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Clinical Target Volume Auto-Segmentation
of Esophageal Cancer for Radiotherapy
After Radical Surgery Based
on Deep Learning
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Abstract
Radiotherapy plays an important role in controlling the local recurrence of esophageal cancer after radical surgery. Segmentation
of the clinical target volume is a key step in radiotherapy treatment planning, but it is time-consuming and operator-dependent.
This paper introduces a deep dilated convolutional U-network to achieve fast and accurate clinical target volume auto-
segmentation of esophageal cancer after radical surgery. The deep dilated convolutional U-network, which integrates the
advantages of dilated convolution and the U-network, is an end-to-end architecture that enables rapid training and testing. A
dilated convolution module for extracting multiscale context features containing the original information on fine texture and
boundaries is integrated into the U-network architecture to avoid information loss due to down-sampling and improve the
segmentation accuracy. In addition, batch normalization is added to the deep dilated convolutional U-network for fast and stable
convergence. In the present study, the training and validation loss tended to be stable after 40 training epochs. This deep dilated
convolutional U-network model was able to segment the clinical target volume with an overall mean Dice similarity coefficient of
86.7% and a respective 95% Hausdorff distance of 37.4 mm, indicating reasonable volume overlap of the auto-segmented and
manual contours. The mean Cohen kappa coefficient was 0.863, indicating that the deep dilated convolutional U-network was
robust. Comparisons with the U-network and attention U-network showed that the overall performance of the deep dilated
convolutional U-network was best for the Dice similarity coefficient, 95% Hausdorff distance, and Cohen kappa coefficient. The
test time for segmentation of the clinical target volume was approximately 25 seconds per patient. This deep dilated convolutional
U-network could be applied in the clinical setting to save time in delineation and improve the consistency of contouring.
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Introduction

Esophageal cancer (EC) is a very aggressive malignant tumor,

and its incidence rate is increasing worldwide, especially in

China.1 At present, the 5-year survival rate is only 15% to

25%.2,3 Surgical resection is the first-choice treatment for

EC,4,5 but the recurrence rate after radical resection is still high.

Local recurrence is the main cause of treatment failure,6,7 and

postoperative radiotherapy is the main treatment method used

to control local recurrence and prolong survival.8,9 The most

critical step of radiotherapy planning is to define and segment

the clinical target volume (CTV) and organs at risk

(OARs).10,11 This task is usually carried out manually by radia-

tion oncologists based on recommended guidelines using a

treatment planning system. However, the manual segmentation

process is time-consuming and operator-dependent. The accu-

racy of segmentation is highly dependent on the knowledge,

experience, and preferences of radiation oncologists.12,13

Previous studies have indicated that a fully automatic seg-

mentation method for radiotherapy is helpful to relieve radia-

tion oncologists from the labor-intensive aspects of their work

and increase the accuracy, consistency, and reproducibility of

region-of-interest delineation. Generally, automatic image seg-

mentation approaches can be classified into three types based

on region, edge, and classification.14 The features can be

extracted from the intensity, gradient, and texture. However,

it is still difficult to accurately segment the regions of interest

on computed tomography (CT) images with boundary insuffi-

ciencies based on gray-level information because of the low

contrast-to-noise ratio and high-density artifacts. Atlas-based

segmentation, which incorporates prior knowledge into the

process of segmentation, is one of the most commonly used

image segmentation techniques in clinical software.15-17 How-

ever, the tumor target may vary greatly according to the

patient’s body shape and size and the cancer type and state,

making it difficult to build a “universal atlas” for the tumor

target. In addition, it is time-consuming because of the deform-

able registration process.

In the last few years, a quantum leap has been made in deep

learning because of advancements in many areas. One partic-

ular area is the progression of convolutional neural network

(CNN) architectures for image classification and segmenta-

tion.18-22 Interest in applying CNNs to radiotherapy has

increased. The first work on OAR delineation with CNNs in

radiotherapy was reported by Ibragimov and Xing,23 who

used CNNs for OAR segmentation in head and neck CT

images. Tong et al24 developed a CNN-based method for

multi-organ segmentation in head and neck cancer radiother-

apy. Men et al25,26 developed a tumor volume segmentation

technique for rectal cancer, nasopharyngeal carcinoma, and

breast cancer; Li et al27 focused on tumor target segmentation

of nasopharyngeal cancer in CT images based on deep

learning methods; and Zhang et al28 focused on gross target

volume automatic segmentation in non-small cell lung cancer

using a modified version of ResNet. Automatic segmentation

of the tumor target based on deep learning has become a

research hotspot,29 but few studies have explored the role of

deep learning in auto-segmentation of the CTV of EC based

on CT images as well as the efficiency of auto-segmentation

in end-to-end clinical application. In addition, because the

esophageal tumor is resected, the obvious tumor is no longer

present on patients’ postoperative images, increasing the dif-

ficulty of CTV delineation based on deep learning.10

The present study provides 4 novel contributions. First, to

the best of our knowledge, there are no previous reports on

CTV auto-segmentation in planning CT images for patients

with EC after radical surgery. Thus, we developed a deep

learning model to segment the CTV of radiotherapy after rad-

ical surgery. Second, a deep dilated convolutional module in

the deep dilated convolutional U-network (DDUnet) was intro-

duced to extract original contest information directly from

input images and compensate contextual features into U-

network (U-Net) encode layers, and the results showed that

better segmentation performance and good convergence were

achieved using our DDUnet method. Third, batch normaliza-

tion (BN) was added to the DDUnet and original U-Net, and the

loss function based on the Dice similarity coefficient (DSC)

was adopted for fast and stable convergence in the training of

DDUnet and U-Net. Finally, our study results showed that the

overall performance of the DDUnet was better than that of the

U-Net, modified U-Net, and attention U-Net. Consequently,

the DDUnet could rapidly delineate the CTV with high

accuracy.

Materials and Methods

No ethical approval was required or obtained because this study

only involved the evaluation of processed images; it did not

involve patient information, a prospective evaluation, human

body experimentation, or highly invasive procedures. All

patients provided written informed consent prior to enrollment

in the study.

In this study, we introduced a deep learning model to realize

automatic CTV segmentation in radiotherapy for patients with

EC after radical surgery. Figure 1 is a flowchart of the study,

which was an end-to-end segmentation framework that could

predict pixelwise class labels in CT images. The training data-

set was used to optimize the parameters of the deep learning

model to achieve good CTV segmentation for radiotherapy.

The testing dataset was used to assess the performance of the

model.

Data Acquisition and Preprocessing

Ninety-one patients diagnosed with stage I or II upper and

middle EC from January 2015 to December 2019 at Anhui

Provincial Cancer Hospital were included in our study. All

patients received radiotherapy after surgery. The upper bound

of the CTV was the inferior edge of the cricoid cartilage, and

the lower bound was 3 cm below the tracheal eminence, includ-

ing the esophageal tumor bed, anastomotic stoma, and lymph

nodes in regions 2, 4, 5, and 7 of the chest. In some patients,
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however, the lower boundary of the CTV moved further down-

ward according to the location of the resected tumor. Only

patients with a CTV within the scope mentioned above were

included.

All patients were immobilized with a vacuum cushion

and thermoplastic mask for the neck and shoulders in the

supine position. CT data were acquired on a Somatom Def-

inition AS 40-slice CT system (Siemens Healthineers, Erlan-

gen, Germany) or Brilliance CT Big Bore system (Philips

Healthcare, Best, the Netherlands) in helical scan mode with

contrast enhancement. CT images were reconstructed using a

matrix size of 512 � 512 and thickness of 2.5 mm. Radiation

oncologists contoured the CTV and OARs in the planning CT

scan using a Pinnacle treatment planning system (Philips

Radiation Oncology Systems, Fitchburg, WI, USA) system.

Each CTV contour that was used as “standard ground

truth (GT)” was delineated by an experienced oncologist,

modified and verified by a senior radiation oncologist, and

finally reviewed and approved by another senior radiation

oncologist.

All the voxels belonging to the GT segmentation of the CTV

were extracted and labeled based on the patient’s radiotherapy

structures and CT data exported from the treatment planning

system. Only the CT images containing the CTV were included

as training and test data. We marked the CTV part as label 1

and the other part as background according to the patient’s CT

images and radiotherapy structures. We preprocessed both

kinds of CT images to the standard Hounsfield unit value and

truncated the CT image intensity values of all scans to the range

of [�150, 200] Hounsfield units to remove the irrelevant

details. Each CT slice and annotation image were cropped to

a matrix size of 256� 256 centered on the patient’s body center

of the current CT slice.

DDUnet Model Architecture

The U-Net,21 which focuses on biomedical image segmenta-

tion, was proposed in 2016 and outperformed state-of-the-art

techniques. The U-Net uses a series of down-samplings to

reduce image size and increase the field of perception; it then

uses up-sampling to expand the image size. Some information

loss usually occurs in the process of reducing and then increas-

ing the image size. To solve the problem of information loss in

the process of down-sampling, the DDUnet integrates a multi-

path dilated convolution module into the U-Net framework to

extract original context information directly from the input

images and compensate contextual features into high-level

convolutional layers.

In the present study, the dilated convolutional module

included 3 dilation convolutions with dilation factors of 1, 2,

and 4 and thus had receptive fields with a size of 3 � 3, 5 � 5,

and 9 � 9 pixels. The rectified linear unit function and a stride

size of 1 pixel were adopted by the dilation convolution. The

same padding was added to the dilation convolution process to

maintain the feature size. The 3 dilation convolutions contain-

ing 64, 128, and 256 filters with a size of 3 � 3 respectively

generated 64, 128, and 256 feature maps from the original input

with a size of 256 � 256. To compensate low-level context

information to a high-level convolutional layer, the features

output by the dilated convolution branches were used to con-

nect with the U-Net encode layers. However, the size of those

multiscale feature maps had to match, so the maximum pooling

operation with a size of 3 � 3 and a stride size of 2, 4, and 8

pixels was used to match with the higher merged layer in the

DDUnet.

As shown in Figure 2, we constructed a 5-level hierarchical

DDUnet with some innovative modifications based on the orig-

inal design (U-Net) to achieve the goal of CTV segmentation

Figure 1. Flowchart of CTV segmentation based on deep learning.
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of EC. The detailed structure of the DDUnet model is

shown Table 1. The input started with 256 � 256 pixel

images. Five levels with 4 maximum pooling operations were

chosen to reduce the feature size from 256 � 256 to 16 �
16 pixels, allowing for the 3 � 3 convolution with rectified

linear unit operations to connect the center of the tumor to the

edge of the body for all patients. The same padding was added

to the convolution process to maintain the feature size. In the

DDUnet, BN was added after the 2 convolutions for every

level, which allowed for a more equal updating of the weights

throughout the network and led to faster convergence. After

the BN operation, the features were down-sampled after max-

imum pooling to the next level and connected with the output

of the dilated module by the concatenate function of the Keras

package. Our experiments showed that the number of BN

operations should not be too high; only 1 BN per level was

enough. The pooling options reduced the spatial size of the

feature map, which needed to be recovered to the original

spatial size for the segmentation task. Therefore, the decoder

part deployed a deep neural network, which took pooling

layer 5 as the input and a series of up-sampling layers. All

layers used 3 � 3 convolution with the same padding set.

Thus, we could carry out pixel-level classification for the

segmentation task. The final outputs generated the predicted

label for each pixel.

In deep learning, the loss function is the “baton” of the

whole network model, which guides the network parameter

learning through the error back-propagation caused by the

marking of prediction samples and real samples. To make the

model converge quickly, we used a loss function based on the

DSC that can express the segmentation results directly and

address the class imbalance problem present in the target vol-

ume segmentation data. The loss function is shown as

Loss ¼ 1�
2� CTVpredict \ CTVGT

� �

CTVpredict [ CTVGT
; ð1Þ

where CTVpredict represents the auto-segmented CTV and

CTVGT is the GT segmentations of CTV.

Model Training

To assess the overall performance of the model, 19 patients

with 1104 CT slices were randomly selected as a test set, and

a 5-fold cross-validation procedure was then performed on the

remaining 72 patients with 3482 CT slices. Each of the 5 mod-

els divided the 3482 CT slices into 80% in the training set and

20% in the validation set. Five separate models were initia-

lized, trained, and validated in a unique combination of training

and validation. Each model predicted a pixel classification

label from the CT image. From these 5 trained models, we took

the best-performing model based on its validation and training

DSC and evaluated this model in the test set.

The Adam algorithm was chosen as the optimizer to mini-

mize the loss function. We used a learning rate of 1 � 10�4

and the default Adam parameters b1 ¼ 0.9, b2 ¼ 0.999, and

Figure 2. DDUnet architecture. The numbers in the boxes represent the outputs of the operation. The third dimension is the number of features,

and the numbers of the first 2 dimensions represent the size of each 2-dimensional feature.
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decay ¼ 0. Because of the fast convergence of the improved

U-Net and DDUnet, the evolution stopped at approximately 40

epochs. Thus, we chose 40 epochs when training the model.

The deep network architecture was implemented in Keras2.1.6

with TensorFlow1.5 as the backend. One NVIDIA TITAN V

GPU with 12-GB memory was used for training and testing.

The model was trained on a single slice of the patient’s CT

images. The output was pixel-level classification for that

patient slice. The training batch size was 6 slices.

Performance Evaluation

When the training process was finished, the performance of

the model was evaluated with the other 19 patients with

869 CT slices. During the testing phase, all CT slices of the

19 test patients were tested one by one. The input was the

2-dimensional CT images and the final output was the pixel-

level classification, which was the most likely classification

label. All voxels that belonged to GT were extracted and

labeled. The DSC, Hausdorff distance (HD), and Cohen kappa

coefficient (KAP)30 were used to evaluate the performance of

the models.

DSC: The Dice metric measures volumetric overlap

between segmentation results and GT annotations. The DSC

was computed as shown in equation (2):

DSC ¼ 2 � A \ Bð Þ
Aþ B

; ð2Þ

where A is the set of voxels in the GT and B is the correspond-

ing set of voxels in the segmentation results. Therefore, the

closer the DSC value is to 1, the closer the result of auto-

segmentation is to the GT.

The HD is the maximum distance from one set to the nearest

point in the other set. More formally, the HD from set A to set B

is a maximin function, defined as:

dH A; Bð Þ ¼ max d A;Bð Þ; dðB;Að ÞÞ
¼ maxfmax

a2A
min
b2B

d a; bð Þ;max
b2B

min
a2A

d a; bð Þg ð3Þ

The 95% HD is similar to the maximum HD. However, it

is based on the calculation of the 95th percentile of the

distances between the boundary points in A and B. The

purpose of using this metric is to eliminate the impact of a

very small subset of outliers. In this study, the 95% HD was

chosen.

The KAP is a measure of agreement between 2 samples.30

As an advantage over other measures, the KAP takes into

account the agreement caused by chance, which makes it more

robust. The KAP is calculated as follows:

KAP ¼ fa � fc
N � fc

; ð4Þ

fa ¼ TP þ TN ; ð5Þ

fc ¼
TN þ FNð Þ TN þ FPð Þ þ TP þ TPð Þ FN þ TPð Þ

N
;

ð6Þ

where N is the total number of observations (in this study, N is

the number of voxels that need to be segmented) and fa and

fc are calculated according to the so-called confusion matrix,

containing the true positives, false positives, true negatives,

and false negatives.

Results

To evaluate the efficiency of the automatic segmentation, the

performance of the DDUnet was compared with that of the

original U-Net, modified U-Net (U-Net þ BN), and attention

U-Net, which integrates an attention gate into the U-Net and

improves the performance for segmentation tasks in medical

images.31 To ensure that the experiments were carried out

fairly in the training stage, the same training configuration was

used for all the models.

Table 1. Detailed Model of DDUnet.

Layer name Type Stride Dilation Output

Dilation conv 3 � 3 1 1 256 � 256 � 64

3 � 3 1 2 256 � 256 � 128

3 � 3 1 4 256 � 256 � 256

Maxpool1 3 � 3 2 None 128 � 128 � 64

3 � 3 4 None 64 � 64 � 128

3 � 3 8 None 32 � 32 � 256

Conv1 (�2) 3 � 3 1 None 256 � 256 � 64

BN 256 � 256 � 64

Maxpool2 2 � 2 2 None 128 � 128 � 64

Conv2 (�2) 3 � 3 1 None 128 � 128 � 128

BN 128 � 128 � 128

Maxpool3 3 � 3 2 None 64 � 64 � 128

Conv3 (�2) 3 � 3 1 None 64 � 64 � 256

BN 64 � 64 � 256

Maxpool4 2 � 2 2 None 32 � 32 � 256

Conv4 (�2) 3 � 3 1 None 32 � 32 � 512

BN 32 � 32 � 512

Maxpool5 2 � 2 2 None 16 � 16 � 512

Conv5 (�2) 3 � 3 1 None 16 � 16 � 1024

BN 16 � 16 � 1024

UpSampling 2 � 2 2 None 32 � 32 � 512

Conv6 (�2) 3 � 3 1 None 32 � 32 � 512

BN 32 � 32 � 512

UpSampling 2 � 2 2 64 � 64 � 256

Conv7 (�2) 3 � 3 1 None 64 � 64 � 256

BN 64 � 64 � 256

UpSampling 2 � 2 2 128 � 128 � 128

Conv8 (�2) 3 � 3 1 None 128 � 128 � 128

BN 128 � 128 � 128

UpSampling 2 � 2 2 256 � 256 � 64

Conv9 (�2) 3 � 3 1 None 256 � 256 � 64

Conv10 3 � 3 1 None 256 � 256 � 3

Conv11 1 � 1 1 None 256 � 256 � 1
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Results of Model Training

The stability of the U-Net was poor when used directly. Figure 3

(left) shows the DSC values of training and validation for each

epoch when 5-fold cross-validation of the U-Net was per-

formed. Folds 3 and 5 of the 5 folds were very slow and useless.

To solve this problem, BN was added after 2 convolution layers

in each level of the U-Net. Figure 3 (right) shows the DSC

values of training and validation of the modified U-Net (i.e.,

U-Net þ BN). All 5 folds were useful, indicating that the

stability and convergence were better than those of the U-Net

overall.

Figure 4 shows the training and validation DSC values as a

function of epochs from the best-performing fold of the DDU-

net, U-Net, and U-Net þ BN models. Both the trained DSC

values of the DDUnet and U-Net þ BN gradually converged to

0.95, and the DSC values in the validation set tended to be

stable when the epoch neared 40. For the U-Net, both the

training and validation DSC values were worse than those of

the U-Net þ BN and DDUnet. All 3 models obtained after

training were used to evaluate the segmentation performance

on the test set of patients.

Results of Model Testing

The DSC, 95% HD, and KAP results for CTV segmentation in

the test set are summarized in Figures 5 to 7 and Table 2. The

proposed DDUnet method outperformed the U-Net, U-Net þ
BN, and attention U-Net. Both the average and minimum DSC

values of the DDUnet were the best among all 4 models. The

maximum DSC value was the same as that of the U-Net þ BN

and attention U-Net but higher than that of the U-Net. Table 2

Figure 3. Plot of training and validation DSC with epochs of U-Net (left) and U-Net þ BN (right).

Figure 4. DSC accuracy plot of training and validation with epochs of

the U-Net, U-Net þ BN, and DDUnet.

Figure 5. Boxplots obtained from DSC and KAP analyses.
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and Figure 5 show that the KAP followed the same trend as the

DSC. Meanwhile, the KAP for all test cases was >0.79. Figure 6

shows the DSC accuracy of all 4 models for 19 test cases. The

DSC results of most test cases were the highest among all

models; only a few were slightly lower. Figure 7 shows the

95% HD results of the test cases for all the models. The 95%
HD of the DDUnet for 11 of the 19 test cases was lower than

that of the other 3 models. The maximum, average, and mini-

mum 95% HD of the DDUnet were 37.4 mm, 19.4 mm, and

4.57 mm, respectively. These values showed reasonable over-

lap of the auto-segmented contours with those manually deli-

neated by senior radiation oncologists.

Figure 8 shows the CTV auto-segmentation results from the

transverse, coronal, and sagittal planes. In these examples, the

contours auto-segmented by the DDUnet were very close to

the GT contours, although inconsistencies were present as

shown in Figure 8G and J-L. Only a few corrections were

needed to confirm the results of automatic segmentation.

Figure 6. Bar chart of DSC values for different patients using different models.

Figure 7. Bar chart of 95% HD for different patients using different models.

Table 2. Comparison of Performance of CTV Segmentation for

Patients With EC After Surgery.

DSC (%) 95% HD (mm) KAP

Models Max Avg Min Max Avg Min Max Avg Min

U-Net 89.0 83.5 76.5 31.3 21.4 14.2 88.7 83.1 76

U-Net þ BN 96.7 84.4 74.9 43.8 23.6 4.57 96.5 84 74.3

DDUnet 96.7 86.7 79.5 37.4 19.4 4.57 96.7 86.3 79

Attention U-Net 96.7 84.5 75 44.4 22.3 4.57 96.5 84.2 74.4

Note: The boldface values indicate the best values among all models.
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The time required to perform auto-segmentation of all

CTVs with the DDUnet was about 25 seconds per patient

using a personal computer with an Intel Core i7-870K pro-

cessor (3.7 GHz) and a NVIDIA TITAN V GPU with 12-GB

memory.

Discussion

We have designed an automatic segmentation method based on

deep learning for the CTV of patients with EC receiving radio-

therapy after radical surgery. Our results suggest that the pro-

posed DDUnet model can learn the semantic information from

Figure 8. Segmentation results of (A-F) transverse, (G-I) coronal, and (J-L) sagittal CT slices for different patients.
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CT images of patients with EC and produce high-quality seg-

mentation of the CTV. Comparison of the proposed method

with the U-Net and attention U-Net model showed that better

segmentation performance and good convergence were

achieved using our DDUnet method. The proposed DDUnet

method deployed a multipath dilated convolution to extract

original context information directly from input images, com-

pensated contextual features into high-level convolutional

layers, and thus improved the segmentation accuracy.

Consistency of target segmentation is important for improv-

ing radiotherapy outcomes. Interobserver and intraobserver

variation is considerable.32 Automatic segmentation with guar-

anteed accuracy is an efficient way to reduce variability of

contours among radiation oncologists. Currently, the DSC

value is usually used to evaluate automatic segmentation per-

formance. In the present study, our method showed good per-

formance compared with the commonly used U-Net and

attention U-Net on the biomedical image segmentation area.

Regarding the target, the comparison is difficult because the

N-stage (most often N0) and selected levels are quite different

among previous studies. For the CTV, different studies have

shown mean DSC values of 60%,33 68%/70%,34 77%,35 78%,36

79%,37 80.2%,38 and 82.6%,39 whereas the DSC value of the

DDUnet was 86.7%. Overall, it is reasonable to conclude that

the DDUnet achieved good results according to the experi-

ments. The proposed method that learns and predicts in an

end-to-end form can rapidly segment the CTV in all of a

patient’s image slices in approximately 25 seconds.

Although the segmentation details at the upper and lower

edges of the target were slightly worse as shown in Figure 8G

and J–L, the overall segmentation results were in good agree-

ment with GT. Each patient had different surgical resection

positions, resulting in different upper and lower positions of

the CTV. Consequently, fewer training data were present at the

edge than in the other parts.

The present study has several limitations. First, a model was

trained and assessed in patients with stage I or II EC who

underwent radical surgery. Tumors at different stages differ

greatly in contour, volume, and complexity, and these differ-

ences influence the performance of the automated segmenta-

tion. Second, the tumors were located in the upper and middle

esophagus in our study. The CTV varies greatly in terms of

tumor location among patients with EC after radical surgery.

This may make it difficult for the model to achieve consistently

good performance in other patients who have EC with different

tumor locations. This study mainly focused on EC target seg-

mentation after radical surgery from CT images, and the train-

ing set included 63 patients. Increasing the amount of training

data could make the DDUnet model more robust and accurate.

Summary

Accurate and consistent delineation of tumor targets and OARs

is particularly important in radiotherapy. Several studies have

focused on segmentation of OARs or the target volume using

deep learning methods. However, CTV segmentation for

radiotherapy of EC after radical surgery has not been reported

in the literature to date. The present report has described a

method using the DDUnet architecture to auto-segment the

CTV for stage I or II EC after radical surgery using CT images.

The training and testing in this study were based on the original

clinical data, and the segmentation results for the test cases

were very close to the manual segmentation results by experi-

enced doctors.

The results showed that the DDUnet can accurately segment

CTV contours based on CT images, and only slight revision is

needed for radiotherapy treatment planning. The speed of seg-

mentation is very fast. The model obtained in this study can

greatly decrease the workload of clinicians performing manual

segmentation and improve their work efficiency. Thus, the

DDUnet has the potential to be used in the clinical setting for

auto-segmentation of the CTV of tumors treated by radiother-

apy after radical surgery. In future work, multimodality tumor

delineation will be studied to improve the segmentation accu-

racy based on other clinical cases.
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