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Diarrheal diseases remain a leading cause of global
childhood mortality and morbidity. Several recent
epidemiological studies highlight the rate of diarrheal
diseases in different parts of the world and draw attention to
the impact on childhood growth and survival. Despite the
well-documented global burden of diarrheal diseases,
currently there are no combination diarrheal vaccines, only
licensed vaccines for rotavirus and cholera, and Salmonella
typhi-based vaccines for typhoid fever. The recognition of the
impact of diarrheal episodes on infant growth, as seen in
resource-poor countries, has spurred action from
governmental and non-governmental agencies to accelerate
research toward affordable and effective vaccines against
diarrheal diseases. Both travelers and children in endemic
countries will benefit from a combination diarrheal vaccine,
but it can be argued that the greater proportion of any
positive impact will be on the public health status of the
latter. The history of combination pediatric vaccines indicate
that monovalent or single disease vaccines are typically
licensed first prior to formulation in a combination vaccine,
and that the combinations themselves undergo periodic
revision in response to need for improvement in safety or
potential for wider coverage of important pediatric
pathogens. Nevertheless combination pediatric vaccines have
proven to be an effective tool in limiting or eradicating
communicable childhood diseases worldwide. The landscape
of diarrheal vaccine candidates indicates that there now
several in active development that offer options for potential
testing of combinations to combat those bacterial and viral
pathogens responsible for the heaviest disease burden—
rotavirus, ETEC, Shigella, Campylobacter, V. cholera and
Salmonella.

Introduction

Several recent large scale studies of global diarrheal disease
burden and epidemiology, renewed recognition of multiple

diarrhea episodes as a serious impediment to the health and
development of children in resource-poor countries, an
upsurge in the investment by charitable foundations and gov-
ernmental entities in combatting global infectious diseases
and the emergence of new concepts in vaccination strategies
collectively point to opportunities to develop new vaccines
against very old diseases. In this paper, we first review up-to-
date information on diarrheal disease burden as a rationale
for the pursuit of vaccine development. The history of the
development and challenges of combination pediatric vaccines
are presented as a model for combination diarrheal vaccines
for children in endemic parts of the world as well as for trav-
elers. There are very few existing licensed vaccines against
diarrheal diseases, and none are combinations. However, a
survey of the current vaccine development landscape indicates
that there may be multiple options for a combination vaccine
against the leading enteric pathogens. The historic success of
combination pediatric vaccines indicates that combinations
may be the best approach to address the multiple pathogens
responsible for diarrheal diseases worldwide. Combination
vaccines require special attention to manufacture and formu-
lation issues, and specific combinations must take into con-
sideration the target population and disease burden. We
discuss the potential for a combination ETEC/Shigella vac-
cine as an example that addresses 2 of the most frequent
causes of both endemic and traveler’s diarrhea.

Global burden of diarrheal diseases
The Global Burden of Disease (GBD) study, 2010, estimated

that although annual rates of childhood mortality due to diar-
rheal diseases have decreased from 2.5 million in 1990 to
1.4 million in 2010, the number of deaths in children <5 years
of age due to diarrheal diseases remain significant.1,2 The burden
of childhood diarrhea in 2010 amounted to almost a billion epi-
sodes with ~2% being severe episodes with an estimated
>500,000 deaths in children 1–4 years of age.3-7 Globally, diar-
rheal disease also remains one of the leading causes of disability-
adjusted life years or DALYs.8,9 Nearly 3-quarters of childhood
diarrhea and pneumonia are concentrated in 15 countries, with
the highest burden in Africa, South and South East (SE) Asia.10

In the GBD 2010 study, rotavirus was identified to be the most
important pathogen contributing to the global rates of disease
followed by Cryptosporidia, the 2 together causing one-third
of the diarrheal diseases in children <4 years of age.1 The
remaining share of the disease burden was attributed to several
gram negative bacteria that include enterotoxigenic E. coli
(ETEC), enteropathogenic E. coli (EPEC), Shigella,
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Campylobacter, V. cholera, Salmonella, with a high percentage of
cases having no identified pathogens1,8,11 (Table 1).

The recently published Global Enteric Multicenter Study
(GEMS) is a large-scale survey of the incidence and causative
agents of moderate-to-severe diarrheal disease in young children
0–59 months of age residing in low income parts of 7 countries
in Africa and South Asia.12-15 The GEMS study pointed out that
just 4 pathogens contributed to the majority of moderate to
severe diarrhea and these included rotavirus, ETEC, Shigella and
Cryptosporidia. Other pathogens such as Aeromonas, V. cholera
and Campylobacter were more region-specific. Among the youn-
gest children 0–11 months of age, rotavirus and ETEC encoding
heat stable toxin (ST) was often the leading agents of moderate-
to-severe-diarrhea while in the older children ages 12–
59 months, Shigella was either the lead agent or among the top 2
lead agents overall (Table 1). The GEMS study also followed a
birth cohort till 2 years of age and provided additional evidence
that children who have repeated episodes of moderate to severe
diarrhea are comparatively underweight, stunted in physical
growth, and have decreased cognitive functions as compared to
age-controlled children with no disease.16-19

Traveler’s diarrhea (TD)
In the US and other developed countries the risk of diarrheal

diseases is low, and when it occurs, is usually self-limiting and
underreported and often treated with over-the-counter medica-
tions and antibiotics. The FoodNet program in the US that con-
ducts population-based surveillance for laboratory-confirmed
cases of diarrhea indicated that in 2011 there were 18,964 labora-
tory confirmed cases of diarrhea with 4398 hospitalizations and
82 deaths. Of these cases 41% and 36% were due to Salmonella
and Campylobacter species, followed by Shigella (8.1%) and Cryp-
tosporidia (8%).20 Campylobacter infections are commonly associ-
ated with eating contaminated chicken, and 80% of these cases
can be eliminated by proper poultry farming and cooking.
Although ETEC has been recognized as an etiological agent of
diarrhea since the 1960’s, poor detection methods resulted in

infrequent identification of ETEC as a cause of food-related gas-
troenteritis. Traditional methods of detection included culture,
animal bioassays and later ELISA assays with antibodies to tox-
ins.21 More recent molecular based techniques have shown
higher sensitivities for detection.22

Diarrheal diseases are important causes of morbidity and mor-
tality in Sub-Saharan Africa, North Africa and the Middle East,
South and SE Asia, Central Asia, and several parts of Latin Amer-
ica.8,23 Travelers including military populations who visit these
endemic regions risk incurring diarrhea from multiple causes due
to lack of pre-exisiting immunity.24-28 The Centers for Disease
Control, Atlanta, GA (CDC) notes that “Traveler’s Diarrheal
(TD) is the most predictable travel-related illness,” and that
attack rates can be as high as 70%.29 As seen in Table 1, diarrhea
is caused by infection with a number of bacterial pathogens as
well as several viruses and parasites.30,31 In an age of globaliza-
tion, millions of travelers move from one part of the world to
another for business, pleasure or outreach. Some of these regions
are recognized to be endemic for diarrheal disease. A case can
therefore be made for a commercially viable TD vaccine that pro-
tect travelers against the discomfort, not to mention, wastage of
time and expenses incurred due to treatment of episodes of
diarrhea.

There are region-specific distribution patterns of diarrheal
pathogens that need to be taken into account for vaccine
development.8 In one study ETEC was found to be the most
common pathogen identified overall and shared the primary
burden of TD disease (30–35%) in Africa, South Asia (India),
and Latin America while enteroaggregative E. coli (EAEC) was
the second most common pathogen identified in traveler’s
who had visited Latin America (24.7%) and South Asia
(16%).32 In SE Asia Campylobacter was more prevalent (32%)
with Salmonella and V. cholera causing an equal share of dis-
ease episodes (~9%). EPEC was also identified in 14.3%, 18%
and 7.7% in traveler’s returning from Latin America, SE Asia
and Africa. Shigella species were most commonly found in TD
in Africa and South Asia (8–9%).33 Among the viruses,

Table 1. Global etiology of diarrheal disease. The population evaluated for each list is given in parenthesis under each listed column

GBD 20101,8 GEMS study12-15 TD21,23,28,30-32,46,143 US study20 WHOstudy5,6

Rotavirus Rotavirus ETEC Salmonella Rotavirus
Shigella ST-ETEC EAEC Campylobacter Norovirus
ETEC Shigella Campylobacter Shigella EPEC
Campylobacter Cryptosporidia Salmonella Cryptosporidia ETEC
Cryptosporidia EPEC V. cholera Norovirus Shigella
EPEC Campylobacter Shigella ST-ETEC Campylobacter
Salmonella V. cholerae EPEC (FoodNet study) Adenovirus
V. cholerae (<5 years) Norovirus Salmonella
Entamoeba Rotavirus Astrovirus
(across all ages) Cyclospora Giardia

Cryptosporidia Cryptosporidia
Entamoeba V. cholerae
Giardia (0–59 months)
(travelers)

ETEC, enterotoxigenic E. coli, EPEC, enteropathogenic E. coli, EAEC, enteroaggregative E. coli, ST-ETEC, heat stable toxin-producing ETEC.
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norovirus, rotavirus and adenovirus were the main etiologic
agents causing diarrheal disease while the most prevalent para-
sites causing diarrhea were Cyclospora, Cryptosporidia, Ent-
amoeba and Giardia.29,34-36 In 40–50% of the cases no
pathogen was identified indicating that better detection meth-
ods may be needed to obtain a more complete list of patho-
gens causing diarrhea. It is believed that 80% of all TD are
caused by bacterial species that are transmitted by contaminated
food and water. Currently the most common agents of TD are
ETEC, followed by EAEC, C. jejuni, Shigella spp and Salmonella
spp.29,37-45 Prophylactic antibiotics may be prescribed, but
increased resistance to commonly used drugs such as fluoroquino-
lones 29 has been observed in Campylobacter, Shigella and

Salmonella. Although TD is generally an acute, short-term infec-
tion, in some cases it can trigger chronic conditions such as idio-
pathic inflammatory bowel disease.25-27,46 Thus there is significant
potential benefit to vaccination of travelers to high-risk parts of
the world.

Based on prevalence, severity of disease caused by the patho-
gen and stage of current clinical development, Table 2 provides
an initial list of pathogens for which vaccines could be devel-
oped within the next 10 years. Development of a multi-cause
childhood diarrheal disease vaccine, as well as a TD vaccine,
that will require antigens from multiple pathogens can be devel-
oped pursuing a pathway that has been successfully employed
for the formulation of several modern-day multivalent pediatric
combination vaccines. A brief history of combination vaccine is
also provided.

History of combination vaccines
One of the earliest examples of a combination vaccine was a

typhoid-paratyphoid A and B vaccine (TAB) that was adminis-
tered by the intradermal route (ID) and was composed of S.
typhi, S. paratyphi A and S. paratyphi B. The TAB vaccine con-
tained 1–2 £ 109 CFU/ml of the enteric organisms suspended in
0.5% phenol-saline.47,48 Later, TAB was combined with a teta-
nus vaccine (TABT) and introduced into the British Army, Royal
Navy and Air Force.49 The ID route reportedly caused minimal
reactogenicity and elicited higher agglutinating antibody
titers.50,51 TAB was also combined with heat-killed and phenol-
preserved V. cholera strain Ogawa (TAB/Ch) and evaluated singly
or combined and administered by the ID route.48 The combined
TAB/Ch vaccine contained 5 £ 109 CFU of enteric organisms
and 8 £ 109 CFU of cholera organisms per ml suspended in
0.5% phenol saline. The combined vaccine in this case was
obtained by adding equal quantities of double-strength TAB and
cholera vaccines. Human volunteers were vaccinated ID with 2
0.1 ml volumes of TAB/Ch spaced 21 days apart.48 The data
indicated 2–8 fold higher agglutinin responses to the O-antigens
of S. typhi and V. cholera and was validated by animal studies in
mice. The conclusions drawn from this study was that a com-
bined enteric and cholera vaccine could be given ID and was
preferable over the administration of the 2 components sepa-
rately.48 Thus ID vaccination with a combined vaccine became a
routine procedure in the British Services. This vaccine however,
did not meet with the same success in the US because the immu-
nogenicity patterns to the 3 different pathogens were not
duplicated.52,53

Modern era of combination vaccines
The Food and Drug Administration (FDA) defines

“combination vaccine” as 2 or more vaccines that have been com-
bined by the manufacturer or supplied as vaccine components
that are formulated to be combined immediately before adminis-
tration.54 However, in practice, it is most likely that a combina-
tion vaccine is supplied as a pre-blended, single entity. The
combination is intended to either prevent multiple diseases or a
single disease caused by different strains or serotypes.54 Since
multiple species of bacteria, viruses and parasites can cause

Table 2. Diarrheal disease-causing pathogens for combination vaccine
development

Bacteria

� ETEC* enterotoxigenic E. coli, most common diarrheal patho-
gen in TD, strains produce heat stable (ST) and/or heat labile
(LT) toxins, ST-ETEC most associated with
disease6,8,10,14,21,108,113,120,122,123,131,135,141,147

� EAEC enteroaggregative E. coli, important emerging cause of
persistent pediatric diarrhea, important cause of TD1 in S. Asia,
Latin America, Africa8,37,40,156

� EPEC enteropathogenic E. coli, important cause of diarrhea
related illness in children <5 years of age, identified by Hep 2
cell cultures, presence of adherence plasmid and intimin
gene1,6,8,12,14

� Shigella* cause of bacillary dysentery, S. sonnei prevalent in
developed countries, S. flexneri 2a, 3a, 6 in developing countries,
~8-12% of all cause diarrhea12 15,24,25,39,45,111,118,121,125,140,142

�Campylobacter* associated in the US mostly with contaminated
chicken, important cause of diarrheal illness in TD in SE
Asia8,25,32,38,114-116

� Vibrio cholera**causes high mortality rates during epidemics due
to voluminous watery diarrhea leading to dehydration, endemic
in some countries, seen in SE Asia, in TD4,5,19,48,107-110,136

� Salmonella typhi**causes typhoid, Important cause of enteric
fever8,53,95-97,100

� Salmonella important cause of diarrheal illness in children and
in adults in developed and in developing non-typhoidal coun-
tries, in TD11,41,42,98,99,155

Viruses

�Rotavirus** most important cause of hospitalization for child-
hood diarrhea in the US and high mortality rates due to diarrhea
in the developing world 6-8,101-106)
�Norovirus* higher risk for severe disease in the elderly, transmis-
sion in day-care centers, cruise ships, nursing homes, military, in
TD, in children <5 years in developing countries32,36,143,157

Parasites

�Cryptosporidia high global mortality rates from diarrhea in the
developing world6,14,32,34,143,154

� Entamoeba acute and persistent diarrhea in children in develop-
ing countries, bloody stools6,10,19,23,32,34

*Vaccine candidates in clinical trial.
**licensed vaccines available1 TD, Traveler’s diarrhea.
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diarrheal disease, vaccine development must consider the popula-
tion to be vaccinated (Table 1). In the case of diarrheal diseases
in endemic parts of the world there would be special attention to
the age range of the recipients as most of them would be very
young children. Other factors to consider would be the etiologi-
cal burden and attack rates in these populations, consideration of
severity of disease, health care-seeking attitudes within the popu-
lation, requirement for hospital care, complex treatment regimen,
post-infectious sequelae, and prevalent species of each type of
organism that is responsible for disease burden.14,46,55-57 Combi-
nation vaccines against diarrheal diseases could be a mixture of 1)
live or whole cell-killed vaccines that are reconstituted and mixed
before oral ingestion 2) subunit vaccines against individual
pathogens that are reconstituted and administered as a single
injection or 3) whole cell and subunit vaccines, including DNA
vaccines, given concurrently57 Another category would be live
vaccine organisms expressing heterologous antigens (vectored
vaccines). Whole cell or subunit vaccines may each contain single
or multiple antigens from a single pathogenic species or multiple
antigens from several species that cause diarrheal disease. Some of
these changes could also be engineered at the manufacturing
step. Adjuvants may be added during reconstitution of the vac-
cine or manufactured along with the antigen. The stepwise devel-
opment of several combination vaccines for pediatric use
provides a case study as strategies for a combination vaccine
against diarrheal diseases are contemplated.

Current pediatric combination vaccines
The inactivated polio vaccine (IPV) is composed of inacti-

vated poliovirus types 1, 2, 3 vaccine strains and is an example of
a combination vaccine that protects against multiple variants of a
single disease.58-60 The diphtheria, tetanus and pertussis (whoop-
ing cough) vaccine (DTP & DTaP) and the measles-mumps-
rubella (MMR) vaccines are examples of combination vaccines
that protect against multiple diseases and are comprised of previ-
ously licensed monovalent vaccines.61-66 The MMR vaccine is a
trivalent mixture of live attenuated viruses of 3 diseases adminis-
tered via injection. Although individual licensed vaccines against
all 3 diseases were available since the 1960s, the 3 vaccines were
combined in 1971 to become the MMR vaccine.66 DTP &
DTaP are subunit-based vaccines composed of purified antigens
from Corynebacterium diptheriae, Clostridium tetani and Borde-
tella pertussis.67-69 Prior to the development of DTP, monovalent
toxoid-based vaccines were available to protect against diphthe-
ria, pertussis and tetanus. However, in 1948 DTP was licensed
by the FDA. The DTP vaccine became the first version of a com-
bined diphtheria, tetanus and pertussis vaccine that was routinely
administered to children from the 1940’s to the mid 1990s.69,70

Since then, individual components in the combination vaccine
have been replaced by other antigens to improve the safety pro-
file. For example, due to reported long term neurological effects
with the whole-cell pertussis vaccine component of the DTP vac-
cine (also referred to as DTwP), an acellular version, DTaP,
using purified pertussis antigens was incorporated into a new
formulation and approved in 1991 for use in the US.68,69 Two
versions of DTaP exist, one with 3 and the other with 5 pertussis

antigens (DTaP3 and DTaP5).
71 Because DTaP uses fewer puri-

fied antigens than the whole-cell vaccines, it is less reactogenic
and therefore considered safer, but it is also more expensive.
Recent research suggests that DTwP is more effective than DTaP
in conferring immunity due to DTaP’s narrower antigen
base.72,73 DTaP vaccines contain alum as the adjuvant and the
vaccines from different manufacturers differ mainly in the num-
ber, amount and detoxification of the pertussis components.
Additionally, other vaccines have been added to DTaP, such as
IPV, vaccines for hepatitis B (HepB) and Haemophilus influenza
type B (Hib), to obtain licensed vaccines for DTaP-IPV, DTaP-
IPV-Hib, DTaP-HepB-IPV and the latest combination that is
DTaP-HepB-Hib/IPV hexavalent vaccine.74-83 In each case alu-
minum hydroxide or aluminum phosphate is the adjuvant. At
the same time various combinations of HepB, pneumococcal
conjugate vaccine (PCV) and pneumococcal polysaccharide-
based vaccines, Neisseria meningitis serogroup C and Y tetanus
toxoid conjugate vaccines, that are either separately coadminis-
tered or combined in a single injection with routine pediatric vac-
cines are also being evaluated in clinical trials for safety and for
demonstration of lack of immunological interference with other
coadministered vaccine antigens.84-91 The potential advantages
of such combination vaccines accrue from giving fewer injections
that protect against several diseases, accommodating the adminis-
tration of the combination vaccines within the WHO-recom-
mended Expanded Program of Immunization (EPI) schedule,
lowering pain and anxiety to the infants and caregivers, reducing
overhead costs for administration and vaccine storage and overall
increasing vaccine coverage and compliance.

An important factor in the formulation of licensed combina-
tion vaccines is the availability of vaccine-induced immune mesa-
sures that correlate with protection against a specific disease.92

For diarrheal vaccines against individual pathogens, correlates or
surrogates of protection will be required before vaccines can be
combined successfully. When two or more vaccines are com-
bined, evaluation of immunological interference is judged by
determining the levels of antibodies that are known to confer
protection against a specific pathogen.92 Most currently used vac-
cines act through functional antibodies such as bactericidal or
opsonophagocytic antibodies against encapsulated bacteria such
as Hib, pneumococci and meningococci or anti-toxin antibodies
to diphtheria, tetanus and pertussis toxins. For example, a bacte-
ricidal serum antibody level of 0.15 ug/ml and 0.18–0.35 ug/ml
has been determined to be sufficient for protection against bacter-
emia caused by Hib and pneumococci respectively.92 These cor-
relates may vary with the population, exposure rates, serotype
and clinical end-point.92 Anti-toxin antibody levels of 0.1 ug/ml
for tetanus and diphtheria and 5–10 units of anti-pertussis toxin
antibody levels for pertussis correlate with protection. The most
commonly reported example of immune interference during the
formulation of a combination vaccine is the lower antibody titers
to the Hib component of a DTaP-based combination vac-
cine.93,94 The exact mechanism for this reduced response is not
understood although interference of the Hib-conjugate with free
unconjugated tetanus toxoid, interaction with the alum adjuvant
and other factors have been advanced.94 The polio vaccines (IPV,
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OPV) elicit antibodies that prevent viremia and neutralization
titers of 1:8 or 1:4 are considered protective.92

Assuming that there are licensed vaccines already in use and
correlates of protection are known, a major question during
development of a combination vaccine is when and how to com-
bine 2 different vaccines. Further, as the safety and efficacy of ini-
tial combination vaccines become established, individual
combinations may become combined with others to create a sin-
gle entity with expanded coverage. Obviously vaccines cannot be
mixed at will except when specifically approved by the FDA and
packaged for that purpose. The Hib conjugate vaccine (ActHIB,
Sanofi and Hiberix, GSK) was introduced in the US in 1987 for
use in children 2 months–18 months and is composed of puri-
fied polyribosylribitol phosphate (PRP) capsular polysaccharide
of Hib conjugated with tetanus toxoid (PRP-T). It is manufac-
tured as a lyophilized powder and is reconstituted at the time of
delivery with either saline to obtain the monovalent vaccine or
combined with DTP or DTaP vaccine to obtain a combination
DTP-Hib or DTaP-Hib vaccine.78,82 The more recent develop-
ment of a licensed liquid pentavalent vaccine DTaP5-IPV-Hib
(Pediacel, Sanofi Pasteur, licensed 2008) for infants and toddlers
is made up of 3 different combination vaccines protecting against
5 diseases, diphtheria, tetanus, pertussis, polio and Hib.84 The
licensing of this pentavalent vaccine was based on the observation
that no clinically important differences in the safety or immuno-
logic profiles were noted between infants receiving the pentava-
lent vaccine and those that received separately administered
DTaP, IPV and Hib vaccines.79 A fully liquid combination vac-
cine has the advantage of delivering an accurate dose with fewer
injections for the infant. Such combination multivalent vaccines
results in increased vaccine compliance and enables more infants
to be safely immunized and to complete their immunization regi-
men against multiple childhood diseases more successfully.

Current licensed diarrheal vaccines
Currently there are licensed vaccines against only 2 strictly

diarrheal pathogens, rotavirus and V. cholera. Both vaccines are
orally administered. Two licensed vaccines against S. typhi, an
oral live attenuated vaccine, Ty21a, and a subunit vaccine based
on the Vi polysaccharide antigen are administered to protect
against typhoid fever.11,41,95-97 A number of live and subunit Sal-
monella vaccine candidates have been evaluated for non-typhoidal
Salmonella but this area of effort will not be discussed further in
this review.98-100

Rotavirus is the most common cause of severe gastroenteritis
in infants and young children worldwide and causes approxi-
mately half a million deaths each year among children aged
<5 years, with >80% of deaths occurring in developing coun-
tries. Two live attenuated oral vaccines, RotaTeq� (RV5, Merck)
and Rotarix� (RV1, GSK) have been licensed in over 100 coun-
tries and are recommended for administration concurrently with
DTaP-IPV vaccines at 2, 4, 6 months or at 6, 10, and 14 weeks
in developing countries.101,102 Clinical trials have indicated that
2 doses of live attenuated rotavirus vaccines given orally to infants
did not interfere with the immune responses to concurrently
administered intramuscular injections of DTaP, Hib, HepB and

PCV.103 Combining 2 different routes of immunization for dif-
ferent vaccines is another example of maximizing the efficiency
of infant immunization. The licensed rotavirus vaccines have
reduced the rates of hospitalization in the US by »80%.104,105

However, in endemic countries like India and Pakistan, the rota-
virus vaccines have shown reduced efficacy indicating that higher
doses and more doses may be required to immunize such an
endemic population.106 Similar observations have been previ-
ously noted with live polio and cholera vaccines. RotaTeq�

(RV5) is a human-bovine reassortant which was licensed by the
FDA in February 2006 and Rotarix� (RV1) is a human rotavirus
strain attenuated by multiple passages through cultured cells that
was licensed by the FDA in April 2008. The Biologics Licensure
Application (BLA) for RV1 contained 6 phase II trials and 5
phase III trials and the BLA for RV5 contained 3 phase III trials
(see WHO website on rotavirus vaccines).

Two licensed oral cholera vaccines exist to reduce the burden
of disease in endemic regions and during outbreaks.107 Dukoral,
composed of whole cell killed V. cholera combined with a recom-
binant cholera toxin B subunit (WC-rBS) has shown very high
short-term protection in different age-groups in Bangladesh and
Peru and significant long-term efficacy in endemic popula-
tions.108 Dukoral has also been used as a traveler’s diarrheal vac-
cine against ETEC infections. The cholera toxin B subunit shares
sequence homology with the B subunit of the heat labile toxin
(LT) of ETEC and is believed to confer this cross protection.
Shanchol, that was developed at the International Vaccine Insti-
tute in Seoul, Korea, and licensed in India in 2011, is a bivalent
vaccine containing whole cell-killed bivalent cholera vaccine
against O1 and O139 serotypes.109 A live attenuated cholera vac-
cine CVD 103-HgR that has demonstrated efficacy in multiple
populations has been licensed in several countries and is currently
in the US licensure process.110

Current landscape of vaccine development for enteric
pathogens

It was generally believed that mucosal pathogens would
require intestinal immunity and therefore the oral route would
be the most immunogenic route of vaccine administration. Oral
delivery would mimic the course of natural infection that is
known to confer immunity against many diarrheal diseases. It
would also be the easiest and cheapest for vaccine delivery. How-
ever, with the evaluation of non-oral routes of immunization
such as intranasal, intradermal, and sublingual, in addition to the
conventional intramuscular route, killed whole-cell and subunit
vaccines are becoming more attractive for reasons of safety as well
as the capability to deliver both a systemic and a mucosal
immune response.

A key consideration for a combination diarrheal vaccine will
be the list of antigens to be included for obtaining broad protec-
tion against multiple pathogens. For example, in Shigella, current
data indicates that protection is serotype-specific and is based on
the O-antigen type of the LPS molecule. Shigella has more than
50 serotypes suggesting that vaccines against all 50 serotypes may
be needed for 100% protection. However, epidemiology studies
show that 4–6 serotypes predominate and vaccine candidates
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against S. sonnei and S. flexneri serotypes 2a, 3a and 6 may suffice
to protect 80% of shigellosis worldwide.111 Therefore an effective
O antigen-based vaccine against Shigella must contain the respec-
tive component from these 4 prevalent serotypes. There are
efforts to develop a Shigella vaccine based on the highly conserved
Type III secretion system antigens IpaB and IpaD 112 but proof
of concept in humans remains to be addressed. ETEC strains are
made up of almost 100 different O-antigenic types and express a
heat-labile (LT) and a heat-stable enterotoxin (ST) along with
more than 25 different colonization factors (CFs) or coli surface
antigens (CS) that enable the bacteria to colonize the small intes-
tine and induce diarrhea. While several CFs predominate, such
as CFA/1, CS1-CS7, CS14, 17 and 21, 30–50% of ETEC strains
do not express an identifiable CF on their surface. Approximately
30% of ETEC strains express either LT or ST while the remain-
ing express both enterotoxin types. ETEC vaccine development
is directed toward immune responses to LT, ST, the predomi-
nant CFs and their tip adhesins.108,113 Campylobacter species
express a capsule and lipooligosaccharide and using a traditional
Penner serotyping scheme, 47 different Campylobacter serotypes
have been described.114,115 A capsule conjugate vaccine against
Campylobacter that has shown promise in non-human primates
will have to take into consideration the predominant capsule
types circulating in the world. A combination diarrheal vaccine
against any 2 or 3 of these enteric pathogens will therefore be
composed of multiple antigens from each species.

There are 3 main issues in the field of diarrheal disease vaccine
development 1) to determine whether live, whole-cell killed or
subunit vaccines provides the best strategy for obtaining durable
protection 2) to determine how many live attenuated or whole
cell-killed strains or how many antigens will comprise an effica-
cious vaccine against an individual pathogen listed in Table 1
and 3) what are the correlates of protection for each vaccine so
that when monospecific vaccines are combined, immune
responses can be quantitated and immunological interferences
due to the combination can be evaluated. Currently there are no
licensed vaccines against Campylobacter, non-typhoidal Salmo-
nella, ETEC, EAEC, Cryptosporidia and Shigella. A limited

number of live attenuated, killed whole-cell and subunit vaccine
candidates have been previously evaluated in Phase 1, 2b and
even Phase 3 clinical trials for some of these pathogens and results
obtained have provided valuable information on safety and
immunogenicity, although correlates of protection for any of the
diarrheal diseases-causing pathogens are lacking.108,116-124 A
Phase 3 evaluation of S. sonnei and S. flexneri 2a O-specific poly-
saccharide conjugate was completed in children 1–4 years of age
in Israel.121 The S. sonnei conjugate showed 71% efficacy in 3–4
year old, an efficacy rate previously demonstrated with similar
conjugates in Israeli adults. Efficacy was minimal in children less
than 3 years of age.121 A phase 3 study was also conducted with a
skin-patch vaccine containing heat-labile toxin (LT) from
ETEC. This was carried out in a population of travelers to Mex-
ico and Guatemala.124 The LT patch vaccine did not protect
travelers against diarrhea caused by ETEC or other organisms.
With increasing knowledge of bacterial pathogenesis and identifi-
cation of novel and better characterized antigens, a number of
promising candidates are currently in the development phase
with some entering clinical trials. Based on current developmen-
tal stage, monovalent vaccines against ETEC, Shigella and Cam-
pylobacter may become a reality in the next decade, constituting
the first step toward the development of a combination diarrhea
vaccine.113,114,118,125-127 Although correlates of protection for all
3 pathogens are unclear, mucosal responses along with systemic
responses will be important for determining protection. Since
ETEC and Shigella vaccine development have had a relatively
earlier start, Tables 3 and 4 lists some of the promising strategies
that are being implemented for these 2 pathogens.122,125,128-142

For Campylobacter, a capsule conjugate vaccine is currently in
clinical trials.114,115

Combination vaccines for diarrheal diseases
Traveler’s, including members of the military and young chil-

dren living in endemic parts of the world are the most in need of
vaccines against diarrheal diseases.4,26,28,143,144,145 A combina-
tion vaccine would greatly simplify immunization of these target

Table 3. Current ETEC vaccine landscape

Type Preclinical Phase 1, route, dose Ref.

Live, ACE527a C oral 1010–1011 120,122,131

Formalin killed cells overexpressing CFs with LTCBAb C oral 1010–1011 2 doses, d0, d14 131,141,147

Fimbrial tip protein C ongoing study, TCI & ID multiple doses 113,123

dmLTc adjuvant 24,131

EtpA glycoprotein C 128

STa toxoid fusionsd C 127

Plant-basede C 129

e.g.MucoRice-CTBf C 136

acomposed of 3 strains expressing CFA/I & LTB, CS5, CS6 & LTB, CS1, CS2, CS3 & LTB, tac promoter-driven genes integrated on chromosome.
bhybrid LTB/CTB toxoid, provides better LTB neutralizing responses than CTB in animals, CFs, colonization factors.
cdouble-mutated LT, LTR192G/L211A, to be used mainly as an adjuvant with vaccine candidates.
dST toxoid with amino acid substitutions that is fused to carrier protein such as LTB, CTB or a CFA subunit.
eCTB and LTB also expressed in potatoes, carrots, corn, tobacco, CTB can provide some protection against LT-ETEC.
frice-expressed CTB with a KDEL signal at the C-terminal of CTB, has been fed orally to mice and non-human primates.
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groups, but the nature of the combination vaccine is likely very
different for each group.

Based on recent data on infection rates, ETEC and Campylo-
bacter are reasonable targets for an initial combination vaccine
against TD. There are currently no vaccines licensed in the US
for either pathogen. Dukoral, an oral cholera vaccine, is being
used in some countries as a TD vaccine against ETEC on the
basis of cross-reactivity of the B subunits of the respective toxins.
In most cases, no prescription is needed for Dukoral and the vac-
cine can be self-administered. Vaccination requires 2 doses and
the traveler is advised to take the last dose at least 1 week prior to
travel. Ideally, similar to Dukoral, a combination TD vaccine
could be self-administered by the oral route, which is the only
practical route for this approach. A combination of subunit vac-
cines administered parenterally is also feasible, but this would
require more close coordination between the traveler and the
travel physician. Since travelers to endemic countries are sensitive
to the high risk of diarrheal disease, there is likely a fairly strong
market for TD vaccines in the more developed part of the
world.143 Considerations for a combination diarrhea vaccine for
young children living in resource-poor endemic parts of the
world are much more complex compared to the scenario for TD
vaccines. Some key factors include geographical disease burden
and coverage of the most relevant pathogens, route of vaccina-
tion, a defined schedule for immunization of the very young,
who may already be on a vaccination regimen based on an EPI
schedule, and options for manufacture of the vaccine. Based on
the recent findings from the GBD 2010 study and the GEMS
study, vaccines against ETEC and Shigella, along with the
licensed rotavirus vaccine, would have the greatest impact on
improving the health status of the most vulnerable – the children
under 5 living in endemic parts of the world. However, both the
GEMS and the GBD 2010 studies have indicated that a vaccine
against Cryptosporidia has to be taken into consideration although
clinical data for a vaccine against Cryptosporidia is lacking. In SE.
Asia where Campylobacter is responsible for~30% of diarrheal dis-
ease, a combination vaccine against ETEC, Shigella, and

Campylobacter will be protective against 70–80% of the diarrhea
seen in that region. Overall, the path of development of a combi-
nation diarrheal vaccine would be similar to the steps used to
license current pediatric vaccines.

There are no vaccines currently available for either ETEC,
Shigella or Campylobacter but there are multiple development
efforts ongoing that may yield suitable candidates for either a
stand-alone or a combination vaccine (Tables 3 and 4). If the
vaccine were to be delivered orally, consideration must be given
to potential interference by the tropical enteropathy that is often
observed in malnourished young children, and the general need
for multiple oral doses to obtain protective immunity in these
children.146 Another challenge is the size or volume of the inocu-
lum, which likely cannot exceed a few milliliters for the youngest
children, and the palatability of the vaccine vehicle. Nonetheless,
live or inactivated whole cells offer one possible option for a com-
bination ETEC-Shigella vaccine. Parenteral vaccines are also
being developed for ETEC, Shigella and Campylobacter and the
challenge here may be how to optimize mucosal immunity by
immunization through a non-mucosal route. A hypothetical sce-
nario for an initial combination vaccine, either a live or whole-
cell killed combination vaccine or a subunit vaccine against these
2 pathogens is schematized in Figures 1 and 2. Such a licensed
initial combination vaccine could be further expanded to include
either existing vaccine candidates such as for cholera, rotavirus
and typhoidal Salmonella or combined with newer vaccines as
they are developed against other diarrheal pathogens (Figs. 1 and
2). Novel adjuvants such as dmLT may be able to stimulate
mucosal as well as systemic immune responses even when the vac-
cine is given by injection rather than orally.139,147 Some of the
issues affecting each type of combination is also outlined (Figs. 1
and 2).

Ideally, combination diarrheal vaccines could be given in
accordance with the in-country EPI schedule, which typically
includes the first 6, 10 and 14 weeks of life (2, 4, and 6 months
of age in the US). Vaccines against childhood illnesses such
tuberculosis, diphtheria, pertussis, tetanus, polio and measles are

Table 4. Current Shigella vaccine landscape

Type Preclinical Phase 1, route, dose, Ref

Live CVD seriesa C oral, 109–1010 118,140,142

Live WRAIR seriesb C ongoing 118,134,138,140,142

Live S. typhi Ty21a with Shigella LPS genes C 130

Formalin killed cells, trivalent C oral, 1010–1011 117,125

Invaplexd C Intranasal 14,119,125-126

LPS conjugates C parenteral 121,125,142

Synthetic oligo-saccharides C 133,142

Bioglycoconjugatesf C parenteral 132

Purified Ipa proteins C 139

OMg vesicles C 137

abased on guaBAmutations, multiple serotypes, limited intracellualr replication.
bbased on virG(icsA)mutations, multiple serotypes, inability to spread intercellularly.
ctrivalent product with S. sonnei, S. flexneri 2a and 3a.
dcombination of serotype-specific LPS and conserved antigens IpaB and IpaC proteins, LPS from different serotypes can be substituted.
eLPS conjugates with CRM, a non-toxic recombinant variant of diptheria toxin with a single amino acid substitution.
fShigella O-antigen expressed in an E. coli with Campylobacter glycosylation secretion machinery.
gOM, outer membrane.
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usually given on the EPI schedule. Most of these are given by the
parenteral route, although oral polio vaccine is still being used in
many parts of the world. However, the licensed rotavirus vaccines
are given orally and are shown to be efficaciious given concur-
rently with the EPI vaccines. If a combination diarrhea vaccine
were to be incorporated, one critical step would be to demon-
strate that the new vaccine does not interfere with immunogenic-
ity or efficacy of the EPI vaccines already in place. An ETEC and
Shigella combination is an obvious option, but others may be
considered. Since rotavirus and ETEC are of greatest threat to
younger children, a combination vaccine against these may be an
attractive approach (Figs. 1 and 2). Existing oral rotavirus vac-
cines are already being taken up in parts of the developing world
for early childhood immunization. Shigella becomes important
in children after the first year of life, so vaccination at a later age
may optimize efficacy. A Shigella vaccine could be given at 9 and
12 months, concurrent with the schedule for measles vaccine.
For this scenario, a combination Shigella-typhoid vaccine could
be considered, since both are invasive pathogens that tend to
affect older children. Recent studies have indicated that as few as
4 serotypes of Shigella can protect against >80% of shigellosis
worldwide.148 There are oral and parenteral vaccines for typhoid
already, but these are not currently used in children under 2 years
of age. The injectable version and the oral version is only for
those aged 6 years and above. Nonetheless, recent studies indi-
cate that the oral typhoid vaccine may be safe and immunogenic

in younger children ages 2–5.96 For this potential Shigella/
typhoid combination, there is much developmental work to be
done.

A combination diarrheal vaccine against multiple pathogens
will require development of efficacious vaccines against individ-
ual bacterial pathogens. The combination itself will depend upon
whether it serves as a pediatric vaccine or a TD vaccine. A combi-
nation pediatric vaccine could be given in conjunction with other
childhood immunizations. Interestingly, studies on the infant’s
immune system has indicated that neonates are capable of
mounting a protective immune response to vaccines within hours
of birth and that they are capable of generating both a humoral
and cellular immune responses to pathogens.149,150 The neonates
immune system has the capacity to respond to extremely large
numbers of antigens and one study estimated that each infant has
the theoretical capacity to respond to at least 10,000 vaccines,
with each vaccine composed of 100 antigens.150 Response of B
cells in infants to T-independent antigens such as polysaccharides
are considerably less than adults till they reach 2 years of age.150

Thus vaccines against the most common diarrheal disease-caus-
ing pathogens can be accommodated within the schedule of
childhood immunizations, whether given as live oral vaccines
such as the rotaviral vaccine, or whole-cell killed and subunit vac-
cines. Whether administered concurrently or sequentially, the
vaccination should not negatively affect the safety and immuno-
genicity of the routine pediatric vaccines. For example, the

Figure 1. Hypothetical scenario for combination live or whole cell-killed diarrheal vaccine.
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MMRV vaccine, a combined measles, mumps, rubella and vari-
cella vaccine, has been proposed as a replacement for the MMR
vaccine to simplify administration of the vaccines.151,152 How-
ever, preliminary data indicating a rate of fever-induced seizure
of 9 per 10,000 vaccinations with MMRV, as opposed to 4 per
10,000 for separate MMR and varicella injections has convinced
US health officials not to recommend use of MMRV vaccine
over separate injections.153

As greater understanding of pathogenesis and other vaccines
come into effect for Salmonella, EAEC and Cryptosporidia, these
can be added stepwise to the mixture analogous to the manner in
which current pediatric vaccines are formulated.154-156 For the
infant group the combination vaccine, be it live or subunit, could
be given as part of the normal pediatric vaccination schedule
while a traveler’s diarrheal vaccine, given as 2 or 3 doses, could
be scheduled to be taken ahead of the planned travel dates. In
this context it may be worth mentioning that a norovirus vaccine,
based on virus-like particles, has shown promising safety and effi-
cacy in limited Phase 1 and 2 trials. Such a vaccine could be used
for high-risk populations or situations such as the elderly, in day
care, on cruise ships, nursing homes or in the military.157

Manufacturing issues for development of a combination
diarrheal vaccine

Under manufacturing issues, there are several key considera-
tions relating to formulation (Table 5). Of primary importance
is the compatibility of the individual components:

� The potential for immunological interference should be evalu-
ated in an animal model to detect effects of the combination
on potency and immunogenicity. For diarrhea vaccines, muco-
sal immunity would be a key parameter for evaluation when
determining compatibility. Here again, some knowledge can
be gained from evaluating the formulation of pediatric combi-
nation vaccines. As described above, the most commonly
reported example of immune interference in DTaP-based vac-
cines is the reduction in antibody titers to the Hib component
of the vaccine PRP antigens. Consistent with the clinical data
this interference has also been seen in animal models.94,158

Several explanations have been provided including interference
of tetanus toxoid and the FHA pertussis antigen with Hib and
incompatibility with the alum adjuvant in DTaP vaccines. As
a result, the DTaP-Hib vaccines have been licensed in Europe
but not in the US.

� Depending on the nature of the components, formulation of
the final combination must be assessed by a battery of physico-
chemical, biochemical and biological assays. For example, in
the case of live attenuated bacterial strains combined in a single
formulation, assays would be needed to determine the viability
and potency of each strain. If the combination is one of sub-
unit proteins, there may be challenges in terms of identifying
preservatives, excipients and delivery vehicles that effectively
maintain the stability of each component and yet do not inter-
fere with required assays. If the combination vaccine includes
an adjuvant, additional areas of assessment would be required.

Figure 2. Hypothetical scenario for combination of subunit diarrheal vaccines.
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In addition to lack of any negative effect on safety or immuno-
genicity of any component, the selected adjuvant should not
interfere with assays for each component in the final product.
Besides alum, 2 other adjuvants AS03 and AS04 have been
licensed in the US. AS03 is a oil-in-water emulsion of D,L-
alphatocopherol (vitamin E) and squalene and an emulsifier
polysorbate 80 and AS04 is aluminum hydroxide and mono-
phosphoryl lipid A. New mucosal adjuvants such as dmLT or
liposomes that may be particularly useful for diarrhea vaccines
are also being investigated.159,160 If a subunit enteric combina-
tion vaccine is formulated, non-alum based adjuvants such as
the oil-in-water emulsion MF59 and polylactide coglycolide
(PLG) microparticles, could also be evaluated.161 New
approaches are needed to evaluate formulation of non-alum-
based adjuvants as part of a combination diarrhea vaccine.

� Demonstration of potency, which may be a reflection of vac-
cine stability, is likely the most important and challenging part
of product testing. Potency is often demonstrated by immuno-
genicity in animal models but development of improved in
vitro assays to measure batch-to-batch consistency of vaccine
production would be useful to reduce reliance on animal test-
ing. For example, antibody-based ELISA assays for quantifying
diphtheria toxoid antigen in DTP-based combination vaccines
have several advantages over other biochemical and biophysical
methods due to their sensitivity and to the fact that they can be
used on the final combined product even in the presence of
antigen adsorbed to the adjuvant alum. Whether supplied as a
pre-blended formulation or separate components for co-
administration at the time of vaccination, the FDA guideline
states that in general the potency requirement of each compo-
nent in the combination should comply with the potency
requirement for each component as a stand-alone product. For
vaccines already licensed, potency standards would have been
previously established. However, since there are so few vaccines

licensed for diarrheal diseases, the combination vaccine may be
one of new candidates for which potency will have to be estab-
lished for each as part of the vaccine development plan.

The FDA guidance on clinical evaluation of safety and immu-
nogenicity requires that the immunogenicity of combination vac-
cines should not be decreased when compared to those of
individual components delivered simultaneously. In the case of
licensed components such as those for childhood diseases, in
some cases they are given simultaneously (oral rotavirus vaccine
given along with intramuscularly administered DTP-based vac-
cines), and in other cases, such as DTP-based combination vac-
cines, they are formulated together for a single delivery. For
example, Kinrix is a combination pediatric vaccine of DTaP-IPV
(GSK, licensed 2008) that is injected into the muscle in a 4-dose
EPI schedule. The diphtheria and tetanus toxins are extracted
from the respective cultures, detoxified with formaldehyde, and
individually adsorbed to aluminum phosphate.162 Pertussis toxin
(PT), filamentous haemagglutinin antigen (FHA) and pertactin
(PRN) are isolated separately from the supernatant of B. pertussis
cultures.162 Fimbrial antigens (FIM) are copurified from bacterial
cells. The pertussis antigens are purified by sequential filtration,
salt precipitation, ultrafiltrations and chromatography. Glutaral-
dehyde and formaldehyde are used to detoxify PT and FHA
respectively. The individual antigens are adsorbed separately
onto aluminum phosphate (AlPO4). Polioviruses types 1, 2, 3
are each grown in seperate cultures of human fetal lung cells
(MRC-5). The viral suspensions are inactivated by formaldehyde
after concentration by ultrafiltration and liquid chromatography.
The monovalent IPVs are combined to produce the trivalent
poliovirus concentrate.162 The adsorbed DTP antigens are com-
bined with aluminum phosphate as an adjuvant and water for
injection. The trivalent polio concentrate is then added and the
DTaP-IPV component is diluted to its final concentration.162

Again, because of the very limited number of licensed diarrhea
vaccines, there may be very little pre-existing data to support a
combination vaccine. On the other hand, most diarrheal vaccines
will be administered either orally or through an alternate mucosal
route, so the simultaneous administration of the individual com-
ponents as a mixture may be nearly the same as the administra-
tion of a pre-blended combination vaccine formulation.
Additional information on manufacture, testing and clinical trials
of combination vaccines is available in the FDA website.162

Conclusion

Despite the well-documented global burden of diarrheal
diseases, currently there are no combination diarrheal vaccines
to protect against the diversity of enteric pathogens which
include bacteria, viruses and parasites. The recent success
with rotavirus and cholera vaccines has stimulated develop-
mental efforts to advance vaccine candidates against other
diarrheal pathogens such as ETEC, Shigella, Salmonella, Cam-
pylobacter and Norovirus. In the future, research will also be
directed toward combining monovalent vaccines against

Table 5.Manufacturing issues for combination vaccines*

�Use of human-derived or animal-derived materials and use of
preservatives in manufactured products can become an issue

�Developing a formulation process for the combination vaccine
that ensures lot to lot consistency, minimizes interference
between antigens and maintains safety and efficacy profile sim-

i lar to the individual components
�Manufacturing process should be amenable to scale-up
prodution; the profile of the final product should mimic the
safety, efficacy, potency and preclinical testing profile of the
pilot scale vaccine

�Combination vaccine must show acceptable toxicity levels,
animal studies may be necessary and animal data must reflect
clinical results

�Multiple clinical trials will be necessary for determining safety,
efficacy, and impact of different vaccination schedules in
infants and adults

�Manufacturing product should pass all regulatory rules of the
FDA for licensure

*Abridged from Vose, J. 2001, CID, 33: S334–339, Van Hoof, J. CID, 2001, 33:
S346–350.

www.tandfonline.com 1443Human Vaccines & Immunotherapeutics



individual pathogens to provide broader coverage against
multiple causes of diarrheal disease. The American College of
Immunization practices (ACIP) recommends that combina-
tion vaccines be used whenever possible. As new vaccines that
target previously unaddressed diseases are added to the vacci-
nation calendar, the use and improvement of currently avail-
able combination vaccines will be paramount if high vaccine
coverage is to be maintained. Areas for future research would
be to increase compatibility of antigens, testing more potent
adjuvants and developing better methods to monitor vaccine
production and potency.

In an article summarizing the issues concerning combination
vaccines for less developed countries, the question was raised as
to “how can vaccines of special epidemiological importance for
the developing world be developed”. Successful development of
an affordable combination vaccine against diarrheal diseases for
pediatric public health will rely on subsidy by international
organizations, potential private sector markets among developed
world travelers and the middle to upper income class of develop-
ing countries, and collaboration between the commercial manu-
facturer (who likely hold the patents and IP rights) and a local
producer.163 Ultimately governments and health-policy decision

makers in individual countries will determine if such combina-
tion diarrheal vaccines benefit their population and add value to
the well-being of their children.
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