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Abstract

Higher vitamin K intakes have been associated with better cognitive function, sug-

gestive of a vitamin K mechanistic effect or simply reflective of a healthy diet. To

test the hypothesis that brain vitamin K is linked to cognitive decline and dementia,

vitamin K concentrations were measured in four brain regions, and their associations

with cognitive and neuropathological outcomes were estimated in 325 decedents of

the Rush Memory and Aging Project. Menaquinone-4 (MK4) was the main vitamin K

form in the brain regions evaluated. Higher brain MK4 concentrations were associ-

ated with a 17% to 20% lower odds of dementia or mild cognitive impairment (MCI)

(P-value < .014), with a 14% to 16% lower odds of Braak stage ≥IV (P-value < 0.045),

with lower Alzheimer’s disease global pathology scores and fewer neuronal neurofib-

rillary tangles (P-value < 0.012). These findings provide new and compelling evidence

implicating vitamin K in neuropathology underlying cognitive decline and dementia.
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1 NARRATIVE

To develop effective strategies that reduce cognitive decline and

dementia, it is critical to develop a better understanding of the patho-

physiology underlying dementia including Alzheimer’s disease (AD).

Accumulating evidence implicates dietary factors in reducing cogni-

tive decline and dementia risk,1 including vitamin K.2–4 There is a high

prevalence of vitamin K insufficiency among older adults.5 Because

vitamin K is safe and readily available in the diet, a solid mechanis-

tic framework that supports its role in cognitive decline and dementia

risk would have potential and sustainable public-health impact. Such a
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framework requireswell-designed studies to link the vitaminK content

of human brains with cognitive function prior to death and with post-

mortem neuropathologically defined outcomes.

In community-based studies of older adults, higher vitaminK intakes

are associated with slower cognitive decline2 and higher circulating

vitamin K is associated with better cognitive function,3,4 together sug-

gesting that vitamin K could be involved in the pathophysiology under-

lying cognitive decline. However, vitamin K is abundant in green, leafy

vegetables so an alternative interpretation is that circulating vitamin

K is simply a marker of a healthy lifestyle independent of any underly-

ing mechanism related to vitamin K. The available evidence has relied
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on circulating biomarkers and estimates of dietary vitamin K, whereas

little is known about the forms and amount of vitamin K in the human

brain and their relevance to cognitive function and neuropathology of

dementia.6

To address this knowledge gap and test the hypothesis that higher

vitamin K levels are associated with specific changes that lower risk of

dementia and cognitive decline, we measured human brain concentra-

tions of vitamin K and related metabolites and determined their asso-

ciations with ante-mortem measures of cognitive function and post-

mortem neuropathologic outcomes in 325 participants of the Rush

Memory and Aging Project (MAP). Circulating vitamin K concentra-

tions from ante-mortem blood collection were also evaluated for asso-

ciations with cognitive function prior to death and with post-mortem

neuropathologic outcomes.

Higher post-mortem brain concentrations of menaquinone-4

(MK4), the predominant brain vitamin K metabolite, were associated

with better cognitive function prior to death. Higher plasma phyllo-

quinone (vitamin K1) concentrations were also associated with better

cognitive function and a slower rate of cognitive decline. Further

investigation of neuropathologically-defined outcomes revealed that

higher brainMK4 concentrationswere also associatedwith a lowerAD

global pathology, lower neurofibrillary tangle density, and a lower odds

of having a high Braak stage and Lewy bodies present. These findings

were consistent across the mid-temporal and mid-frontal cortexes,

anterior watershed, and cerebellum. These findings contribute to the

growing body of literature that intake of a vitamin K-rich diet has a

protective association with cognitive change during aging.2

The only established function for vitamin K is as a cofactor for the

enzyme gamma-glutamyl carboxylase, which is expressed ubiquitously,

including in the nervous system.7 Vitamin K–dependent proteins, such

as Protein S and Gas-6, are present in cerebral cortex and other brain

regions.8 Several mechanisms related to neuronal apoptosis have been

attributed to Protein S and Gas-6, but it is not currently known if the

vitamin K–dependent carboxylation of these proteins is essential to

their purported function(s) in the brain. There is also the conundrum

that phylloquinone andMK4 have similar efficacy as a cofactor for the

gamma-glutamyl carboxylase. Phylloquinone is the predominant form

in the diet, yet mammalian brain tissue preferentially containsMK4, as

demonstrated in this study. This conversion of phylloquinone toMK4 in

vivo suggests that MK4 may have roles in the brain that are unrelated

to vitamin K–dependent protein carboxylation.8,9 One possibility is in

its established role in sphingolipid metabolism.10 The brain is enriched

with sphingolipids, which are important membrane constituents that

havea role in cognition.11,12 In this study, higherMK4concentrations in

the brain were associated with lower odds of a high Braak stage, which

may indicate amechanism that directly involves protection against AD

via neurofibrillary tangles. Braak stage, which reflects neurofibrillary

tangle density and burden, was associated with cognitive decline in

MAP13,14 and other studies.15,16 In contrast, MK4 concentrations in

the brain were not associated with amyloid beta (Aβ), the other central
protein of AD. Of interest, MK4 was also associated with a lower odds

of Lewy bodies, another common intracellular proteinopathy in aging,

and related to dementia and parkinsonism.

RESEARCH INCONTEXT

1. Systematic review: Observational studies report that

higher circulating vitamin K concentrations were associ-

atedwithbetter cognitive function inolder adults. Rodent

experiments report that vitamin K is present in brain tis-

sue. Little is known about vitamin K in the human brain.

The goal of this studywas to analyze post-mortemhuman

brain concentrations of vitaminKand relatedmetabolites

and determine their association with cognitive function.

We also evaluated the association of brain vitamin K con-

centrations with dementia-related neuropathologies.

2. Interpretation: In this study of Rush Memory and Aging

Project participants, higher post-mortem brain concen-

trations of the vitamin K metabolite, menaquinone-4

(MK4), were associated with better cognitive function

prior to death. Brain MK4 concentrations were inversely

associated with Alzheimer’s disease (AD) global pathol-

ogy, neurofibrillary tangle density, Braak stage, and Lewy

body presence.

3. Future directions: Additional research is needed to clar-

ify the mechanisms by which vitamin K has a neuropro-

tective effect.

Most studies of nutrients and AD rely on limited circulating

biomarkers to estimate nutrient status of the brain. A protective asso-

ciation between circulating phylloquinone and various measures of

cognitive function has been reported in several observational studies

of older adults without cognitive impairment.3,17 We found that higher

plasma phylloquinone concentrations measured at the most recent

clinic visit prior to death were associated with overall better cognitive

function, but not with any post-mortem neuropathological outcome.

Furthermore, plasma phylloquinone concentrations were not corre-

lated with post-mortem brain MK4 concentrations. The food supply

contains at least 10 forms of vitamin K, including phylloquinone and

MK4. Whereas phylloquinone is plant based, most menaquinones, of

which there are 11 known forms, are found in fermented and animal-

based foods, including dairy and meats.18,19 Only phylloquinone is

detectable in the circulation following ingestion, and our knowledge

of phylloquinone forms the basis of the current dietary recommenda-

tions for vitamin K.20 It is now emerging that all forms of ingested vita-

min K can be converted to MK4 found in brain tissue.21,22 However,

little is known about how or what form of vitamin K is transported

across the blood-brain barrier and into the brain. It is plausible that

MK4brain concentrations reflect the total contribution of all vitaminK

forms todietary intakes,whereas the plasmaphylloquinone concentra-

tions reflect only intake of plant-based phylloquinone, thereby attenu-

ating the association of circulating vitamin K with the neuropathology

outcomes. Currently, the food composition data for menaquinones are

limited, which precludes the assessment of total vitamin K intake to
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confirm this hypothesis. Alternatively, plasma phylloquinone concen-

trations at the last clinic visit before death may simply be a biomarker

of green leafy vegetable intake or a healthy lifestyle, which is associ-

ated with better cognition.2 We adjusted for the Dietary Approaches

to Stop Hypertension (DASH) diet score, an indicator of a healthy diet,

since plasma phylloquinone may be a marker of healthy diets, includ-

ing leafy green vegetables.23 However, some residual confoundingmay

remain.

The strengths of this study include the unique application of

ante-mortem biomarker and cognition measures combined with post-

mortem measures, including neuropathologically defined outcomes,

obtained from decedents of a well-characterized community-based

cohort. Guided by our prior findings,24 we included decedents whose

brains were stored ≤8 years to be confident the measures reflected

the MK4 concentrations at time of death. In a small study of

48 centenarians,4 serum phylloquinone concentrations were simi-

larly positively associated with cognitive function but post-mortem

MK4 concentrations in the frontal and temporal cortexes were not

associated with ante-mortem cognitive function. In that study, the

brain tissue samples used were stored for >10 years before analy-

sis, so it is possible that the brain MK4 degraded during the stor-

age time, which may have affected the results.4,24 Unfortunately,

there were no neuropathologically defined AD outcomes reported

in the centenarian study, which limits the comparison of the two

studies.

Our findings should be interpreted in light of the following limita-

tions. The observational design precludes inferring causation. Reverse

causation is possible, although time ordering of pre-mortem expo-

sures mitigates this limitation for some of our analyses. The cohort

was almost exclusively White, so generalizability to other race-ethnic

groups is uncertain. We also excluded decedents who regularly used

warfarin prior to death, so the findings may not pertain to warfarin

users. Patients with chronic warfarin use are reported to have greater

cognitive decline compared to those taking non-vitamin K-dependent

oral anticoagulants, although the data are not consistent.25–27 To the

best of our knowledge, there are currently no data available evaluating

the role of oral anticoagulant therapies, vitamin K–dependent or oth-

erwise, and neuropathologically defined AD outcomes, which repre-

sents an important gap in the research. The associations of brain MK4

concentrations with cognitive status remained statistically significant

after correcting for multiple testing, but the associations of brainMK4

concentrations with the neuropathology outcomes did not. Additional

studies are needed to replicate our findings and to reduce the possibil-

ity that they are due to chance.

The findings of this unique study suggest that vitamin K is involved

in dementia and cognitive decline,which is important given the increas-

ing public health burden of dementia, and the encouraging reality that

low vitamin K status can be easily remedied through adherence to the

Dietary Guidelines for Americans, which encourages intake of green

vegetables. Clinical trials are essential to confirm this hypothesis. The

findings of this study also emphasize the need for preclinical research

to elucidate the mechanism(s) by which vitamin K has a neuroprotec-

tive effect.

2 CONSOLIDATED RESULTS AND STUDY
DESIGN

The Rush MAP is an ongoing community-based longitudinal study

designed to identify risk factors for AD and related dementias (ADRD)

and cognitive decline.28 At enrollment, MAP participants are free of

known dementia and agree to participate in detailed clinical evalua-

tions annually and organ donation upon death. Concentrations of phyl-

loquinone and MK4 were measured in four brain regions (the mid-

temporal and mid-frontal cortices, anterior watershed white matter,

and cerebellar cortex) in brain tissues samples obtained from499MAP

decedents who died between 2005 and 201924,29 (Figure S1).

Global cognitive function was determined using scores from a bat-

tery of 19 cognitive tests administered at each visit.30 The estimated

person-specific rateof change in the global cognition variable over time

was determined using mixed-effects models.31 At the time of death, a

final cognitive diagnosis was made based on all available clinical data

reviewed by a neurologist with expertise in dementia, and classified

as dementia, mild cognitive impairment (MCI), or no cognitive impair-

ment (NCI), as described.32,33 After death, brains were removed and

dissected using following established protocols34 and evaluated histo-

logically forADpathology,34,35 neurofibrillary tangle pathology,34 neu-

ritic plaques,34 Aβ protein,35 neuronal paired helical filaments (PHF)-

tau tangle density and burden,35 microscopic cerebral infarctions,36,37

and Lewy bodies.38

Linear and logistic regressions were used to estimate the associ-

ations of brain MK4 and plasma phylloquinone concentrations with

continuous and categorical cognitive and neuropathological outcomes.

Clinical cognitive diagnosis and final cognitive diagnosis were analyzed

with ordinal logistic regression using dementia, MCI, and NCI cate-

gories. Participants who had MCI or AD diagnosis with another con-

dition contributing to cognitive impairment were included in the MCI

and AD groups, respectively; participants with other primary cause of

dementia were excluded.

Participants were, on average ± SD, 92 ± 6 years old at the time of

death. Seventy-five percentwere female and 72%had at least 12 years

of education (Table 1).MK4was themain formof vitaminK in all human

brain regions evaluated, and because phylloquinone was not detected

in brain tissue of >85% of participants, statistical analyses of the brain

regions focused onMK4.

The odds of having dementia or MCI at the last cognitive assess-

ment before death were 17% to 20% lower per doubling of MK4 in

all four brain regions measured. These odds were generally consistent

with the odds for dementia or MCI at the final cognitive diagnosis.

Higher brainMK4 concentrations in the mid-frontal and mid-temporal

cortexes and the anterior watershed were also associated with bet-

ter ante-mortem global cognitive function scores and a slower rate of

cognitive decline. Higher brain MK4 concentrations in the cerebellum

was associated with better ante-mortem global cognitive function but

not with the rate of cognitive decline (Table 2). For neuropathologically

defined outcomes, the odds of Braak stage≥IVwere 14% to 16% lower

per doubling of MK4 in the mid-frontal and mid-temporal cortexes,

anterior watershed, and cerebellum (Table 3). The odds of having Lewy
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TABLE 1 Participant characteristics (n= 325)a

Age at death, mean (SD) years 92 (6)

Female, n (%) 245 (75%)

Education, n (%)

≤12 years 92 (28%)

>12-≤16 years 168 (52%)

>16 years 65 (20%)

APOE ε4 allele, n (%)

1 ormore 71 (22%)

No alleles 254 (78%)

Post-mortem interval, mean (SD) hours 8.8 (5.1)

Triglycerides, mean (SD) mg/dLb 117 (55)

DASH diet score, mean (SD) 3.8 (1.2)

BrainMK4, mean (SD) pmol/gb

Mid-frontal andmid-temporal cortexc 1.51 (5.5)

Anterior watershed 0.73 (4.6)

Cerebellum 1.61 (7.2)

Plasma phylloquinone, mean (SD) nmol/Lb 0.97 (0.7)

Global cognitive function score (last visit), mean (SD) −1.00 (1.09)

Clinical diagnosis at last clinic visit, n (%)

Dementia 130 (41%)

MCI 78 (25%)

NCI 109 (34%)

Final cognitive diagnosis, n (%)

Dementia 136 (42%)

MCI 81 (25%)

NCI 105 (33%)

Global AD pathology, mean (SD) 0.81 (0.6)

Braak stage, n (%)

IV-VI 217 (67%)

0-III 108 (33%)

CERAD neuritic plaque score, n (%)

Moderate-Frequent 239 (74%)

None or sparse 86 (26%)

NIA-Reagan diagnosis, n (%)

AD 229 (70%)

No AD 96 (30%)

Amyloid beta, mean (SD) % area 5.1 (4.5)

Gross chronic cerebral infarcts, n (%)

1 ormore 128 (39%)

None 197 (61%)

Chronic microinfarcts, n (%)

1 ormore 114 (35%)

None 211 (65%)

(Continues)

TABLE 1 (Continued)

Lewy body disease, n (%)

Present 83 (26%)

Absent 234 (74%)

Diffuse plaques, mean (SD) 0.74 (0.7)

Neuritic plaques, mean (SD) 0.95 (0.8)

Neurofibrillary tangle burden, mean (SD) 0.73 (0.8)

PHF-tau tangle density, mean (SD) count per mm2 8.64 (9.3)

Abbreviations: AD, Alzheimer’s disease; CERAD, Consortium to Establish

a Registry for Alzheimer’s disease; DASH, Dietary Approaches to Stop

Hypertension;MK4,menaquinone-4;NIA,National Institute onAging; PHF,

paired helical filaments.
aTriglycerides, DASH diet score, and plasma phylloquinone n = 296; global

cognitive function n = 324; slope of global cognition n = 320; clinical diag-

nosis at last clinic visit n= 317; final cognitive diagnosis n= 322; Lewy body

disease n= 317.
bGeometric mean reported.
cGeometricmean of themean across themidfrontal andmidtemporal corti-

cal regions.

bodies were 13% to 18% lower per doubling of MK4 in the mid-frontal

and mid-temporal cortexes and cerebellum. Higher MK4 in the mid-

frontal and mid-temporal cortical and anterior watershed regions was

also associatedwith lower globalADpathology scores and a lower neu-

rofibrillary tangle burden (Table 3). Higher plasma phylloquinone at the

last clinic visit was associated with better cognitive function, a slower

rate of cognitive decline, and with a better clinical cognitive diagnosis

at the final clinic visit and death.

3 DETAILED METHODS AND RESULTS

3.1 Participants

All participants providedwritten informed consent and signed theUni-

form Anatomic Gift Act. The institutional review boards of Rush Uni-

versity Medical Center and Tufts University approved this study. Brain

vitamin K concentrations were measured in brain tissues obtained

from499MAPdecedentswhodiedbetween2005and2019.Weprevi-

ously reported that prolonged freezer storage time reduced brain vita-

min K concentrations24 so we excluded decedents whose brains were

stored > 8 years (n = 123). We additionally excluded decedents who

reported taking the vitamin K antagonist warfarin (Coumadin) at the

two clinic visits prior to death (n=49) orwhoweremissing apolipopro-

tein E (APOE) genotype data (n = 2), leaving 325 decedents available

for statistical analysis. Plasma phylloquinone was measured in 296 of

these participants (Figure S1).

3.2 Vitamin K measurements

Phylloquinone is the main form of vitamin K detected in circula-

tion, whereas MK4 is the predominant form in mammalian brain.39,40
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TABLE 2 Associations of brain menaquinone-4 (MK4) concentrations with cognitive function

MT&MF cortex AWS CR

β (SE) P-value β (SE) P-value β (SE) P-value

Cognitive diagnosis at last clinic visit

before death (n= 317)

−0.212 (0.073) .003 −0.229 (0.064) <.001 −0.183 (0.074) .014

Final cognitive diagnosis (n= 322) −0.167 (0.070) .017 −0.170 (0.061) .005 −0.136 (0.072) .06

Global cognitive function (n= 324) 0.088 (0.037) .018 0.088 (0.032) .007 0.082 (0.039) .036

Slope of cognitive function (n= 320) 0.006 (0.003) .040 0.006 (0.003) .018 0.005 (0.003) .09

Abbreviation:MT, mid-temporal cortex;MF, mid-frontal cortex; AWS, anterior watershed; CR, cerebellum.

Regression coefficients are reported from ordinal logistic regression for cognitive diagnosis outcomes (categorized as AD, MCI, or NCI) and multiple linear

regression (for global cognitive function and slope of cognitive function). Models are adjusted for age at death, sex, education, APOE ε4 status, and time

between last clinic visit and death. Regression coefficients from ordinal logistic regression indicate cumulative log odds of AD.

TABLE 3 Associations of brain menaquinone-4 (MK4) concentrations with brain pathology (n= 325)

MT&MF cortex AWS CR

β (SE) P-value β (SE) P-value β (SE) P-value

Dichotomous outcomes:

Braak≥IV −0.173 (0.083) .038 −0.157 (0.071) .027 −0.172 (0.085) .044

CERAD neuritic plaque score −0.133 (0.085) .12 −0.141 (0.074) .06 −0.156 (0.088) .07

AD based onNIA Reagan −0.109 (0.083) .19 −0.112 (0.071) .12 −0.120 (0.085) .16

Presence of gross chronic infarcts 0.041 (0.074) .58 0.0004 (0.065) .99 −0.037 (0.077) .63

Presence of chronic microinfarcts 0.046 (0.075) .54 0.072 (0.066) .27 0.014 (0.078) .86

Presence of Lewy body diseasea −0.168 (0.084) .045 −0.135 (0.074) .07 −0.193 (0.090) .032

Continuous outcomes:

Global AD pathology −0.025 (0.013) .05 −0.026 (0.011) .020 −0.021 (0.013) .11

Amyloid beta −0.017 (0.040) .67 −0.028 (0.035) .42 −0.019 (0.041) .65

Diffuse plaques −0.021 (0.016) .20 −0.017 (0.014) .23 −0.020 (0.017) .23

Neuritic plaques −0.022 (0.018) .21 −0.021 (0.015) .17 −0.019 (0.018) .30

PHF-tau tangle density −0.023 (0.015) .12 −0.025 (0.013) .05 −0.019 (0.015) .23

Neurofibrillary tangle burden −0.017 (0.008) .041 −0.022 (0.007) .003 −0.015 (0.009) .10

Abbreviations: MT, mid-temporal cortex; MF, mid-frontal cortex; AWS, anterior watershed; CR, cerebellum; AD, Alzheimer’s disease; CERADConsortium to

Establish a Registry for Alzheimer’s Disease; NIANational Institute on Aging; PHF paired helical filaments.

Regression coefficients are reported frommultiple logistic regression (for dichotomous outcomes) andmultiple linear regression (for continuous outcomes).

Continuous outcomes are square root transformed, except for tangle density and neurofibrillary tangle burden, which are quartic root transformed. Models

are adjusted for age at death, sex, education, APOE genotype, and post-mortem interval.
an= 317 for analysis of Lewy body due tomissing values.

Phylloquinone and MK4 concentrations were measured in the mid-

temporal and mid-frontal cortices, anterior watershed white matter,

and cerebellar cortex using high-performance liquid chromatography

(HPLC).24 The lower limit of assay detection for brain phylloquinone

and MK4 was 0.1 pmol/g. The inter-assay precision values for phyllo-

quinone and MK4 were 9.6% and 10.4%, respectively. Plasma phyllo-

quinonewasmeasured usingHPLC29 in fasted samples obtained at the

last clinic visit before death and stored at −80◦C until analysis in 297

decedents. The lower limit of assay detection was 0.1 nmol/L. NoMK4

was detected in circulation. All vitamin K measurements were con-

ducted at the Vitamin K Laboratory at the United States Department

of Agriculture (USDA) Human Nutrition Research Center on Aging at

Tufts University. This laboratory participates in the Vitamin K Exter-

nalQualityAssurance (KEQAS) program.41 In>15years ofKEQASpar-

ticipation, the laboratory consistently generates serum/plasma phyllo-

quinone data within the acceptable range of expected values (analyses

occur every 4months, for>30 cycles of verification). Low and high con-

trol specimens had average values of 1.1 and 4.5 nmol/L, with inter-

assay coefficients of variation (CVs) of 8.1% and 7.7%, respectively.

3.3 Outcomes

3.3.1 Cognitive function

Rush MAP participants are enrolled without known dementia and fol-

lowed annually. At each visit, global cognitive functionwas determined

using scores from a battery of 19 cognitive tests.30 The estimated
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person-specific rateof change in the global cognition variable over time

was determined using mixed-effects models.31 At the time of death

and blinded to the results of autopsy, a final cognitive diagnosis was

made based on all available clinical data reviewed by a neurologist with

expertise in dementia, and classified as dementia, MCI, or NCI.32,33

3.3.2 Neuropathologic evaluation

After death, brains were dissected during rapid autopsy following

established protocols as described34 and evaluated histologically by

examiners blinded to clinical information. The mean (SD) post-mortem

interval was 8.8 (5.1) hours. A quantitative summary of global AD

pathologywas derived from counts of neuritic plaques, diffuse plaques,

and neurofibrillary tangles in the Bielschowski-stained sections of

the mid-frontal cortex, mid-temporal cortex, inferior parietal cortex,

entorhinal cortex, and hippocampus.35 Braak stages were based on

the distribution and severity of neurofibrillary tangle pathology.34

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)

scores were based on neuritic plaques.34 The Braak stages for neu-

rofibrillary pathology and the CERAD estimate of neuritic plaques

was used to derive the National Institute on Aging (NIA)–Reagan

diagnosis of AD.34 The percent area occupied by Aβ protein in eight

cortical regions was identified by molecularly specific immunohis-

tochemistry and calculated as described.35 Neuronal PHF-tau tan-

gle density and burden were identified by immunohistochemistry in

eight regions and quantified as described.35 The age, volume (mm3),

side, and location of macroscopic and microscopic cerebral infarctions

were identified as described.36,37 Lewy bodies were identified using

immunohistochemistry.38

3.4 Statistical approach

Clinical cognitive diagnosis and final cognitive diagnosis were analyzed

with ordinal logistic regression using dementia, MCI, and NCI cate-

gories. Ordinal logistic regression with proportional odds was used for

ordered categories, as we saw no evidence for non-proportional odds.

Global cognitive function and person-specific rate of change in cogni-

tive function (slope of global cognition) were analyzed as continuous

outcomes. AD neuropathology was considered as present or absent

based on NIA-Reagan criteria and CERAD scores.34,42 Braak stage of

illness, which captures neurofibrillary tangle pathology, was catego-

rized as III or less or IV or greater due to the small number of cases in

individual Braak stages II, III, and VI.43 Lewy Body disease and infarcts

were considered present or absent.36 Global pathology, amyloid bur-

den, diffuse and neuritic plaques, and neurofibrillary tangle density

and burden were analyzed as continuous outcomes. Appropriate vari-

able transformations were applied to continuous neuropathology out-

comes as indicated by Box-Cox transformations and visual inspection

of residuals. Square root transformationwasused for globalADpathol-

ogy, A, and plaque burden outcomes; quartic root transformation was

used for neurofibrillary tangle outcomes. Brain MK4 and plasma phyl-

loquinone concentrations were log2-transformed for the analysis to

satisfy linearity assumptions, andnon-detectable valueswere analyzed

using half the value of the limit of detection. The MK4 concentrations

in the mid-temporal and mid-frontal cortexes were averaged, and the

anterior watershed and cerebellumwere analyzed as separate regions.

Co-variates included age at death, sex, education (≤12 years, >12 to

≤16 years, >16 years), APOE ε4 status (ε4 present/absent) and post-

mortem interval.Models for clinical cognitive diagnosis and global cog-

nitive function are adjusted for timebetween last cognitive assessment

and death. Plasma phylloquinone models were additionally adjusted

for triglycerides (because phylloquinone is transported on triglyceride-

rich lipoproteins44), DASH diet score (because plasma phylloquinone

can reflect a healthy diet23), and time between plasma sample col-

lection and death/last cognitive assessment. One participant with a

plasma phylloquinonemeasurement of 30.8 nmol/L was excluded from

the statistical analysis. Estimated associations are reported as beta

coefficients or odds ratios (OR= exp(β)). MK4 concentrations between

brain regions were compared using repeated-measures analysis of

variance (ANOVA). Spearman rank coefficients were reported for pair-

wise correlations. Analyses were performed in R v4.0 (R Core Team,

2020) and the VGAM package.45 A level of α = 0.05 was considered

statistically significant.AdjustedP- values (q-values)were calculated to

evaluate significance of associations after multiple testing correction.

3.5 Results

The last assessment of global cognitive function before death occurred

an average of 1.3 (SD = 1.5) years before death. Plasma phylloqui-

none was sampled an average of 2.1 (SD = 1.9) and 3.3 (SD = 2.1)

years before the last assessment of global cognitive function anddeath,

respectively.

Brain MK4 concentrations were variable (Figure 1). Although

MK4 concentrations were lower in the anterior watershed compared

to the other three regions (all pairwise comparisons with AWS P-

values < .001, Figure 1), MK4 concentrations were highly correlated

across the four regions (intra-class correlation coefficient = 0.86).

Plasma phylloquinone measured at the last visit before death was not

correlated with brain MK4 or phylloquinone concentrations in any

region (partial correlation adjusted for triglycerides, all r <0.10, all P-

values > .05), with the exception of correlation with brain phylloqui-

none in the mid-frontal region (partial correlation adjusted for triglyc-

erides, r= 0.14, P-value= .02).

Overall, the mean rate of decline in global cognitive scores was

−0.008 units per year. The odds of having dementia or MCI at the last

cognitive assessment before death were 17% to 20% lower per dou-

bling of MK4 in all four brain regions measured (ORs 0.80 to 0.83,

all P-values < .014.) (Table 2). These odds were generally consistent

with the odds for dementia or MCI at the final cognitive diagnosis.

Higher brainMK4 concentrations in the mid-frontal and mid-temporal

cortexes and the anterior watershed were also associated with better

ante-mortemglobal cognitive function scores and a slower rate of cog-

nitive decline (all P-values< .040). Higher brainMK4 concentrations in
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F IGURE 1 Boxplots of menaquinone-4 (MK4) and phylloquinone concentrations in four human brain regions (AWS, anterior watershed;MF,
mid-frontal cortex; MT, mid-temporal cortex; CR, cerebellum) (n= 325). Boxplot indicates themedian (middle line of the box), first quartile (lower
boundary of the box), and third quartile (upper boundary of the box) ofMK4 and phylloquinone concentrations in each brain region. Points at the
bottom of each plot indicate values below detection limits (0.1 pmol/g). Brackets indicate post hoc pairwise comparison tests with Tukey
adjustment that have significant P-values

the cerebellum was associated with better ante-mortem global cogni-

tive function (P-value= .036), but not with the rate of cognitive decline

(P-value= .09) (Table 2). Associations remained statistically significant

after multiple testing correction (Table S1).

For neuropathologically defined outcomes, the odds of Braak stage

≥IV were 14% to 16% lower per doubling of MK4 in the mid-frontal

and mid-temporal cortexes, anterior watershed, and cerebellum (ORs

0.84 to 0.86, all P-values < .045) (Table 3). The odds of having Lewy

bodies were 13% to 18% lower per doubling of MK4 in the mid-frontal

andmid-temporal cortexes and cerebellum (ORs0.82 to0.87,P< .045).

Higher MK4 in the mid-frontal and mid-temporal cortical and anterior

watershed regions was also associated with lower global AD pathol-

ogy scores (although statistical significancewas borderline for themid-

frontal and mid-temporal cortexes) and a lower neurofibrillary tangle

burden (Table 3). Brain MK4 concentrations were not associated with

neuritic plaques (CERADscore), density of neuritic or diffuse plaques, a

pathologic diagnosis of ADdefined usingNIA–Reagan criteria, amyloid

load, or with infarcts. Significant associations with neuropathological

outcomes were no longer statistically significant after multiple testing

correction (Table S2).

Among ante-mortemmeasures, higher plasma phylloquinone at the

last clinic visit was associated with better cognitive function (global

cognitive function β [SE] = 0.229 [0.072], P-value = .002, n = 295),

a slower rate of cognitive decline (slope of cognitive function β
[SE]= 0.017 [0.006], P-value= .004, n= 295), andwith a better clinical

cognitive diagnosis at the final clinic visit anddeath (cognitive diagnosis

at final visit β[SE] = −0.379 [0.137], P-value = .006, n = 288; cognitive

diagnosis at death visit β [SE] = −0.338 [0.137], P = .013, n = 293). In

contrast, circulating plasma phylloquinonewas not associatedwith any

neuropathologically defined outcome evaluated (all P-values≥ .10).
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