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Viral plasticity facilitates host diversity in
challenging environments

Juan A. Bonachela 1

The antagonistic coevolution of microbes and viruses influences fundamen-
tally the diversity of microbial communities. Information on how environ-
mental variables interact with emergent defense-counterdefense strategies
and community composition is, however, still scarce. Following biological
intuition, diversity should increase with improved growth conditions, which
offset evolutionary costs; however, laboratory and regional data suggest that
microbial diversity decreases in nutrient-rich conditions. Moreover, global
oceanic data show that microbial and viral diversity decline for high latitudes,
although the underlying mechanisms are unknown. This article addresses
these gaps by introducing an eco-evolutionary model for bacteria-virus
antagonistic coevolution. The theory presented here harmonizes the obser-
vations above and identifies negative density dependence and viral plasticity
(dependence of virus performance on host physiological state) as key drivers:
environmental conditions selecting for slow host growth also limit viral per-
formance, facilitating the survival of a diverse host community; host diversity,
in turn, enables viral portfolio effects and bet-hedging strategies that sustain
viral diversity. From marine microbes to phage therapy against antibiotic-
resistant bacteria or cancer cells, the ubiquity of antagonistic coevolution
highlights the need to consider eco-evolutionary interactions across a gradient
of growth conditions.

Unraveling the role that viruses play in the dynamics and composition
of microbial communities is a fundamental question especially
important in the case of marine ecosystems, where viruses are mas-
sively abundant1–3. By killing their host cell, lytic viruses disrupt the
flowof energy andnutrients to higher trophic levels of themarine food
web. Moreover, the cellular contents resulting from lysis fuel the
marine microbial loop, main responsible for oceanic primary produc-
tion. Further, viral mortality, together with biotic factors such as gra-
zers and abiotic factors such as nutrient availability and temperature,
determine the biogeography ofmarinemicrobes1,4. Thus, the influence
of marine viruses ripples across spatial, temporal, and organizational
scales, affecting local and global biogeochemistry and ecosystem
services5.

Central to the understanding of how marine viruses shape
microbial communities is unveiling which mechanisms drive the

antagonistic coevolution of hosts and viruses across gradients of
environmental conditions6. Among other evolutionary strategies,
hosts can achieve resistance through modification of parts of the host
genome (the clustered regularly interspaced short palindromic
repeats/CRISPR-associated sequences system), or by modifying the
receptors that the virus uses as a gateway to infection (adsorption
inhibition)7,8. As an example of the latter, the bacterium Escherichia coli
can modify receptors such as lipopolysaccharide (LPS) or produce
proteins tomaskouter-membraneproteinA (OmpA), usedbyTviruses
to adsorb to the cell surface. In turn, viruses can evolve counter-
defense mechanisms, for example modifying their tail fiber to recog-
nize and attach to altered forms of the receptor or new receptors
altogether, thus increasing its host range7–9 (see Fig. 1a). Although
evolutionary costs are key to these coevolutionary dynamics6, how
costs and associated tradeoffs are influenced by environmental
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Fig. 1 | Coevolution and diversity. a Illustration of a few steps of the coevolution
of host and virus modeled here (red arrow represents time), starting from a
pristine form of the receptor and tail fiber (gray color): for the host, the darker the
blue shade of the receptor the more it departs from the pristine form, i.e. more
host innovation and thus higher tax on the cell’s maximum growth rate; for the
virus, the more shades of blue the tail shows (here indicated in the sheath for
visualization) themore receptor forms can be recognized, i.e. more versatile virus
and thus higher tax on tail fiber efficacy. These steps are influenced by viral
plasticity (dependence of viral infection time and offspring number on host
growth rate, Fig. S1d–e). b–d Biodiversity as a function of environmental nutrient
measured by the Tara Oceans expedition across the globe (b, c, heterotrophic
and phototrophic bacteria, 106 dots and 104 squares, respectively31; d, DNA
viruses, 86 triangles32); nutrient refers to total nitrate and nitrite, for simplicity

referred to here as dissolved inorganic nitrogen (DIN), see SI.7 for further details.
e, f Biodiversity as a function of environmental nutrient measured in our simu-
lations (1059 points, with colors representing occurrence probability); a version
of the model that neglects viral plasticity did not show any discernible pattern
(Fig. S14). In all panels, lines and shaded area represent a LOESS smoothing and
corresponding confidence interval, respectively, for visual indication of trend and
variability only: host diversity is approximately constant for mid to low nutrient,
but declines steeply for high nutrient availability; the pattern is similar but less
pronounced for viruses. All panels show high variability in biodiversity for mid-
nutrient levels, leading to the “fluctuating” index around a saturating value. We
normalized data by that apparent saturation value to facilitate comparison across
cases. LOESS lines obtained using the R functions loess and predict with default
options.
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conditions is poorly understood and understudied. Common biologi-
cal intuition dictates that adverse environments deter coevolution due
to increased direct costs and reduced indirect benefits of evolving
resistance10–12. However, the limited available experimental work
investigating antagonistic coevolution under contrasting growth
environments10,11,13 that also studied diversity has instead reported
higher host diversification when growth conditions decline13. It is also
unclear under which environmental conditions the coevolutionary
process results from continuous innovation (i.e. arms races), an
alternation of strategies that are revisited (fluctuating selection/Red-
Queen dynamics), or a combination of the two11,14–17.

In addition, empirical work studying coevolution has traditionally
overlooked that host physiological state inherently constrains the
ecological and evolutionary response of the virus. Because, due to its
parasitic nature, the virus relies on host resources and machinery for
reproduction, key viral life-history traits such as infection time (latent
period) and offspring number (burst size) change with the host’s
physiological state18–25, dependence that has been termed viral plasti-
city. Specifically, an improved host physiological state typically leads
to shorter but more productive infections (smaller latent periods and
larger burst sizes, see e.g.18,20,22 or Fig. S1d-e). However, empirical work
devoted to understanding the links between host growth conditions
and viral reproduction19,20,22–30 focuses on short timescales (one
infection cycle), and thus whether or how viral plasticity influences
antagonistic coevolution is still unknown.

The dearth of such important pieces of the coevolutionary puzzle
hinders our understanding of how viral pressure, influenced by
bottom-up sources of regulation such as resource availability, dyna-
mically shapes themicrobial community in the oceans in the short and
the long term. For example, the Tara Oceans expedition recently
reported diversity latitudinal patterns that are similar for microbial
hosts and viruses31,32; leveraging these data, we represented here
diversity against the reported nutrient gradient (as a proxy for host
growth conditions), which unveiled a pattern seemingly conserved
across eukaryotes, bacteria, and the DNA viruses that infect them
(Fig. 1b–d and Fig. S15a–d): biodiversity is high for challenging growth
conditions (low nutrient), remains constant as conditions improve,
and decreases steeply for favorable growth conditions (high nutrient).
The ecological and/or evolutionarymechanisms that underlie this and
the original latitudinal pattern are, however, unknown.

The knowledge gaps above also handicap models built to under-
stand and predict host-virus dynamics and emergent consequences
such as diversity, primary production, or carbon export, key to
assessing the future of our oceans under any global climate change
scenario. Here, we contribute to bridging these gaps by introducing a
theoretical model for host-virus antagonistic coevolution that
accounts for viral plasticity. We find that the changeable viral perfor-
mance associatedwith viralplasticity can reduceevolutionarycosts for
the host and facilitate survival, as well as a variety of evolutionary
strategies, under growth-limiting conditions. For all environments in
our simulations, coevolutionary dynamics initially lead to arms races
but ultimately converge to fluctuating selection. Host and virus
behavior and diversity emerging from such coevolutionary dynamics,
shaped by negative density dependence within and across pheno-
types, resemble empirical observations.

Results and discussion
Model for the coevolution of amicrobial host and a plastic virus
Our model focuses on host changes in receptors and viral changes in
tailfiber,whichhave been documented to arise quickly and generically
across host-virus systems in a variety of contexts6–8,14,15,33,34. These
evolutionary strategies entail important tradeoffs. For example,
modifying the receptor may lead to reduced functional efficacy (e.g.
reduced uptake affinity or uptake rate), and changes in the tail fiber
may lead to reduced efficiency attaching to the receptors that it can

recognize6,8,14,35–37. Indirect costs include antagonistic pleiotropy, as a
receptor change that eludes a viral strain may make the host suscep-
tible to another viral strain38,39. In ourmodel, the initial host phenotype
population is characterizedby a pristine formof a focal receptor that is
targeted by an initial virus phenotype population (Fig. 1a). As host and
virus interact, random mutations lead to new host phenotypes that
express only a phenotype-specific modified form of the receptor. This
modification decreases uptake and, ultimately, the maximum growth
rate of the new host phenotype proportionally to its degree of inno-
vation (i.e. to how much the receptor departs from its pristine form,
Fig. S1b). In turn, randommutations in the virus tailfiber introducenew
virus phenotypes that target different formsof the receptor; thesenew
viral phenotypes, however, show a reduction of adsorption rate pro-
portional to their degree of versatility (i.e. to how many forms of the
receptor the tail fiber can recognize, Fig. S1c). We parametrized the
model to E. coli hosts andT7viruses, but the framework canbe tailored
to other examples. Our model also incorporates dependencies
between the value of the main viral traits and host growth rate (as a
proxy for host physiological state)40 that have been quantified
experimentally for this system20,22,24,25. Moreover, because rapid evo-
lution alters the latent period within hours41, here we utilized a theo-
retical prescription for the (plastic) optimal value of the latent period,
expression that is valid for different environments40,42.

We used a chemostat as environmental context, adjusting the
input nutrient concentration and dilution rate to generate a variety of
relevant growth conditions here characterized by the nutrient available
within the chemostat (realized nutrient, Fig. S4a). Shaped by biotic and
abiotic factors, realized nutrient is an environmental variable routinely
measured in empirical work, which enables comparison of our results
with existing observations. In marine ecosystems, oligotrophic condi-
tions are expected in e.g. warm tropical waters, and eutrophic condi-
tions in colder or coastal waters or upwelling events. Following Liebig’s
law of the minimum we assumed limitation by one single nutrient, but
the framework can be straightforwardly generalized tomultiple growth-
limiting factors. See details about our framework, modifications,
assumptions, and existing antagonistic coevolutionmodels inMethods.

With such a setup, multiple host phenotype populations dyna-
mically competed for the available nutrient, and (plastic) virus phe-
notypes competed for common hosts, ultimately reaching their
asymptotic eco-evolutionarydynamics after an initial transitory period
(Fig. S3a–h).

Viral plasticity facilitates host survival and diversification when
growth conditions deteriorate
As simulated environments deteriorated (lower realized nutrient,
resulting from lower dilution, Fig. S4a) more host phenotypes coex-
isted, characterized by receptors that departed further from the pris-
tine form (Figs. 2a and S13a). This increase occurred despite the
associated evolutionary cost and the lower resource level, both of
which contribute to lowering growth rates (Fig. S1b, Methods, and
Eq. (5)); for such dilution rates, a version of the model that neglects
plasticity produced the collapse of the community (see Methods).

The increasing survival of host phenotypes (i.e. higher host rich-
ness) and increasing degree of innovation despite the lower growth
rates that are selected for seem paradoxical (e.g.11), but can be
understood in light of viral plasticity. The decrease in host growth rate
associated with a lower nutrient availability affected viral productivity
(reduced offspring and increased infection time, Fig. S1d-e). The
reduced viral performance alleviated pressure on the host, which we
hypothesize made affordable the evolutionary cost of modifying the
receptor. Innovating, in turn, decreased the maximum growth rate of
the mutant host, therefore decreasing further the performance of
infecting viruses and facilitating the survival of the innovating host
phenotype. The fact that the nonplastic versionof themodel collapsed
for low dilutions excludes the reduced dilution-related background
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mortality as responsible for the increased richness and survival. Thus,
viral plasticity generated a feedback loop that effectively reduced
evolutionary costs and increased evolutionary benefits for the host,
altering the competitive ability of host strategies predicted by stan-
dard models (which neglect viral plasticity), and therefore the expec-
ted host community structure (see Supplementary Information
sections SI.2–SI.7).

Viral portfolio effects and bet-hedging emerge when host
growth declines
Although abundance and therefore the kill-the-winner mechanism43

was also at play, viral phenotypes did not necessarily target the most
abundant hosts. While such a negative density dependence inescap-
ably occurred (as it is a built-in component of the host-virus dynamics,
seeMethods and SI.7), viral plasticity made host quality also a relevant
factor. Thus, as environments deteriorated we observed more virus
phenotypes and, despite the consequent reduction in adsorption
efficiency, an increased virus versatility (Fig. 2b, S1c, and S13b).

Differently from classic expectations, this viral diversification did
not necessarily result from the need of the virus to track the increas-
ingly different receptor, since a pool of hostswith the pristine receptor
remained in many replicates (Fig. 2a). Increasing tail-fiber versatility,
however, seemingly reduced viral niche overlap and therefore com-
petition, progressively important as viral performance (indirectly)
decreased with nutrient. Since the simulated viral community origi-
nated from a single initial phenotype, increasing versatility allowed
new phenotypes to differentiate themselves from the common
ancestor and each other (see Methods and SI). Nonetheless, in simu-
lated or real communities of unrelated phenotypes, increasing versa-
tility should typically lead to increased niche overlap.Whether to keep
up with host evolution or to reduce competition, viral mutants here
targeted a wider range of hosts as conditions became more challen-
ging (portfolio effect), with most viruses retaining the ability to infect

the pristine form of the receptor thus bet-hedging the risks of their
evolutionary investment in versatility (Fig. S7a).

Constrained evolutionary strategies in improved environmental
conditions
Environments resulting in high nutrient concentrations (typically due
to high dilution rates) led to reduced host and virus diversification
(Fig. 2a, b). Favorable host growth conditions enabled a high viral
performance (Figs. S1d-e), which a priori would justify host evolution.
However, the combination of high nutrient, frequent dilution, viral
pressure, and the evolutionary cost of evolving trivially selected for
opportunistic strategies. Hosts prioritized resource uptake and fast
growth over defense, which led to many coexisting phenotypes with
receptors similar to the pristine form. In turn, low versatilitywas a cost-
effective strategy allowing viruses to focus on the abundant pool of
hosts with pristine receptors, which translated into a lack of evolu-
tionary incentives also for the virus.

Past experiments with chemostats that achieved contrasting host
growth conditions has reported higher strategy diversification for low
than for high nutrient concentrations13. Our results suggest that the
feedback between host physiological state, viral plasticity, and coe-
volutionary responses as the environment (and thus costs) change is
responsible for this observation. Coevolutionary experiments able to
resolve more systematically nutrient gradients, however, are needed
to confirm empirically our hypothesis.

Classic immunity and range do not necessarily lead to realized
immunity or infectivity
As expected, the fraction of existing virus phenotypes excluded by a
focal host increased with the degree of host innovation (Fig. S7b). This
“classic immunity”, however, did not necessarilymaterialize in a higher
proportion of excluded viral abundance (realized immunity, Fig. 2c), as
only excluding a high-enough proportion of viral phenotypes ensured

Fig. 2 | Coevolutionary strategies and consequences. aHost degreeof innovation
as a function of realized nutrient availability, with color representing the associated
realized immunity (proportion of total viral abundance excluded by the host).
b Viral versatility as a function of nutrient availability, with color representing the
associated realized infectivity (proportion of total host abundance targeted by the
virus). c Threshold-like relationship between proportion of phenotypes avoided by
a host and its realized immunity; a classic host immunity ≳ 25% was needed for the
phenotype to achieve a significant realized immunity, and ≳ 90% practically

guaranteed that the host was an effective escape variant. d Threshold-like rela-
tionship between proportion of phenotypes targeted by a virus (range) and its
realized infectivity; only ranges ≳ 30% produced significant infectivity, with range
≳ 85% practically ensuring total generalism. In all panels, point size represents the
phenotype’s relative abundance; data correspond to snapshots at t = 105d for the
reference input concentration, across 100 replicates of our eco-evolutionary
simulations to ensure a thorough sampling of the behavior of the system. See SI for
details.
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the avoidance of the dominant phenotypes. Indeed, colors in Fig. 2a
show that only hosts that invested sufficiently in departing from the
pristine form of the receptor were rewarded with the highest realized
immunity for a given realized nutrient concentration and replicate,
which enabled their survival despite the associated evolutionary cost.
Such a strategy, however, did not necessarily translate into a high
relative abundance for the phenotype (dot size in same figure), which
in turn limited the degree of innovation. The latter evidences the tra-
deoff between evolving towards more effective resource competition
strategies and more effective defense strategies.

Similarly, the range of the virus (proportion of host phenotypes
that a focal virus can infect) increased with the versatility of the phe-
notype’s tail fiber (Fig. S7c), which did not necessarily lead to a higher
realized infectivity (proportion of host biomass infected by the virus,
Fig. 2d). Nonetheless, sufficiently versatile viral phenotypes achieved
the highest realized infectivity for a given nutrient concentration and
replicate, justifying the evolutionary investment (Fig. 2b).

Richness and biodiversity decrease when growth conditions
improve
The increase in richness observed for both host and virus as environ-
mental conditions declined (Figs. S13a and S13b) did not lead to
communities with higher biodiversity (Shannon index44, which
accounts for the relative abundance of each phenotype, see Methods
and Fig. 1e and f). Instead, biodiversity showed a seemingly constant
behavior that decreased abruptly only in correlationwith high nutrient
concentrations. A similar pattern resulted when relaxing some of the
assumptions of the model (e.g. letting latent period evolve as well,
instead of imposing optimality), and was partially or totally lost when
ignoring plasticity and for high input concentrations (see SI.7 and SI.9
for details).

Systematic measurements of microbial and viral diversity along
environmental gradients are scarce. At a regional level, an increase of
bacterial richness with a decreasing nutrient availability has been
reported45, thus qualitatively agreeing with our predictions (Fig. S13a).
At the global level, the biodiversity patterns we obtained with the Tara
Oceans data for bacteria, protists, and DNA viruses also resembled our
predictions (Fig. 1b–d and Fig. S15a–d). The biodiversity pattern dis-
appeared, however, when considering RNA viruses or data from all
depths (Fig. S15e).

Despite the limitations of our model (see below and SI.9), the
qualitative similarity between our results and the empirical observa-
tions above supports the idea of antagonistic coevolution as an
important driver for bacterial and viral diversity in the oceans. These
antagonistic coevolutionary responses emerging under the oceanic
gradients of growth-limiting factors (e.g. temperature or various
nutrients)would bemediatedby viral plasticity, which links bottom-up
and top-down sources of regulation and thus links two community-
shaping mechanisms typically studied separately. In our simulations,
negative density dependence between host and virus (i.e. killing the
winner mechanism43) and among phenotypes equalized the host
community as expected, leading to a variety of similarly abundant
phenotypes regardless of environmental conditions (see SI.9.4). For
adverse host growth conditions (here represented by low realized
nutrient), viral plasticity facilitated the survival of host strategies
otherwise not competitive. The latter led to a background of low-
abundance phenotypes, which explains the increase in host richness
but constant biodiversity. Occasionally, the stochasticity of the
dynamics between coevolving hosts and viruses and with the envir-
onment may have led to the unexpected rise of one such background
phenotypes to overwhelming dominance, which explains the noise
around the main biodiversity pattern. In the model, these spurious
eventsmore rarelyoccur under higher overall competition imposedby
increasing environmental drivers or (moderately) higher negative
density dependence (see SI.8 and SI.9.2).

Host diversity and abundance enabled viral diversity but did not
determine it as, through viral plasticity, host quality also influenced the
success of a viral strategy. As a result, viral biodiversity resulted in a
similarly constant but noisier pattern despite the steep increase of
richness observed as growth conditions declined (Fig. S13b). The
decrease of host and viral biodiversity observed for favorable condi-
tions (here, high nutrient) trivially resulted from both communities
showing fewer and more similar phenotypes (hosts focused on prior-
itizing uptake over defense, and viruses focused on exploiting the
effectively single host strategy), selected for in high dilution-high
nutrient environments.

Interpreting the resulting diversity-nutrient relationship more
generically in terms of environmental forcing and costs harmonizes
this observation with the apparent contradiction stemming from the
classic arguments that link coevolutionary diversification and growth
conditions. Environmental forcing that generally decreases the
affordability of evolving for all phenotypes deters diversity; however,
when that forcing decreases, costs are determinedby the dynamic eco-
evolutionary interactions of hosts with nutrient and virus,mediated by
viral plasticity. The latter are changeable costs that can be compen-
sated differently by phenotypes through various evolutionary strate-
gies, reason why diversity emerges. Thus, the constant biodiversity
shown in Fig. 1 would result from these dynamic costs dominating over
environmental forcing, whereas high forcing would dominate in cor-
relation with high realized nutrient. In our simulations, high forcing
was imposed by high dilution, but the same general conclusion applies
to other versions of the model that manipulated the environment in
other ways (see SI.8).

Arms races converge to fluctuating selection (Red Queen
dynamics) regardless of growth conditions
To understand the underlying coevolutionary dynamics leading to the
observations above, and following standard empirical approaches to
antagonistic coevolution (e.g.11), we also collected in our simulations
information about the potential for cross-infection. For all hosts, we
checked their immunity to viruses from past, present, and future
snapshots; similarly, for all viruses we checked their ability to infect
hosts from other snapshots. For early stages of the coevolutionary
dynamics (Fig. 3a, b), hosts on averageweremore immune topast virus
phenotypes than future ones, and viruses could infect more past host
phenotypes than future ones; this directional evolution is the hallmark
of an ongoing arms race6,11,46. For later times (Fig. 3c, d), both immunity
and range showed oscillatory behavior around constant values, a sig-
nature of fluctuating selection or Red-Queen dynamics6,47. This shift
from one to the other type of evolutionary dynamics has been
observed experimentally16 and has been hypothesized to be driven by
evolutionary costs6,16. Here, we show that arms races occurred during
the transient as host and virus explored the phenotypic space, and the
stationary state (with changeable relative abundances for the surviving
phenotypes) led to the associated fluctuating selection dynamics (see
Fig. S3a–h, and SI.5). Moreover, such a shift occurred regardless of
environmental conditions. The transient period, however, was shorter
(and therefore the shift occurred earlier) as environmental conditions
improved, i.e. for higher dilution or nutrient input.

Past and future empirical work should be considered in light of
our observations, to assess whether the duration of experiments
captures the evolutionary path and/or the asymptotic evolutionary
dynamics. Given our predictions, we re-analyzed existing data from
what is, to the best of our knowledge, the only experiment exploring
coevolutionary crossinfection for high versus low nutrient input11.
Differently from earlier conclusions11,12, the curves obtained with our
re-analysis (Fig. 3e–f) would indicate that arms races occurred for both
low and high resources. Therefore, longer experiments would have
been needed to observe the true, asymptotic evolutionary dynamicsof
the community. See section SI.5.3 for further details.
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Beyond marine ecosystems
Due to their parasitic nature, the performance of any virus should
depend to some extent on host physiology and resources. Our results
above illustrate that this dependence should be accounted for when
studying andpredicting the coevolutionary dynamics of any host-virus
systems.

For example, phage therapy has been proposed to eliminate
antibiotic-resistant bacteria34,48; viruses have been engineered to
recognize and attach to the receptors of cancer cells and subsequently
lyse them49; and the potential effects of coevolution on the effective-
ness and safety of treatments have beenhighlighted in the past50,51. Our
results predict that target cellsmay diversify under challenging growth
conditions, which may lead to undesired consequences (e.g. host cells
that are less susceptible to the original phage treatment). Viruses have
also beenproposed as away to eliminate bacteria that formbiofilms, as
the latter reduce the efficacy of conventional treatments52. The dif-
ferential access to resources that bacteria have at e.g. crests and
troughs at the irregular biofilm boundaries53 generates a gradient of
growth conditions that, according to our results, would lead to a
mosaic of host and virus evolutionary strategies.

The threshold-like behavior observed for immunity and infectiv-
ity, unveiled thanks to the measurement of the realized metrics (only
accessible through theoretical models) can be used to assess and

predict the actual efficacy of phage therapy by mapping, for example,
the “classic” observables collected in the laboratory to the realized
predictions. Our approach also revealed that the timing of the con-
vergence of arms races to fluctuating selection depends on environ-
mental conditions, information that can be used to assess the duration
of a therapy and focus on one or the other regime.

From the virus point of view, the recent SARS-CoV-2 pandemic
highlights the need for theories able to predict the rapid evolutionary
changes in virus receptor-targeting strategies, which influence the
severity of the disease as well as the efficacy of vaccines. Similarly,
predicting changes in host range can help anticipate future zoonotic
spillover events54. Our results show the importance of considering viral
plasticity in those predictions.

There are, nonetheless, important assumptions made by the fra-
mework that need to be taken into consideration (see SI.9 for a
detailed discussion). For example, the framework considers antag-
onistic coevolution and viral plasticity as main eco-evolutionary dri-
vers; althoughwe show that they are plausiblemechanisms underlying
the emergent diversity patterns shown in Fig. 1, other ecological and
evolutionary aspects could synergistically (or alternatively) participate
in these large-scale patterns (see e.g.31). Similarly, the parametrization
used here focuses on E. coli and T viruses since that is the only system
for which viral plasticity functions are available (see Methods);

Fig. 3 | Crossinfection results. Top andmiddle panels (simulations): Data for early
stages (first 25 days of the simulation, a and b) and stationary state (last 25 days of
the simulation, c and d) of the eco-evolutionary dynamics, comparing phenotypes
from snapshots taken daily, for a dilution rate w =0:2μmax0

= 6:48d�1; circles cor-
respond to our reference input concentration N0 = 2.5 ⋅ 10−5mol ⋅ L−1, and squares to
N0 = 10−4mol ⋅ L−1. Arms races drive the early stages of the dynamics (a-b, negative
trend), whereasfluctuating selectiondynamics occur at the stationary state (c-d, no
trend). Oscillatory behavior can be observed for some of the fluctuating selection

cases, which points to the presence of demographic oscillations as well. To com-
pare with the empirical data, a time difference up to 12 days is shown using the
classic definitions for immunity and range (Eqs. (17–19)); results from simulations
using other durations or the biomass-based metrics (Eqs. (18–20)) were qualita-
tively similar (as long as a stationary state was reached, see SI.5.3). Bottom panels:
Curves for host immunity (e) and virus range (f) obtained averaging the data in
refs. 11,12 across replicates; see SI.5.3 for details and Fig. S10 for individual
replicates.
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nonetheless, in our simulations evolution generates rich communities
with phenotypes that show a wide variety of defense-counterdefense
strategies compatible with those reported for bacteria-phage coevo-
lution generically. In that sense, our results are illustrative of bacteria-
virus interactions broadly, although the resulting strategies can be
somewhat constrained by the chosen parametrization. An important
improvement would introduce a wider initial group explicitly
accounting for certain types tailored to the focal example (e.g. SAR11 in
the oceans). The addition of other potential sources of top-down
regulation (other forms of viral infection such as lysogeny or, in the
oceans, grazing by zooplankton), other environmental variables
(additional nutrients, temperature), and the replacement of dilution
withmore realistic environmental forcing specific of the focal example
would also improve the framework in important ways18. How the pat-
terns above are affected by the inclusion of these elements would help
understand their role in such patterns.

Methods
To model the antagonistic coevolution of bacteria and plastic viruses,
we modified an eco-evolutionary modeling framework that we suc-
cessfully used in the past to study host-phage coevolution55.

Equations for the ecological dynamics
Our model describes the dynamics of uninfected host cells (C, in
cells ⋅ L−1), infected hosts (I, in cells ⋅ L−1), extracellular viruses (V, in
ind ⋅ L−1), and the concentration of the most limiting nutrient for the
host (N, in mol ⋅ L−1), under controlled environmental conditions
(chemostat). Themodel also explicitly includes the period of infection
(latent period, L) by representing the interactions between host cells
and viruses through delayed differential equations (see Supplemen-
tary Table 1 in SI for symbols and units). For a host phenotype i and a
virus phenotype j:
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=μiðNÞCi � kCi

XnV
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 !
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μmðNÞCm: ð4Þ

wherenH and nV are the total number of host and virus phenotypes at a
given time, respectively, and Ai,j = 1 if viral phenotype j infects viral
host i, or zero otherwise (i.e.A is the adjacencymatrix for the system’s
interaction network). The first equation (Eq. (1)) represents, for a given
host phenotype, the dynamics of the population of uninfected cells,
which increases at a growth rate μ that depends on the availability of
the most limiting nutrient (first term), and declines due to adsorption
and infection by any extracellular viruses able to infect this host
(second term) or dilution from the chemostat at a ratew (fourth term).
The third term accounts for potential competition among all host
phenotype populations for space or resources not explicitly modeled
that can affect negatively the growth of the focal phenotype, especially
relevant as the eco-evolutionary framework allows for many con-
temporary host phenotype populations; Call = ∑iCi thus represents

uninfected cells across all phenotypes (see SI.9.2). As usually assumed
in host-virus models, all adsorptions lead to infection (first term in
Eq. (2)); in addition, the population of infected cells declines due to
dilution (third term) or due to lysis (second term), with the number of
lysed cells calculated as the cells that were infected a latent period in
the past (i.e. at time t − L) and avoided dilution during that latent
period (which occurs at a probability given by e−wL). Each lysed cell
produces B new extracellular viruses (first term in Eq. (3)), whose
population decreases as they enter/infect uninfected cells (second
term), decay and lose infectivity (fourth term), or are diluted (fifth
term). The third term represents superinfection avoidance, generically
accounting for the battery of mechanisms that an infecting virus can
deploy to prevent any other virus from using the same host for
replication8; to this end, we used a density-dependent term where
Vall =∑jVj represents the sumof all (extracellular) virus densities across
phenotypes (see SI.9.2). Finally, Eq. (4) represents the dynamics of the
most limiting nutrient for the host population, whose availability
changes due to inflowanddilution fromthe chemostat (first term), and
decreases as it is taken up by uninfected hosts within the chemostat
(second term). Also a typical assumption, infected cells do not grow
nor replicate, and thus they do not contribute to the uptake term nor
need to be considered for the third term in Eq. (1). Nutrient uptake
results from the host’s requirement for growth, provided by the classic
Monod formulation56:

μ=μmax
N

N +KN
, ð5Þ

where μmax is the maximum growth rate (in d−1), and KN is the half-
saturation constant for growth on the focal nutrient (in mol ⋅ L−1).

As commonly done in population models, we set a threshold
below which either the host or the viral populations were considered
to be extinct, which avoids unrealistically low values of either popu-
lation as well as potential population “regeneration” from such
unrealistic values. Here, we set a threshold of 1 ind ⋅ L−1 for either
population; in the case of the virus, the threshold applied to both
extracellular and intracellular viruses together, a conservative choice
aimed to prevent eliminating newly introduced viral mutant popula-
tions while still within infected cells before completing their first
lytic cycle.

Although the equations above can represent the ecological
dynamics of a wide variety of host-virus systems, here we focused on
Escherichia coli as a host and T7 phage as the virus. The wealth of
information available about this system enabled the parametrization
of the equations above, including expressions for the dependence of
the viral traits on host physiology (viral plasticity, see below). The focal
nutrient was glucose, which E. coli uses to sustain growth, but other
nutrient choices more relevant for other organisms or environments
(e.g. nitrogen) can be used by modifying the nutrient-related para-
meters (see Supplementary Table 1 in SI). Additionally, although the
equations above can be easily adapted to other settings, chemostats
are highly tunable by modifying the dilution rate, w, or the input
concentration, N0, which we used here to achieve a gradient of growth
conditions. Moreover, chemostats can represent a variety of environ-
ments, from volumes of water in the ocean (with inflow/outflow
representing advection that moves nutrients, hosts, and viruses in/out
of the focal volume, and turbulence mixing the medium), to different
areas of the human intestinal tract (with inflow/outflow representing
directional tract flows).

Host traits and tradeoffs
Here, we focused on one single type of host receptor as viral gateway
for infection; we considered that evolution can alter the physical
configuration of such receptor, which can prevent infection by viruses
unable to recognize and attach to this evolved form (Fig. 1a). From the
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wide variety of defense mechanisms that hosts can develop, such an
evolutionary response is one of the quickest and most well-
documented defense strategies for microbes7,14,34.

Each host phenotype was therefore characterized by a fixed
number of specific, identical receptors (i.e. each phenotype showed
only one receptor type), which in turn were defined by howmuch they
departed from the pristine form of the receptor. We used a real value
a ∈ [amin, amax] to represent quantitatively the form of the receptor,
with a = a0 representing the pristine form. Thus, a was the only host
evolving trait, and host phenotypes differed in the value of a (and
related traits, see Eq. (7) below) and were identical otherwise. For the
results presented here, a ∈ [0, 2] and a0 = 1, but other values did not
change qualitatively our results (as long as the values of amin and amax

do not cap/constrain evolution, a standard caution in any model that
accounts for evolutionary dynamics).

The evolution of the receptor typically leads to a decrease in its
nutrient-uptake efficiency, which ultimately translates into a decrease
in the overall host growth rate6,7,14,36. Here, we represented such a
tradeoff with a reduction of the maximum growth rate (which links
growth and nutrient uptake, Eq. (5)) proportional to how much the
receptor departed from its pristine form (i.e. degree of innovation). In
short, μmax decreased linearly as the receptor characterizing the phe-
notype departed from the pristine form; phenotypes with the pristine
receptor showed full growth potential (i.e. μmax =μmax0

), whereas that
potential was reduced to μmax = ϵμμmax0

for those phenotypes whose
receptors showed the highest possible degree of innovation (Fig. S1b).
Here, we set ϵμ to a low but non-zero value, ϵμ = 0.05, representing the
fact that even the most evolved receptor can still be somewhat func-
tional. Mathematically, we defined the degree of innovation for a given
host phenotype i as:

Δi =
ai � a0

a0

����
����, ð6Þ

confined between aminimum and amaximum distance to the pristine
receptor, [Δmin = 0, Δmax = max(Δ(amax), Δ(amin))] (see Fig. S1a). Thus,
the phenotype’s maximum growth rate was given by:

μmaxi
=μmax0

1� caΔi

� �
ð7Þ

where ca is a constant to map the parenthesis into [ϵμ, 1]:

ca =
1� ϵμ
Δmax

ð8Þ

Note that the second term in the parenthesis, caΔi, effectively quanti-
fies the cost of innovation (i.e. distance between the realized μmax and
pristine performance μmax0

).
In our simulations, no surviving phenotype reached the proximity

of the interval limits for a, and thus never showedmaximal innovation
(Δ = 1 with the chosen parametrization). On the other hand, receptor
evolution did not affect the other host traits in themodel (theMonod-
related half saturation constant, KN, and yield, Y).

Viral traits and tradeoffs
As a viral evolutionary response, we focused on increases in the ver-
satility of the viral tail fiber to recognize and attach to diverse forms of
the focal receptor (Fig. 1a), a viral counter-defense response that has
been shown to emerge shortly after hosts evolvemodifications to their
receptors6,14,33.

Viral phenotypes were here characterized by the set of receptor
forms that they could recognize. Thus, we assigned to each phenotype
an array rofR = 10 possible integers between 1 andR, with each integer
representing forms of the receptor (i.e. values of a) that the virus could
recognize. Specifically, a viral phenotype j was able to target a host

phenotype i if di∈ rj, where di is the integer resulting frommapping ai
into 1, . . . , R:

di = c1,rai + c2,r ð9Þ

and:

c1,r =
R� 1

amax � amin
, c2,r =

amax � aminR
amax � amin

ð10Þ

Therefore, with the parametrization chosen here (see Supplementary
Table 1 in SI), a viral phenotype with a value r0 = 5 within its r array
would be able to target hosts whose a is within [0.889, 1.111], which
encompasses not only the pristine form of the receptor a0 = 1 but also
slightly modified versions of it (Fig. S2). The latter, necessary from a
technical standpoint because a is represented using real numbers,
reflects the fact that only after evolution has modified a receptor suf-
ficiently does the tail fiber lose the ability to recognize and attach to it.
Virus phenotypes thusdifferedonly if the list of distinct integerswithin
their r array differed (see Fig. S2). The versatility of phenotype j was
defined as the number of distinct integers within rj, ndif f j

.
Following empirical evidence, we also considered the observed

decrease in infection efficiency shown by viruses that evolve a higher
versatility6,14,33,35, here represented as a decrease in the adsorption rate
proportional to ndiff. In short, viruses with only one distinct integer in
the array (i.e. targeting a single type of receptor) showed themaximum
possible adsorption rate, k0, whereas the most versatile viruses (i.e. R
distinct integers in the r array) showed a reduced adsorption rate ϵkk0
(Fig. S1c). Here, we set ϵk = 0.1, which aimed to represent a non-zero
minimum adsorption efficiency even for the most versatile pheno-
types. Mathematically:

kj = k0 1� c1,k ndif f j
� 1

� �h i
, ð11Þ

where c1,k helps map the bracket above into the interval [ϵk, 1]:

c1,k =
1� ϵk
R� 1

ð12Þ

Note that the second term in the bracket, c1,kðndif f j
� 1Þ, effectively

quantifies the cost of versatility (i.e. distance between the realized k
and k0).

In our simulations, no surviving viral phenotype reached full
versatility (ndiff=R, see below).We assumed that tailfiber evolutiondid
not affect the other viral traits considered in themodel. Such traits are
defined by the lytic cycle57: after attaching to the host receptor and
injecting their genetic material into the host, viruses hijack the host
machinery and use host resources to i) synthesize the components of
the new virions during the eclipse period E, and ii) assemble those
components at a certain maturation rate M to form the new mature
individuals released at lysis; the total infection time (from adsorption
to lysis) is the latent period L, and the number of new virions released
per infection is the burst size B.

Modeling viral plasticity. As described above for the lytic cycle, due to
its parasitic nature the virus utilizes the host synthesis machinery and
resources to replicate. This leads to an obvious link between host
physiological state and viral reproduction that has been identified
experimentally in a multitude of systems19,23,26–30, but so far only sys-
tematically studied for the E. coli - T virus system20,22,24,25.

Such a link has been characterized as a relationship between viral
traits and host growth rate, termed viral plasticity because the value of
viral traits changes as the host (reproductive environment of the virus)
changes. In the past, we compiled existing data for E. coli and T phage
and found that the eclipse period, E, and maturation rate,M, could be
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expressed as the following functions40:

E μð Þ= E1 + E0e
�αEμ=μmax0 ð13Þ

M μð Þ= M1

1 + e�αM μ=μmax0
�M0

� � ð14Þ

where μ represents the host growth rate at the moment of infection,
with the implicit assumption that it remains constant during the latent
period20,22. In short, these functions illustrate that, as the host growth
rate gets closer to itsmaximumpotential value, μmax0

, the time needed
to synthesize virion components decreases and the rate to assemble
them intomatureviruses increases. Both traits reach a lower andupper
plateau, respectively, due tophysiological constraints andbottlenecks.
See40 and references therein for more details. We also showed that the
optimal latent period under chemostat conditions can be written as40:

L μð Þ= L0 + EðμÞ, ð15Þ

where L0 = 1/w, and thus is set by the chemostat dilution rate; in other
words, this optimal latent period has an environmental component L0
and a component provided by the (plastic) eclipse period. Here, we
assumed this optimal latent period for all viruses as a way to consider
themostdominant L value expected for a given chemostat, and thus to
focus solely on the evolution of versatility (Fig. S1d). See SI.9.4 for a
discussion on other choices for L0. Regarding the burst size, we used a
modified version of an empirically derived expression58:

B μð Þ=MðμÞ LðμÞ � EðμÞ½ �, ð16Þ

whereweonly added the potential for the traits involved to depend on
host physiology, ultimately leading to a dependence of burst size on
host growth rate (see Fig. S1e).

Eqs. (13–16) thus link the trait values for a given viral individual to
the growth rate (at time of infection) of the individual host cell it infects.

Nonplastic version of the model. To understand the role of viral
plasticity in antagonistic coevolution, we contrasted the results
obtained using the expressions above (Eqs. (13–16)) with those
obtained with a version of the model that uses fixed values for those
viral traits. The latter can represent both an example of a virus that
depends minimally on the host (taken to the extreme of no depen-
dence at all) as well as the expectations built with standard models,
which neglect viral plasticity.

To obtain fixed values for the latent period and burst size that still
represented the most dominant viral trait values expected at a given
environment, we used Eqs. (15) and (16) with a fixed value for the
eclipse period and thematuration rate, Enon andMnon respectively. For
these two traits, the typical information available is from laboratory
experiments in which, as explained in ref. 20, the host is kept under
maximal growth conditions. Thus, for coherence we calculated those
values here by using Eqs. (13) and (14) with μ=μmax0

(i.e.
Enon = Eðμmax0

Þ,Mnon =Mðμmax0
Þ), which were within the ranges repor-

ted in the literature for T viruses (e.g.20,22,59). Therefore, the resulting
Lnon = Lðμmax0

Þ and Bnon =Bðμmax0
Þ provided values for the most

dominant L and B that are expected for a given environment, but that
disregard plasticity.

Modeling evolution
To model the evolution of the focal traits (host receptor and viral tail
fiber), we adapted an eco-evolutionary approach that has been
repeatedly used in the literature for a variety ofmicrobial systems and
questions (e.g.40,42,47,55,60).

Generically, for one evolving species the approach considers
mutation events occurring at exponentially distributed times that
depend on the species’mutation rate. At eachmutation time, ecological
dynamics are stopped to use a roulette-wheel genetic algorithm that
determines which phenotype evolves, chosen with a probability that
depends on each phenotype’s relative abundance. A new mutant
population is introduced then in the system, in small numbers, that is
identical to the parental phenotype except for a small, random differ-
ence in the evolving trait. Thus, ecological dynamics resume and the
new and existing phenotypes interact (e.g. compete), with some of such
populations consequently growing in numbers and others going extinct,
until a new mutation event occurs. This “innovation+selection” iterative
process allows the system to explore the trait space, with the possibility
of reaching an evolutionarily stable strategy (ESS, trait fixation or
selective sweeping), or the continued coexistence of several dominating
phenotypes with or without evolutionary oscillations (fluctuating
selection or Red Queen dynamics). Because mutation times are ran-
domly selected based on the demography of the evolving population,
there is no imposed separation of ecological and evolutionary time-
scales, and thus the emerging evolutionary dynamics are affected by the
ecological interactions and vice-versa (eco-evolutionary dynamics).

In our case, both host and virus evolved. At any given time,
existing host and virus phenotype populations interacted following
Eqs. (1–16), with hosts competing for the available nutrients and viru-
ses competing for common hosts. These ecological interactions were
simulated using a tailored Euler scheme to integrate the system of
delayed differential equations, but any other solver accounting for the
delay (i.e. latent-period-related) terms can be used. Mutation times for
the host were determined by the host mutation rate (see Supple-
mentary Table 1 in SI) and the population densities of the existing host
phenotypes, the latter also influencing each phenotype’s mutation
probability (i.e. probability to be chosen for mutation). New host
mutants introduced in the system were identical to the parental phe-
notype except for the value of a, which differed by an amount ran-
domly distributed in N ð0,σaÞ (i.e. Gaussian distribution with mean 0
and standard deviation σa). We considered two phenotypes to be
identical if their a differed less than da = 10−2. On the other hand,
mutation times for the virus were determined by the viral mutation
rate (see Supplementary Table 1 in SI) and the population densities of
the existing viral phenotypes, which also determined their respective
mutation probability. Through mutations in the tail fiber, mutant viral
phenotypes showed the same r array as the parental phenotype except
for a randomly chosen location, where a new integer was considered
that resulted from adding a random amount (from a standard normal
distribution,N ð0,1Þ) to the existing integer, then converting the result
back to an integer. This rule ensured that any new formof the receptor
that can be recognized as a result of the mutation was not radically
different from the ones the parental phenotype could attach to, in
agreement with empirical observations that evolution of a wider range
results from cumulative evolutionary steps61. We considered two
phenotypes tobe identical if their r showed the sameset of distinct (i.e.
non-repeated) integers, whichwouldmean that they targeted the same
receptors (i.e. showed the same strategy). After a new mutant pheno-
type was introduced, the ecological dynamics resumed. Mutation
times were stochastic and did not necessarily occur after ecology
reached an equilibrium, thus enabling eco-evolutionary interactions.

We started our simulations with one single phenotype population
with the pristine form of the receptor, i.e. characterized by a = a0, and
one single viral phenotypewith all locations in r set to r0 = 5, i.e. able to
infect only the pristine form of the receptor.

Due to the random nature of the evolutionary algorithm, we used
100 replicates for each of the cases explored here. We stopped each
replicate after t = 105d to ensure that the system had reached its
asymptotic eco-evolutionary behavior regardless of the environmental
conditions (the latter set by the dilution rate, w, and nutrient input
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concentration, N0). See Supplementary Table 1 in SI for more infor-
mation regarding the chosen parametrization.

Measures of strategy effectiveness and diversity
To measure the effectiveness of a given host strategy, we used the
standard measure of resistance or immunity, i.e. proportion of virus
phenotypes that a given host phenotype i can elude16:

νi = 1�
P

jAi,j

nV
, ð17Þ

where nV is the total number of virus phenotypes at a given time and,
as above, Ai,j = 1 if viral phenotype j infects viral host i, or zero
otherwise. Because we can monitor the abundance of all host and
viral phenotype populations, we alsomeasured a weighted version of
such immunity:

νwi
= 1�

P
jAi,jV j

Vall
: ð18Þ

This expression accounts for the proportion of the total virus
abundance that cannot infect the focal virus phenotype, and there-
fore reflects more closely the success of a host strategy: large values
indicate the ability of the host phenotype to elude the majority of
available extracellular viruses, regardless of whether they belong to
one or many different phenotypes. We will refer to νw as realized
immunity hereon.

Tomeasure the effectiveness of a given viral strategy, we used the
standard measure of range, i.e. proportion of host phenotypes that a
given virus phenotype j can infect16:

ρj =

P
iAi,j

nH
, ð19Þ

where nH is the total number of host phenotypes at a given time. As in
the case of immunity, we also measured a weighted version:

ρwj
=

P
iAi,jCi

Call
, ð20Þ

which accounts for the proportion of the total host biomass that is
infected by the focal virus phenotype. This expression thus reflects
more closely the success of a viral strategy: large values indicate the
ability of the virus phenotype to infect the majority of available host
cells, regardless of whether they belong to one or many different
phenotypes. We will refer to ρw as realized infectivity hereon.

Finally, we used the standard definition of richness as the number
of phenotypes (nH for host, nV for virus), and the Shannon index44 as a
measure of biodiversity, defined as:

SH = �
X
i

Ci

Call

� �
log

Ci

Call

� �
ð21Þ

for the host and:

SV = �
X
j

V j

Vall

� �
log

Vj

Vall

� �
ð22Þ

for the virus.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new empirical data were generated for this study. Information
regarding how the empirical data re-analyzed here were originally
collected and how to download them can be found in the corre-
sponding publications11,12,31,32. The Tara Oceans data used here
(Figs. 1b–d, S15) are available in refs. 62–65, but note that the con-
sortium may make available updated versions of the data. The
empirical crossinfection data analyzed for Fig. 3e–f are available in
ref. 12. All simulation data regarding Figs. 1e–f, 2, 3a–d, or any of the
simulation Supplementary Figs. can be generated and analyzed with
the code provided, but specific subsets can be made available upon
request. See also Code availability statement and Reporting Summary.

Code availability
The code developed to run the simulations and all analyses, including
analysis of empirical data, is available at https://doi.org/10.17605/OSF.
IO/YS9AW.
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