.8 20.6 25.7

Anterior movement of pelvis(mm) 139.8 154.0 165.1

Posterior tilt of the pelvis (˚) 41.75 45.05 46.78

HIC 532.9 601.4 840.9

C2 Compressive Load (N) 1.66 1.55 1.88

C2 Moment (mm) 1.88 2.99 5.11

Chest Deflectiou Upper (mm) 35.4 37.5 31

Chest Deflectiou Middle (mm) 28.6 32.6 30.6

Chest Deflectiou Lower (mm) 25.4 28.7 30.5

L Femur Load (N) 0.83 0.81 1.0

R Femur Load(N) 1.62 1.31 1.65

Shoulder Belt Force (N) 5.57 5.52 5.66

https://doi.org/10.1371/journal.pone.0254120.t001
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to PA50; the anterior movement of the pelvis was 1.08 and 1.12 for PA10 and PA01, respec-

tively; and the posterior tilt of the pelvis was 1.1 and 1.18 for PA10 and PA01, respectively.

The HIC was 1.13 for PA10 and 1.58 for PA01; there was no difference in C2 compressive

load by PA, but C2 moment increased to 1.59 for PA10 and 2.72 for PA01. There was no differ-

ence in the loading of the chest, femoral, and shoulder belts (Fig 6).

PA50 tended to have less Lap-belt cranial sliding-up, Anterior movement of pelvis, HIC,

and C2 moment than PA10 and PA01. There were no characteristic differences in the chest or

lower limbs due to alignment.

Fig 6. The graph shows the ratio of damage to PA10 and PA01 when the damage to PA50 is set to 1. The vertical axis is the ratio and the graph for each parameter is

shown.

https://doi.org/10.1371/journal.pone.0254120.g006
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Discussion

This study investigated alignment of the human body when sitting in a car seat; thus, simulat-

ing human damage patterns of accidents and investigating seat belt and seat positions. One of

the aims was to analyze car crashes using a human model and help decrease the risk of injury

during an accident. The study also provides evidence for the development of other vehicle

seats and human simulation analysis.

Several computer simulation analyses using THUMS and FEM for automobile accidents

have been reported. Kimpara et al. analyzed a female model and compared the results with a

male model [21]. Andersson et al. performed an analysis on child size and reported that light

vehicles required higher performance interior restraint systems than larger vehicles [22].

Danelson et al. and Digges et al. analyzed lung contusions during motor vehicle accidents [23,

24]. Klein et al. reported that body shape altered impact to the femur [25]. Mattos et al. ana-

lyzed the damage to the head and cervical spine during a rollover [26]. Jones et al. performed

an analysis of lumbar spine fractures at the time of the collision [27]. Paas et al. analyzed the

mechanism of shoulder injury at the time of an accident [28]. Xiao et al investigated of chest

injury mechanism of seat belt using FEM [29]. Our analysis also showed movement of shoul-

der, chest, and cervical spine, as previously reported. These analyses can be viewed as useful

research for the development of human models and improving vehicle safety. However, there

are challenges resulting from collision conditions and model validation, and there was no anal-

ysis focusing on vertebral angle.

There were some reports of individual differences in the angle of lumbar and pelvis with sit-

ting position. Studies by Suzuki et al. and Endo et al. examined the alignment in standing and

sitting positions in middle-aged and elderly individuals, and in young adults, respectively [12,

13]. Lee et al. reported that lumbar spine lordosis and pelvic tilt were decreased when study

participants were sitting [14]. Nishida et al. reported that body alignment changes with the car

seat [17]. However, there were no reports examining the effects of lumbar spine or pelvic align-

ment in the analysis of car accidents. In the present analysis, three models were created with

different angles of the pelvis and lumbar vertebrae, and it was found that there were large indi-

vidual differences in the angle changes. In the present analysis, we focused on these clinical

reports.

There have been several reports on clinical injuries caused by traffic accidents. It has been

clinically identified that there is an increased whiplash injury risk when the occupants head is

rotated or inclined prior to the impact [30, 31]. Radanov et al reported a higher incidence of

rotated or inclined head position at the time of impact was correlated with increased severity

of symptoms such as neck pain, shoulder pain, and headache [32]. In the present analysis, C2

compressive load also increased during the crash, and HIC and the C2 moment was exacer-

bated by the larger PA. The present analysis also showed that the accident added movement to

head and the cervical spine.

Herath reported a shearing transection of a gastroduodenal junction caused by an inappro-

priate seat belt [33]. Muraoka et al reported that uterine trauma and Intrauterine fetal death

caused by seatbelt injury [34]. Tomic et al reported that seat-belt abdominal aortic injury and

rib fracture [35]. Ramachandra et al reported on seat belt-induced increase in abdominal pres-

sure during an accident [36]. Abbas et al. reported that seatbelt-related injuries include spinal,

abdominal or pelvic injuries and the presence of a seatbelt sign must raise the suspicion of an

intra-abdominal injury due to seatbelt repositioning during traffic accidents. The presence of a

seatbelt sign must raise the suspicion of an intra-abdominal injury [37]. In the present study,

actual collision analysis was carried out in three human models based on the measured data of

spine and pelvis angles. Lap-belt cranial slide-up, anterior movement of the pelvis, and
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posterior tilt of the pelvis moved in all alignment conditions, suggesting that traffic accidents

can cause abdominal injuries, aortic injuries, and spinal fractures. Some researcher said inap-

propriate seat belt use, but we found that increasing LL and decreasing PA allowed for better

seat belt application to the iliac bone and better control of human movement. It has the poten-

tial to reduce injury in the event of an accident. Jiang et al. reported a higher risk of seat belt

injury when the seat belt was above the ASIS, and the present study also found that as pelvis

tilt decreases, the seat belt position shifted to the head side and the ability to control the body

decreased [38]. This study found that the spinal alignment, pelvic tilt and seatbelt position may

decrease/increase the risk of injury.

There are several limitations to our study. The size and imaging range of the x-ray equip-

ment did not allow frontal imaging in the sitting position and only allowed lateral imaging at

one angle (not adjustable by reclining). In addition, we studied only one tissue strength of

bones and organs in THUMS; therefore, age-related changes, such as osteoporosis, were not

taken into account. In addition, the soft tissue thickness of the thighs and abdomen, and varia-

tions in the size of the pelvis were not included in this model. With computer simulation, the

results are the same regardless of how many times the experiment is repeated and hence statis-

tical analysis was not performed. These are issues to be addressed in the future.

Despite these limitations, an analysis of a hypothetical car accident using a human model

with altered vertebral angle and PA showed changes in seat belt position and damage to the

human model. This will be a useful reference for future accident analysis and research on the

appropriate seat shape and seat belt position.

Conclusions

We measured the angle of the lumber and pelvis when sitting in the car seat using real volun-

teers and used the data to perform a frontal crash analysis in THUMS. It was found that as LL

increases and PA decreases, the seat belt becomes likely to catch the iliac bone, reducing the

risk of human injury. Many additional models would have to be analyzed to fully understand

the importance of, and interactions between, skeletal alignment parameters. However, this

study could contribute to improving the safety of seats and seat belt positioning in the future.
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