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Abstract

Primary open-angle glaucoma (POAG) is one of the major causes of blindness worldwide and considered to be
influenced by inherited and environmental factors. Recently, we demonstrated a genome-wide association study for
the susceptibility to POAG by comparing patients and controls. In addition, the serum cytokine levels, which are
affected by environmental and postnatal factors, could be also obtained in patients as well as in controls,
simultaneously. Here, in order to predict the effective diagnosis of POAG, we developed an “integration approach”
using different attribute data which were integrated simply with several machine learning methods and random
sampling. Two data sets were prepared for this study. The one is the “training data set”, which consisted of 42
POAG and 42 controls. The other is the “test data set” consisted of 73 POAG and 52 controls. We first examined for
genotype and cytokine data using the training data set with general machine learning methods. After the
integration approach was applied, we obtained the stable accuracy, using the support vector machine method with
the radial basis function. Although our approach was based on well-known machine learning methods and a
simple process, we demonstrated that the integration with two kinds of attributes, genotype and cytokines, was
effective and helpful in diagnostic prediction of POAG.
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Introduction
Glaucoma is a progressive eye disease that shows charac-
teristic degeneration of the optic nerve and visual field
defects (Kwon et al. 2009). Among the subtypes of glau-
coma, primary open-angle glaucoma (POAG) is a major
cause of blindness worldwide. The results of many stud-
ies have suggested that a genetic contribution is one of
the risk factors for the development of glaucoma (Ray &
Mookherjee 2009). However, it is still unclear if the
genetic risk factors contribute to all of the pathogenesis of
glaucoma. To investigate the mechanism(s) of common
diseases such as glaucoma, genome-wide association stud-
ies (GWAS) have been widely performed (Consortium

TWTCC 2007; Balding 2006). GWAS is one of the power-
ful tools to identify genetic association to common
diseases with genotype data for single nucleotide
polymorphisms (SNPs). Previously, we performed a
GWAS to identify the common POAG-associated genetic
factors (Nakano et al. 2009) and found a number of SNPs
significantly associated with POAG. GWAS for POAG
has also been performed by several other research groups
(Meguro et al. 2010; Thorleifsson et al. 2010; Burdon et al.
2011), and we also recently published additional GWAS
research results on POAG (Nakano et al. 2012). However,
compared with the genetic risk for another type of glau-
coma, Exfoliation Glaucoma (EG), which was carried out
by deCODE using only two SNPs (http://www.decode-
health.com/glaucoma), genetic contribution for POAG
seems to be a complex. In EG, SNPs were highly signifi-
cant on a single gene, LOXL1, by GWAS (Thorleifsson
et al. 2007; Williams et al. 2010; Mabuchi et al. 2008; Fan
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et al. 2008), while in POAG, several genes are involved as
genetic risk factors. In addition, besides the genetic factor,
POAG is considered to have other risk factors (Kwon
et al. 2009) as well. Thus, precise disease mechanism(s) of
POAG remains elusive.
For the purposes of diagnostic prediction or finding

out the pathogenesis of diseases, genotype data have
been applied in several machine-learning algorithms
(Relton et al. 2004; Listgarten et al. 2004; Ritchie et al.
2001; Nelson et al. 2001; Hoh et al. 2001; Wang et al.
2012). Genetic data and the other risk factors (e.g.,
smoking, body mass index) were combined for these
prediction models (Seddon et al. 2009). In such studies,
careful extraction of attributes for prediction from large
volumes of data and appropriate data selection from sev-
eral attributes are essential. As the development of com-
mon diseases like POAG is influenced by many factors,
the contribution of each attribute weighs variously
among the patients. Thus, for the diagnostic prediction
of POAG, clarification of each attribute obtained for
analysis needs to be carefully assessed. In this regard, it
is important to develop a new strategy of integrating the
data with various attributes for establishing useful diag-
nostic prediction.
In order to evaluate the risk factor of POAG, we inte-

grated cytokine data together with genetic data as a new
strategy. We focused on the serum cytokines because
the relation between glaucomatous neurodegeneration
and immune response was previously suggested (Tezel
2011), and several cytokines were reported to be linked
with glaucoma (Huang et al. 2010; Yang et al. 2001).
Cytokines, which include both chemokines and lympho-
kines, are small soluble proteins that play a pivotal role
in immune system. The concentration of serum cyto-
kines may reflect the physiological condition of the hosts
affected by environmental and postnatal factors as one
of the important indices useful for the diagnostic predic-
tion of certain diseases. Obviously, cytokine data as an
attribute weigh differently from those of the genotype
data. In addition, the equipments that many cytokines
can measure simultaneously under the same condition
could have been developed and applied to diagnostic
analysis (Ray et al. 2007; Lambeck et al. 2007). There-
fore, we especially tried to measure and handle many
cytokines simultaneously.
Here, for predicting the risk of POAG development,

we attempted to establish a new integration approach
with a good potential as a useful and simple tool. This
procedure performs the integration of data with vari-
ous kinds of attributes by using several machine learn-
ing methods with random sampling. In particular,
because both genotyping and cytokines attributes were
obtained from blood sample, our approach is consid-
ered to be useful for assessment of the risk of POAG

and predicting the onset possibility before consulting
ophthalmologists. This strategy may give us with new
prototype for a clinical approach in understanding the
underlying mechanism(s) of various diseases, not lim-
ited to POAG.

Methods
Sample Information
To obtain the peripheral blood samples, 115 POAG
patients and 94 healthy control volunteers were
recruited at the University Hospital of Kyoto Prefectural
University of Medicine (Kyoto, Japan). This study was
approved by the institutional review board of Kyoto Pre-
fectural University of Medicine and conducted in ac-
cordance with the principles set forth in the Helsinki
Declaration. All participants were interviewed about
their familial history of glaucoma and other diseases and
diagnosed either POAG or control by three ophthalmol-
ogists (YI, MU, and KM). The 115 POAG patients had
peak intraocular pressure ≥ 22 mmHg without treat-
ment. Peripheral blood samples were collected simultan-
eously from each participant for obtaining genomic
DNA for genotyping and serum for cytokine measure-
ment. DNA and sera were stored at −80°C until
examined.
These samples were divided into two groups, since the

cytokine data was obtained with two conditions. The
first was defined as the “training data set” and the other
as the “test data set” (Table 1). The former consisted of
42 POAG and 42 healthy control samples and was uti-
lized in the training process of the machine learning.
The latter consisted of 73 POAG and 52 healthy control
samples, which were applied for the diagnostic predic-
tion of POAG.

Genotype data
All genotype data were obtained by GeneChipW Human
Mapping 500K Array platform (Affymetrix) according to
the manufacturer’s instructions. Although this array sys-
tem carries the probes for more than five hundred thou-
sand SNPs, we needed a number of SNPs significantly
associated with POAG for the tests. Our previous study
(Nakano et al. 2009) suggested that 40 SNPs were sig-
nificantly POAG-associated which had both Mantel-
Haenszel p-value of less than 0.01 and a p-value of
Cochran’s Q test (Ioannidis et al. 2007) equal to or more
than 0.05 in the two stage GWAS. Because the pairs of
SNPs showing high linkage disequilibrium (LD) could
cause a multicollinearity problem, the Haploview pro-
gram (Barrett et al. 2005) was applied to calculate LD.
As a result, 11 of the 40 SNPs were excluded because
of their high LD and remaining 29 SNPs were employed
in this study (Table 2). All of the genotype data except
for the missing by genotyping failure, which were
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represented by a pair of letters (e.g., AA, AT and TT),
were converted into discrete numerical values according
to the number of allele with higher frequency in the
POAG (i.e., risk allele) as followed: risk allele homo-
zygote, 2; risk allele heterozygote, 1; and other allele
homozygote, 0. Then, all the genotype data were

normalized using the equations in EIGENSTRAT
(Price et al. 2006), so that the missing data were set
to 0.0. According to the allele frequency and the
average of numeric genotypes calculated from the
training data set, this normalization was carried out
and the normalized data represented discrete values.

Table 1 Clinical characteristic of samples

Training data set Test data set

POAG Control POAG Control

Number of sample 42 42 73 52

Famale / male ratio 1.00 0.83 0.62 1.74

Age at blood sampling 56.4±5.5 55.3±3.4 70.9±10.7 61.8 ± 11.3

Storage period of blood (days) 880.1±112.0 865.7±106.0 1044.0±114.4 892.2 ± 129.9

Table 2 Summary of 29 SNPs used in this study

dbSNP ID Chr. SNP type Nearest gene Genotype frequency

rs547984 1 intergenic ZP4 AA(0.263) AC(0.488) CC(0.249)

rs1892116 1 intronic AHCTF1 AA(0.507) AG(0.445) GG(0.048)

rs4666488 2 intergenic OSR1 AA(0.100) AG(0.397) GG(0.503)

rs2268794 2 intronic SRD5A2 AA(0.005) AT(0.319) TT(0.676)

rs7574012 2 intergenic QPCT AA(0.373) AG(0.459) GG(0.168)

rs1990702 2 intergenic LRP2 GG(0.120) GA(0.433) AA(0.447)

rs10930437 2 intergenic SP5 AA(0.429) AG(0.454) GG(0.117)

rs779701 3 intronic GRM7 AA(0.490) AG(0.413) GG(0.097)

rs6550783 3 intergenic UBE2E1 AA(0.412) AG(0.442) GG(0.146)

rs6550308 3 intergenic ARPP21 GG(0.215) GA(0.488) AA(0.297)

rs3922704 3 intronic PLCXD2 CC(0.034) CG(0.254) GG(0.712)

rs17279573 4 intergenic KIAA0922 GG(0.120) GA(0.483) AA(0.397)

rs818725 5 intronic ADAMTS12 CC(0.019) CG(0.226) GG(0.755)

rs11750584 5 intergenic HEATR7B2 CC(0.029) CG(0.292) GG(0.679)

rs9640055 7 intronic GLCCI1 GG(0.038) GA(0.344) AA(0.618)

rs2966712 7 intergenic LOC285965 AA(0.005) AG(0.211) GG(0.784)

rs411102 9 intergenic KRT8P11 GG(0.749) GA(0.242) AA(0.009)

rs7850541 9 intergenic GBGT1 GG(0.514) GA(0.361) AA(0.125)

rs7081455 10 intergenic PLXDC2 AA(0.644) AC(0.293) CC(0.063)

rs493622 11 intergenic CHORDC1 AA(0.565) AC(0.383) CC(0.052)

rs610160 11 intronic GRIA4 AA(0.693) AG(0.262) GG(0.045)

rs7961953 12 intronic TMTC2 GG(0.522) GA(0.397) AA(0.081)

rs10492680 13 intergenic FLJ42392 GG(0.005) GA(0.187) AA(0.808)

rs1571379 14 intergenic SEL1L AA(0.440) AG(0.454) GG(0.106)

rs9788983 17 intronic RPH3AL AA(0.770) AG(0.215) GG(0.015)

rs16940484 18 intronic TTC39C GG(0.469) GA(0.450) AA(0.081)

rs2864107 19 intergenic ZNF175 GG(0.684) GA(0.301) AA(0.015)

rs6115865 20 intergenic C20orf194 AA(0.125) AG(0.428) GG(0.447)

rs5765558 22 intergenic ATXN10 AA(0.287) AG(0.478) GG(0.235)

The dbSNP ID represents with build 130. Chr. denotes the number of chromosome. The Nearest genes are positioned nearest by each SNP and referred to NCBI
Build 36. Genotype frequencies are calculated by total samples used in this study, which are 115 POAG patients and 94 healthy control volunteers.

Tokuda et al. SpringerPlus 2012, 1:41 Page 3 of 10
http://www.springerplus.com/content/1/1/41



Cytokine data
Serum cytokines were measured by the bead flow-
cytometry analysis by the Becton Dickinson (BD, San
Diego, CA) Cytometric Bead Array (CBA™) Flex Set Sys-
tem according to the manufacturer’s protocol. The data
was examined by a BD FACSArray™ (BD) flow cytometer
with FCAP Array™ software and the BD FACSArray™
Bioanalyzer (BD).
In this study, we first assayed 29 cytokines in the sera

from “the training data set”, and each cytokine concentra-
tion was calculated from each raw data by the Four Par-
ameter Logistic Model (FPLM), which was recommended
by the manufacturer (http://www.bdbiosciences.com/
documents/Analysis_of_data_from_CBA_using_FCAPAr
ray.pdf). Before we performed the statistical analysis, the
quality of the cytokine data was evaluated. Of 29 cyto-
kines, 21 cytokines were excluded; 7 were for measure-
ment failures (over 5% of the 84 samples) and 14 for
concentration of zero (over 5% of the 84 samples). The
remaining 8 cytokines were tested by the Student’s t-test
between the POAG and control samples, of which 5 cyto-
kines were excluded with a p-value over 5%. Eventually,
only 3 cytokines, i.e., Fas Ligand, Eotaxin, and MIG, were
picked up to be significantly associated with POAG from
the training data set samples (Table 3).
Subsequently, these 3 cytokines were determined with

the same assay procedure on 126 samples (73 POAG
and 53 controls) from the “test data set” samples. Data
were obtained from 125 samples, excluding one control
sample of failed assay (Table 3). For statistical analysis,
the cytokine concentration data were standardized in
order to minimize the biases among the assay conditions
as followed. Let cij be the cytokine concentration mea-
sured for cytokine i and sample j, where i = 1 to 3 and
j = 1 to M (M is 84 in the training data set; 125 in the
test data set). Let mi and si be the mean and standard
deviation of cytokine i, respectively. At each data set,
mi and si were calculated only for the control samples
because it was considered that the cytokine concentration
of healthy control samples might act fairly consistently
under each experimental condition. The standardized

value nij was calculated using the following equation:
nij = (cij - mi)/si. Notably, the cytokine concentration
data was obtained as continuous values when they
were calculated by FPLM.
Finally, results of a total of 32 attributes, which con-

sisted of 29 SNPs (Table 2) and 3 cytokines (Table 3),
were applied for “integration approach” in this study.

Base classifiers
In this study, well-known machine learning methods,
i.e., Linear Discriminant Analysis (LDA), Support Vector
Machine (SVM), Naive Bayes Classifier (NBC), and Decision
Tree (DT) were applied. We defined these methods as “base
classifiers”.
LDA is a method used in statistics and machine learn-

ing to find a discriminant function by which two or
more groups can be separated. LDA seeks a linear func-
tion of the variables (e.g., genotype and cytokine) in the
training data set that maximizes the distance among
means in each group as it minimizes the within-group
variance. Hence, a discriminant function can be com-
puted explicitly and used as a linear classifier.
SVM is a supervised machine learning method based

on the idea of classifying two groups by a hyperplane
with a large margin. SVM maps the data in the training
data set into a possibly higher dimension of space by
using a kernel function. In the space, SVM learns the
classifier by seeking a hyperplane that may separate the
two groups by a certain distance. If the training data set
is not separated linearly, SVM optimizes the separation
between the two groups. The kernel function in SVM is
decided according to the attribute of the data. In this
study, we used SVM for learning with three kernel func-
tions: linear, polynomial, and radial basis function (RBF).
NBC is a simple and efficient probabilistic classifier

based on Bayes’ theorem. Assuming there is independ-
ence between each set of attribute data (e.g., genotype or
cytokine); NBC calculates the probabilities used for the
prediction from the training data set. As each sample in
the test data set is given to the NBC, it predicts to which

Table 3 Summary of the three cytokines used in the integration approach

Cytokine Training data set Test data set

Concentration P-value* Concentration P-value*

Fas Ligand POAG 63.5 (52.2-87.3) 0.002 37.5 (31.8-46.6) 0.877

Control 53.3 (34.9-63.4) 36.2 (28.0-45.4)

Eotaxin POAG 309.1 (273.6-342.9) 0.038 70.6 (54.9-90.8) 0.013

Control 268.5 (236.7-311.6) 63.5 (54.4-73.9)

MIG POAG 410.9 (306.8-524.9) 0.021 318.1 (182.9-511.7) 0.109

Control 340.4 (198.9-470.1) 148.4 (117.7-241.9)

“Concentration” represents the median concentration and interquartile range. * P-value of the comparison between POAG and control calculated by Student’s
t-test.
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group (e.g., POAG or control) the sample belongs by the
highest conditional probability.
DT is a tree-like data structure used for learning a

method to classify data hierarchically by sequential deci-
sion process. Basically, DT is a binary tree and each node
splits the data by each feature (i.e., large/small, male/fe-
male). In this study, DT was performed by CART (Classi-
fication and Regression Trees), and used to classify SNPs
(each data consisted four discrete; three genotypes and
missing data) and cytokines (each data was continuous).
All the data analysis and drawing figures were per-

formed with R software (version 2.14.0) (R Development
Core Team 2011); the LDA was implemented by the
MASS (version 7.3-16) R package; the SVM and NBC
functions were implemented by the e1071 (version 1.6)
R package (Dimitriadou et al. 2011); and the DT func-
tions were implemented by the mvpart (version 1.4-0)
R package. In addition, each classifier was performed
with default parameter settings.
Accuracy, sensitivity and specificity of the data (geno-

type and cytokine) for the POAG prediction were calcu-
lated by these analytical procedures.

Integration approach
In this study, the data consists of two kinds of attributes
in that the genotype data are discrete and the cytokine
data are continuous. In most cases, it is easy and no prob-
lem to apply these data for each method simply and sim-
ultaneously. However, one must be careful to integrate
them while considering each attribute, especially to note
how each attribute contributes. The prediction may be
made possible from analytical results for each type of attri-
bute data instead of applying the data directly, because of
the difference in the attributes. In addition, if the analytical
results show differences between each attribute, the pre-
diction for each sample has interesting information how
each attribute contributes. For these reasons, we per-
formed the integration approach so that after the genotype
and cytokine data are separately applied in the processes,
their results are integrated after the last process. To enable
an effective analysis by integrating these two kinds of data,
this approach is based on the idea of ensemble learning (e.
g., Bootstrap aggregating (Bagging) (Breiman 1996)). Bag-
ging is one of the powerful prediction tools for improving
other basic classifier. For example, bagging is used for the
purpose of improving the diagnosis of Valvular Heart Dis-
ease by SVM (Sengur 2012), or assessing the interactions
of SNPs (Schwender et al. 2011).
For the training data set L consisted of cases (lP1,. . .,l

P
p)

and controls (lc1,. . .,l
c
q) and the test data set T = {t1,. . .,tr},

the integration approach consists of the following steps:

1) Obtain Sg, which is the subset of the training data
set, by random sampling without replacement from

L so that the same number of samplings is taken
from the cases as from the controls.

2) Apply the base classifiers to the genotype data of Sg
to obtain a predictor Pg as a training result.

3) Repeat above steps (1) and (2) K times; this process
produces genotype data predictors {Pg1,. . .,PgK} from
{Sgl,. . .,SgK}.

4) In addition, repeat the same process as in (1) and (2)
above N times for cytokine data; cytokine data
predictors {Pc1,. . .,PcN} are produced from the subset
of the training data set {Scl,. . .,ScN}.

5) For each tj in the test data T, the predictor gives a
result which predicts whether tj belongs to the cases
(positive) or the controls (negative). Thus for each tj
in the test data T, the genotype data predictors
{Pg1,. . .,PgK} produce K prediction results {Rg1,. . .,
RgK} and the cytokine data predictors {Pc1,. . .,PcN}
produce N prediction results {Rc1,. . .,RcN}.

6) For each tj in the test data T, the majority vote of the
N + K prediction results is the final prediction for tj.

This procedure adopted the same number of sam-
plings, for example, 20 POAG and 20 healthy controls
were sampled from 42 POAG and 42 healthy controls in
the training data set, respectively. This reason is that the
contribution of the characteristics of POAG and control
should be as close to equal possible. Besides, it is prefer-
able for the genotype and cytokine data to be evaluated
as equally as possible (e.g., K = N.) However, it may be
impossible to predict one group by dividing it in half if
the total number of sampling repeats is an even number.
In this study, since the size of the genotype data set was
greater than that of the cytokines, K is taken as N + 1 to
avoid the situation of a tie vote. In addition, note that
use of the base classifier should be limited to one kind
of classifier from the beginning of this procedure to the
end.

Results
Single classifier analysis
Single classifier analysis was performed for each base
classifier on 29 SNPs and 3 cytokines each and both
integrated (Table 4). All of these tests were first done by
the training data set and evaluated to predict the test
data set. Except for DT, the accuracy of genotype data
prediction was higher than that of cytokines for each
base classifier. The integrated accuracy was better than
each base classifier, when tested with use of the polyno-
mial SVM, RBF SVM, and NBC. However, the integrated
sensitivity (0.521) was lower than the genotype (0.589)
or cytokine (0.658) prediction alone, when tested by
polynomial SVM, in spite of increasing the integrated
specificity (0.846) from the genotype (0.731) or cytokine
(0.308) prediction alone. By contrast, RBF SVM test
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increased all of the accuracy (0.744), sensitivity (0.767)
and specificity (0.712) on the integrated data from either
genotype or cytokine prediction. These results suggested
that both genotype and cytokine attributes contributed,
especially when integrated, to improve the diagnostic
prediction based on the base classifier.

Integration approach analysis
The results of single use with base classifier demon-
strated fluctuations on each or both applying attribute
(Table 4; Single analysis). Therefore, the further inte-
grated approach was performed using each base classi-
fier by changing the size and time of parameters
(Table 4; Analysis with sampling). One of the changed
parameters was the size of the subset sampling from the
training data set (defined as “sampling size”), and the
other was the sampling repeat times (defined as “sam-
pling time”). The sampling size was increased from 40
(consisted of 20 POAG and 20 healthy controls) to 80
(consisted of 40 POAG and 40 healthy controls) with an
equal number of samples from POAG and controls. (i.e.,
21 steps were tested) On the other hand, the sampling
time for each genotype and cytokine was also increased
from 25 to 1,500 by 60 steps. (i.e., 25, 50, 75, ···, 1,450, 1,475
and 1,500 repeat times were tested) Moreover, because the
sampling time for the genotype data was increased by one,
the total sampling repeat times increased from 51 to 3,001.

As a result, the integration approach was performed on
1,260 tests (21 steps of sampling sizes × 60 steps of sam-
pling times) per each base classifier.
These results are summarized in “Analysis with sam-

pling” in Table 4. The LDA, Linear SVM, and DT meth-
ods improved the mean of integrated accuracy from
single analysis (from 0.632 to 0.655, from 0.659 to 0.668,
and from 0.600 to 0.617, respectively), although those
values included fluctuations due to parameter settings.
The mean of the integrated accuracy (0.740 ± 0.013;
mean ± SD) assessed by the RBF SVM method was the
best results in analysis with sampling, however, it was
slightly lower than that in single analysis in association
with the higher integrated sensitivity (0.805 ± 0.020)
than that in single analysis (0.767). Moreover, the spe-
cificities of genotype (0.664 ± 0.013) and cytokine
(0.607 ± 0.020) by SVM RBF method in analysis with
sampling were better than those in single analysis
(0.654 and 0.558, respectively). In addition, some ac-
curacy in the 1,260 tests was achieved over the single
analysis.
In order to understand how the test results improved by

changing the sampling size and time of parameters and
each attribute contributed to the prediction, the integration
results were demonstrated graphically (Figure 1). The sche-
matic presentations of the genotype and cytokine data were
plotted on horizontal and vertical axes, respectively, as

Table 4 Summary of the three cytokines used in the integration approach

Base classifier Single analysis Analysis with sampling*

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

LDA Genotype 0.688 0.712 0.654 0.671 ± 0.011 0.693 ± 0.015 0.639 ± 0.014

Cytokine 0.592 0.466 0.769 0.584 ± 0.010 0.457 ± 0.012 0.763 ± 0.010

Integrated 0.632 0.616 0.654 0.655 ± 0.022 0.611 ± 0.034 0.717 ± 0.015

SVM linear Genotype 0.664 0.699 0.615 0.683 ± 0.013 0.754 ± 0.023 0.584 ± 0.016

Cytokine 0.568 0.452 0.731 0.577 ± 0.008 0.458 ± 0.012 0.745 ± 0.013

Integrated 0.659 0.648 0.673 0.668 ± 0.014 0.640 ± 0.024 0.706 ± 0.012

polynomial Genotype 0.648 0.589 0.731 0.633 ± 0.010 0.539 ± 0.026 0.764 ± 0.018

Cytokine 0.512 0.658 0.308 0.457 ± 0.012 0.275 ± 0.077 0.713 ± 0.086

Integrated 0.656 0.521 0.846 0.624 ± 0.010 0.480 ± 0.065 0.827 ± 0.078

RBF Genotype 0.688 0.712 0.654 0.676 ± 0.010 0.685 ± 0.016 0.664 ± 0.013

Cytokine 0.648 0.712 0.558 0.662 ± 0.006 0.701 ± 0.011 0.607 ± 0.020

Integrated 0.744 0.767 0.712 0.740 ± 0.013 0.805 ± 0.020 0.650 ± 0.014

NBC Genotype 0.640 0.671 0.596 0.630 ± 0.006 0.651 ± 0.013 0.601 ± 0.014

Cytokine 0.624 0.479 0.827 0.621 ± 0.006 0.489 ± 0.013 0.807 ± 0.019

Integrated 0.744 0.767 0.712 0.698 ± 0.013 0.644 ± 0.027 0.775 ± 0.051

DT Genotype 0.536 0.342 0.808 0.562 ± 0.025 0.411 ± 0.070 0.774 ± 0.043

Cytokine 0.624 0.904 0.231 0.605 ± 0.018 0.874 ± 0.099 0.226 ± 0.126

Integrated 0.600 0.959 0.096 0.617 ± 0.013 0.668 ± 0.032 0.545 ± 0.040
*These values are represented as the mean and SD of each statistics. The mean of each statistics included extremely good or bad result, especially small sampling
size and few sampling repeat time.
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shown in Figure 1a. One example of the unstable results
was shown in Figure 1b. Because those parameters were
comparatively smaller, the positive ratios of each attribute
were generally unsatisfactory with several samples being
plotted in the vicinity of the diagonal threshold. By contrast,
when the sampling size was 70 (consisted of 35 POAG and
35 healthy controls) and sampling times was 2,001 (1,001
times at genotype data and 1,000 times at cytokine data),
most of the samples were plotted in the vicinity of the axes

(Figure 1c). Using these parameters, the accuracy was
improved for 0.768. This result was also obtained by many
other conditions when the sampling size and time were
comparatively larger; therefore it was considered as the
best stable results of the integration approach. Thus, the
predictions were improved by changing the size and time
of parameters in either the genotype or cytokine test.
In these test plot presentations, we focused on the

contribution of the genotype and cytokine data to the

Figure 1 Scatter plot showing the ratio of POAG prediction for each sample. Figure 1 (a) The example figure for the scatter plot. The
horizontal axis represents the ratio of positive prediction using genotype data. The positive prediction indicated the sample with POAG feature,
and the negative prediction indicated the sample with control feature. The ratio was obtained by dividing the number of positive predictions by
the total test number. Thus, “1” and “0” indicate 100% prediction as positive and negative, respectively. The vertical axis similarly represents the
ratio using the cytokine data. Dots and triangles represent POAG and control samples, respectively. The figure can be read as, if one POAG
sample was predicted as positive 60 times using the genotype data and 80 times using the cytokine data each with 100 sampling repeat times,
the sample is plotted at (0.6, 0.8) by dot. If the approach has a good performance (means; highly negative or positive prediction) for samples
with interaction between those two attributes, more samples will be plotted in the corner I or corner IV. If either the genotype or cytokine data is
at risk for POAG, such samples will be plotted in the corner II or corner III, respectively. The diagonal line shows the threshold of the prediction
by the integration approach. If a sample is plotted above or below the threshold, the final prediction result is positive or negative, respectively.
Figure 1 (b) shows one of the examples as the comparatively smaller and unstable, which is the result with 40 sampling size and 201sampling
times by RBF SVM method. Figure 1 (c), one of the examples as the best stable result, which is the result with 70 sampling size and
2,001sampling times by RBF SVM method.
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stable results among the POAG samples, 23 (31.5%)
showed more than 90% accuracy for both positive ratios
(i.e., plotted in the corner IV in Figure 1c). On the other
hand, 14 (26.9%) of the control samples showed more
than 90% accuracy (i.e., plotted in the corner I in
Figure 1c).

Discussion
Bootstrap methods, such as Bagging (Breiman 1996), are
generally applied in approaches using random sampling
techniques. In a typical procedure, bootstrap can provide
us with an estimated distribution for statistical analysis
by random sampling with replacement from all samples
in the data set. In this study, the method of random
sampling was independent for each group, and an equal
number of samples were adopted in order to avoid bias
by the difference in sample numbers among each group.
Additionally, our approach adopted random sampling
without replacement due to the potential for multicolli-
nearity. Because genotype data show discrete values con-
sisted of three genotypes and one missing data, the
combinations of values were easy to be limited as much
as causing multicollinearity. Especially, this phenomenon
was apparent when LDA method was applied with the
small sampling size. For this reason, the changing para-
meters of the sampling size were started with 40 samples
by random sampling without replacement. Besides, the
accuracy did not improve without any relation to the it-
eration times even when the sampling size was increased
enough as showed in Figure 1c. This tendency was con-
sidered to be caused by highly correlated samples. To
solve this problem, it might be better to adopt the data
for random sampling with replacement than without re-
placement according to the size of the training data set.
Using genotype data, the diagnostic prediction of

POAG by RBF SVM method generally performed well
also in our study (Ban et al. 2010; Rojas et al. 2009). The
applied 29 SNPs were selected by the statistical result of
GWAS from enormous genotype data. Employment of
the SNPs selected by some large size of population was
useful for this type of diagnostic prediction study with-
out complex procedures. Thus, simple strategy might be
suitable for the post GWAS analysis. The bagging is gen-
erally considered to reduce variance of classifier such as
DT method; therefore, the classifier with less variant
such as SVM method was considered to be improved a
little by bagging. However the result of our study was ef-
fective even when SVM, DT methods with bagging was
not improved.
Using cytokine data, the diagnostic prediction of POAG

by RBF SVM method also performed well, regardless of
some fluctuation between two data sets. Thus, RBF SVM
method was thought to be successfully suitable for each
attribute data, genotype as well as cytokine, in our study.

In other words, the base classifier is necessary to select
suitably according to each attribute. However, the effect-
iveness of cytokine data analysis using SVM has been
reported for selecting the significant cytokines to elucidate
the pathway of inflammatory response (McKinney et al.
2006).
In this study, we found 3 cytokines that are associated

with POAG in 29 cytokines. In our approach, some sam-
ples was certainly predicted by only cytokine attributes
as shown in Figure 1b or c. These results demonstrated
that POAG patients with low genetic risk were predicted
by cytokine attributes effectively.
In terms of the integration approach, one of our goals is

to predict the diagnosis and/or prognosis by the patterning
of different types of experimental data. In the process, an
interaction between genotype and cytokine might indicate a
risk of disease development, because approximately 30% of
the samples in the test data set were performed with a high
prediction from both types of data. Our approach also eli-
cited a good classification of same sample when one of the
two data sets was used individually before integrating them.
The classification was made successful by using one data
set because either genotype or cytokine behaved as a risk of
disease development in these samples. For such reasons,
our approach is considered to be one of the good tools to
analyze the mixed data, irrespective of their interaction.
In conclusion, we demonstrated that our integration

approach improved the diagnostic prediction of POAG
with use of two attributes, SNPs as genotype and serum
cytokines. Although two attribute data are applied inde-
pendently, this approach is not affected by the differ-
ences of attribute, because the base classifier was first
set according to each type of attribute data. It was con-
firmed that when the setting of the base classifier for
one data set is successfully optimized, the integration ap-
proach might be applied using additional data with other
attributes. In view of the versatility and simplicity, our
approach was thought to be effective and useful for vari-
ous clinical applications in future.
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