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Basal and luminal subtypes of muscle-invasive bladder cancer (MIBC) have distinct
molecular profiles and heterogeneous clinical behaviors. The interactions between
mRNAs and lncRNAs, which might be regulated by miRNAs, have crucial roles in many
cancers. However, the miRNA-dependent crosstalk between lncRNA and mRNA in
specific MIBC subtypes still remains unclear. In this study, we first classified MIBC into
two conservative subtypes using miRNA, mRNA and lncRNA expression data derived
from The Cancer Genome Atlas. Then we investigated subtype-related biological
pathways and evaluated the subtype classification performance using Decision Trees,
Random Forest and eXtreme Gradient Boosting (XGBoost). At last, we explored
potential miRNA-mediated lncRNA-mRNA crosstalks based on co-expression analysis.
Our results show that: (1) the luminal subtype is primarily characterized by upregulation
of metabolism-related pathways while the basal subtype is predominantly characterized
by upregulation of epithelial-mesenchymal transition, metastasis, and immune system
process-related pathways; (2) the XGBoost prediction model is consistently robust for
classification of the molecular subtypes of MIBC across four datasets (The area under
the ROC curve > 0.9); (3) the expression levels of the molecules in the miR-200c
and miR141-mediated lncRNA-mRNA crosstalks differ considerably between the two
subtypes and have close relationships with the prognosis of MIBC. The miR-200c
and miR-141-dependent mRNA-lncRNA crosstalks might be of great significance in
tumorigenesis and tumor progression and may serve as the novel prognostic predictors
and classification markers of MIBC subtypes.

Keywords: muscle-invasive bladder cancer, subtypes, miR200c, miR-141, random forest, XGBoost

Abbreviations: ASW, Average of Silhouette Width; CC, cellular component; CC, consensus clustering; CDF, cumulative
density function; CoC, cluster of cluster; CPCC, cophenetic correlation coefficient; DEFGs, differentially expressed feature
genes; DEGs, differentially expressed genes; DTs, decision trees; EMT, epithelial-mesenchymal transition; FDR, False
Discovery Rate; GO-BP, Gene Ontology Biological Process; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia
of Genes and Genomes; K–M curve, Kaplan–Meier curve; MAD, median absolute deviation; MF, molecular function; MIBC,
muscle-invasive bladder cancer; NES, normalized enrichment scores; PAC, proportion of ambiguous clustering; RF, random
forest; ROC, receiver operating characteristics curve; XGBoost, eXtreme Gradient Boosting.
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INTRODUCTION

Urothelial bladder cancer (UBC) is one of the most common
malignant tumors of urinary system. UBC can generally be
classified into non-muscle-invasive bladder cancer (NMIBC) and
muscle-invasive bladder cancer (MIBC), according to whether
the cancer cells are restricted locally in the lamina propria or
invade the muscularis propria (Kamat et al., 2016). A great
number of studies have reported that according to shared RNA
expression patterns or specific genomic alterations MIBC can
be further classified into two major subtypes, namely basal and
luminal (Sjodahl et al., 2012; Iyer et al., 2013; Choi et al.,
2014a,b; Damrauer et al., 2014; Network, 2014; Robertson et al.,
2017), which are strikingly similar to the molecular subtypes
first described in breast cancer (Perou et al., 2000; Prat et al.,
2010). The basal subtype has drawn much attention because it
is associated with a more aggressive phenotype and has a higher
risk of distant metastasis than luminal subtype (Choi et al., 2014a;
Robertson et al., 2017). One reason for the difference is that
the two subtypes develop from etiologically different pathways.
Pathways that are involved in EMT and immune-associated
pathways are upregulated in the basal subtype (Choi et al., 2014a).
The molecular biomarkers and pathways involved in MIBC
subtypes are the key to understanding its subtype heterogeneity
and identifying subtype-specific biomarkers that can be used to
better manage MIBC patients.

MicroRNAs (miRNAs) represent one of the most exciting
areas of modern medical and biological sciences as they can
modulate an immense and complex regulatory network of gene
expression in a broad spectrum of developmental and cellular
processes, such as cell proliferation, metabolism, apoptosis, and
viral infection (Johnston and Hobert, 2003; Hatfield et al., 2005;
Zhao et al., 2005; Chen et al., 2006; Oliveira-Carvalho et al., 2012;
Huang M. et al., 2016). miRNAs not only have a well-established
inhibitory effect on gene expression but also promote gene
expression in some cases (Sayed and Abdellatif, 2011; Song et al.,
2014), and long non-coding RNAs (lncRNAs) exhibit facilitative
or suppressive effects on the gene regulatory network during
tumor development (Gontan et al., 2012; Sun et al., 2013).
Furthermore, aberration or perturbation in miRNA-mediated
mRNA and lncRNA expression levels has a significant correlation
with serious clinical consequences, including diseases of diverse
origins and malignancy (Salmena et al., 2011; Valinezhad Orang
et al., 2014; Tay et al., 2014; Yuan et al., 2014; Zeng et al., 2016;
Hu et al., 2017).

Regarding molecular drivers of cancer development,
oncogenic mutations and downstream signaling pathways in
the pre-cancerous or cancerous cell have been thought to play a
crucial role in the cancer formation and progression. In addition,
recent studies have shown that metabolic reprogramming plays
much more important roles than previously thought in cancer
development (Cairns et al., 2011). It is possible that a great
number of genomic mutations detected in cancer provide a
selective advantage for the cancer cell in the stressful tumor
microenvironment by reprogramming cell metabolic processes
(Zhang et al., 2015). No matter what is the primary cause of
cancer development, it is clear that both the oncogenic signaling

and reprogrammed metabolisms involve numerous genes,
working in a concerted manner in a complex network. Gene
regulatory network-based view can, therefore, provide a deeper
insight into the cancer development.

The aim of this study is to identify subtype-specific
dysregulated miRNA-mediated mRNA-lncRNA interactions and
discover new critical subtype-related genes in MIBC.

MATERIALS AND METHODS

Data Acquisition and Pre-processing
The MIBC RNA-Seq (FPKM) and clinical data were obtained
from The Cancer Genome Atlas (TCGA) public data portal1, and
miRNA-Seq (RPM) data was downloaded from the Broad GDAC
Firehose2. The gene expression datasets of 403 tumor samples
and 19 adjacent normal tissue samples contain 19181 mRNAs,
14376 lncRNAs, and 2588 mature miRNAs. The microarray
datasets (GSE32894, GSE13507, and GSE31684) derived from
Gene Expression Omnibus (GEO) were used to evaluate the
performance of classifiers and verify the prognostic use of marker
genes3.

Clustering Analysis and Gene Set
Enrichment Analysis
Consensus clustering (Monti et al., 2003) is a method that
provides quantitative evidence for determining the number and
membership of possible clusters within a dataset, such as RNA-
Seq and microarray. For CC analysis, the RPKM gene expression
data was pre-processed to detect the most highly expressed and
variable genes across samples. We removed 25% genes that
have the low arithmetic mean of the given gene across samples.
Then the MAD was used to select the most highly expressed
and variable 3,000 mRNAs, 300 miRNAs, and 3,000 lncRNAs.
CC available in the R package “ConsensusClusterPlus” was
performed on 3,000 mRNAs, 300 miRNAs, and 3,000 lncRNAs
with 403 tumor samples, using the following key parameters:
reps = 50, innerLinkage = complete, clusterAlg = hc, k = 6, and
distance = pearson (Wilkerson and Hayes, 2010).

Cluster of cluster analysis is a method of integrating the
primary clustering results into final cluster assignments. Each
sample is represented as a binary vector, whose length is

∑t
i=1 Ki

(where t is the number of datasets and Ki is the number
of clusters for dataset (i), to implement subsequent clustering
analysis. We first conducted the CoC analysis on the clustering
results of mRNA, miRNA, and lncRNA dataset to obtain a binary
dataset. The CC was once more performed on the binary dataset
for generating final clusters. Number of final clusters (K) was
estimated by commonly used methods including ASW, CPCC,
Relative Change in Area under Cumulative density function
[1(K)], and PAC (Şenbabaoglu et al., 2014).

In order to explore subtype-associated biological processes,
GSEA (Subramanian et al., 2005) was conducted using three

1https://cancergenome.nih.gov
2https://gdac.broadinstitute.org
3https://www.ncbi.nlm.nih.gov
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gene set datasets (GO-BP, KEGG, and Hallmark gene sets].
The following parameters were taken for GSEA: Number of
permutations = 1000, Permutation type = gene_set, Enrichment
statistic = weighted, Metric for ranking genes = Signal2Noise.

Differentially Expressed Genes and
Machine Learning
“Ballgown” (R package) was used to identify DEGs between
tumor and normal samples (Frazee et al., 2015). F-test was
used in “Ballgown”, and DEGs here were defined as those with
FDR adjusted p-value < 0.05 (Benjamini–Hochberg method) and
|log2fold change| > 0.57).

Three tree-based machine learning methods, namely DTs,
RF, and eXtreme Gradient Boosting (XGBoost or XG), were
performed on 3000 mRNAs, 300 miRNAs, and 3000 lncRNAs
for MIBC subtype classification. The area under the ROC
curve (AUC) was used to estimate the performance of the
classification methods. For each classification method, MIBC
samples were randomly divided into training (60%) and testing
(40%). We performed RF with different parameter values of
ntree and mtry, and used 10-fold cross-validation to acquire the
mean accuracy. XGBoost was implemented with the following
parameters: gamma = 1, min_child_weight = 1, max_depth = 14,
nrounds = 2000. In order to optimize the parameter iter
(number of iterations) of XGBoost, we obtained 10-fold cross-
validation performance for each iter and selected the iter value
that generated the best performance. For DTs, the following
parameters were taken: minCases = 20 and CF = 0.25. Moreover,
the well-performed classifiers in this study were trained on the
TCGA-derived RNA expression data and were tested on the
GSE32894 to further evaluate their performance. All machine
learning methods were implemented using R packages including
“C5.0”, “randomForest”, and “XGBoost” packages (Liaw and
Wiener, 2002; Chen and Guestrin, 2016; Kuhn et al., 2018).

The overlap between the feature genes obtained by the well-
performed classifiers and DEGs was referred to as DEFGs. GO
enrichment analysis available in the R package “clusterProfiler”
was performed on DEFGs to identify their enriched GO terms
(Yu et al., 2012). A multiple-test correction was done using
the method proposed by Benjamini and Hochberg, in which an
adjusted p-value < 0.05 was considered to represent statistical
significance.

Construction of a Subtype-Related
mRNA-miRNA-lncRNA Network
Pairwise Pearson’s correlation analysis was carried out on the
DEFGs. The lncRNA-miRNA pairs, miRNA-mRNA pairs, and
lncRNA-mRNA pairs with |r| > = 0.4 and p-value < 0.05
were considered to be co-expressed gene pairs. If both elements
in a co-expressed lncRNA-mRNA pair are simultaneously co-
expressed with a miRNA, it is defined as a miRNA-dependent
lncRNA-mRNA co-expressed interaction. A miRNA-dependent
lncRNA-mRNA network was established using Cytoscape
software (version 3.5.1). miRWalk2.0 (Dweep et al., 2011) is an
integration of six widely used databases (miRWalk, miRanda,
miRDB, miRNAMap, RNA22, and Targetscan) and supplies
the biggest available collection of predicted and experimentally

verified miRNA-target interactions. Our inferred co-expressed
interactions including mRNA-miRNA and lncRNA-miRNA
interactions were compared to those derived from miRWalk2.0.
An mRNA is considered to be a true target of miRNA if their
interaction occurs in at least four databases, and an lncRNA is
considered to be a true target of miRNA if their interaction is
supported in at least one database among miRWalk, miRanda,
and Targetscan.

Survival Analysis
We further assessed whether the genes in the inferred interactions
are correlated with the overall survival of MIBC patients. Based
on the mean expression level of the genes, patient samples were
divided into high and low expression groups. We performed
survival analysis available in R package “survival” (Therneau,
2015) using the Kaplan–Meier curve (K–M curve) method. A log-
rank test was used to compare survival times between two
groups, and p < 0.05 was considered to represent the statistical
significance.

RESULTS

Clustering Analysis and GSEA
We first performed the CC on mRNA, miRNA, and lncRNA
expression datasets to obtain the clustering results. By applying
the CoC analysis to the clustering outcomes of CC, a binary
dataset was obtained, which was referred to as CoC dataset. The
CC was once again performed on the CoC dataset to generate
the different Ks, and the ASW, CPCC, 1K, and PAC were
used to evaluate the optimal K (Supplementary Figure S1).
As a result, for the CoC dataset, ASW evaluation suggests the
optimal K of 6 and CPCC, 1K, and PAC indicate the optimal
K of 2. Given that K = 2 is the consistent optimal value, we
chose K = 2 as a solution, dividing MIBC samples into two
subtypes, namely subtype-1 and subtype-2. The hierarchically
clustered heatmap of K = 2 for CoC dataset was shown in
Figure 1A. Survival curves regarding two subtypes were plotted
using the K-M method. Our results have shown that 5-year
overall survival rate with regard to subtype-1 is 55% and 30%
for subtype-2, indicating that they differ considerably in clinical
prognosis (Figure 1B, p < 0.01). The heatmap depicting basal
biomarkers, luminal biomarkers, and clinical indicators for the
two subtypes was shown in the Figure 1C. The subtype-1
is characterized by the high expression of luminal markers
such as CYP2J2, ERBB2, and KRT18, while the subtype 2 is
characterized by high expression of basal markers such as CD44,
CDH3, and KRT1. The Pearson’s chi-squared test is utilized
to compare clinical indicators between the two subtypes. The
histology, stage, grade, and status are significantly different
between the two subtypes, and gender almost differs between
the two subtypes (Supplementary Table S1). The subtype-1 and
subtype-2 resemble the luminal and basal subtype, respectively,
in terms of K–M curves, biomarkers, and clinical indicators,
therefore, which were redefined as luminal and basal subtypes
(Choi et al., 2014a).

Gene set enrichment analysis was done for the basal and
luminal subtypes, and the results were shown in Tables 1, 2.
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FIGURE 1 | Subtype-1 and subtype-2 Classification for MIBC. (A) Hierarchically clustered heatmap for CoC dataset (K = 2). (B) A K-M plot for overall 5-year survival
of subtype-1 and subtype-2 (subtype-1 = 193, subtype-2 = 210, p < 0.01). (C) Heatmap depicts the expression profiles of basal (up) and luminal (down) biomarkers
in subtype-1 and subtype-2. Covariate annotation tracks show selected clinical features. The yellow and turquoise colors correspond to high and low relative
expression, respectively.

Upregulated pathways in luminal subtype are mainly involved in
metabolism (e.g., oxidative phosphorylation, cytochrome P450,
and fatty acid metabolism) (Table 1). Whereas, upregulated
pathways in the basal subtype are principally related to immune
system process (e.g., extracellular structure organization, allograft
rejection, mTORC1 signaling, and TNF-a signaling via NF-kB),
metastasis, and EMT (Table 2).

Differentially Expressed Genes and
Machine Learning
The DEGs that could distinguish tumor from normal samples
were analyzed and visualized as volcano plots (Supplementary
Figures S2A–C). In total, 208 miRNAs (148 upregulated and

60 downregulated), 2488 lncRNAs (1402 upregulated and 1086
down-regulated), and 4167 mRNAs (2314 upregulated and 1853
downregulated) are differentially expressed.

We applied DTs, RF, and XGBoost for the basal and
luminal subtype classification based on mRNA, miRNA, and
lncRNA expression dataset, and AUC was used to evaluate their
performance. As shown in Figure 2A, XGBoost outperforms
RF and DTs, having AUC values of 98.6, 94.5, and 98.7%,
respectively, in mRNA, miRNA and lncRNA-based classification.
Details regarding 10-fold cross-validation procedure can be
found in Supplementary Figure S3. DTs was excluded in the
following comparison, as it is significantly inferior to RF and
XG on average. By using the CC method, the GSE32894 dataset
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TABLE 1 | Top-ranked terms of GO-BP, KEGG and Hallmark gene sets for the
luminal subtype.

Gene set name Size NES FDR q-value

GO-BP

GO monocarboxylic acid
catabolic process

95 2.5151 0

GO oxidative phosphorylation 73 2.4333 0

GO fatty acid catabolic process 80 2.4284 0

GO fatty acid beta oxidation 51 2.3211 0

GO electron transport chain 78 2.3116 0

GO organic acid catabolic
process

92 2.2781 2.26E-04

GO mitochondrial respiratory
chain complex assembly

42 2.1788 0.0014

GO lipid oxidation 63 2.1586 0.0015

GO mitochondrial respiratory
chain complex i biogenesis

199 2.1449 0.0018

GO establishment of protein
localization to endoplasmic
reticulum

70 2.1285 0.0022

KEGG

KEGG ribosome 87 2.3289 0

KEGG alpha linolenic acid
metabolism

19 2.0770 5.29E-04

KEGG metabolism of xenobiotics
by cytochrome p450

68 2.0424 5.36E-04

KEGG valine leucine and
isoleucine degradation

44 1.9767 0.00137

KEGG drug metabolism
cytochrome p450

70 1.9727 0.00120

KEGG oxidative phosphorylation 116 1.9372 0.00209

KEGG peroxisome 78 1.9320 0.00214

KEGG fatty acid metabolism 42 1.9184 0.00229

KEGG retinol metabolism 63 1.8697 0.00391

KEGG linoleic acid metabolism 29 1.8393 0.00482

Hallmark gene sets

Hallmark oxidative
phosphorylation

198 1.5145 0.05830

Hallmark bile acid metabolism 112 1.4110 0.07668

Hallmark peroxisome 103 1.4095 0.05174

Hallmark adipogenesis 191 1.3794 0.05125

Hallmark fatty acid metabolism 156 1.2596 0.11892

NES, normalized enrichment score; GO-BP, Gene Ontology Biological Process;
KEGG, Kyoto Encyclopedia of Genes and Genomes. Size is the number of genes
in the gene set. A positive NES means that genes over-represented in the gene set
are upregulated in luminal subtypes.

containing 28 biomarkers and 190 samples was grouped into
two subtypes prepared for the classification task. The heatmap
plots and the K–M curves for the two subtypes were shown
in Supplementary Figure S4. We trained the well-performed
classifiers (RF and XG) on mRNA dataset that was derived
from TCGA and tested them on GSE32894 dataset. The results
demonstrated that XGBoost has a better performance than RF
(Figure 2A4).

The intersection between DEGs and feature genes obtained by
RF and XG was defined as DEFGs, which includes 57 lncRNAs,
120 miRNAs, and 278 mRNAs. The Upset plot and heatmap

TABLE 2 | Top-ranked categories of GO-BP, KEGG and Hallmark gene sets for
the basal subtype.

Gene set name Size NES FDR q-value

GO-BP

GO extracellular structure
organization

297 −2.8256 0

GO antigen processing and
presentation of exogenous
peptide antigen via mhc class i

65 −2.7258 0

GO antigen processing and
presentation

206 −2.6334 0

GO antigen processing and
presentation of peptide antigen

170 −2.6246 0

GO antigen processing and
presentation of peptide antigen
via mhc class i

90 −2.6134 0

GO chondroitin sulfate
biosynthetic process

25 −2.6008 0

GO collagen fibril organization 36 −2.5958 0

GO regulation of innate immune
response

349 −2.5825 0

GO positive regulation of
defense response

360 −2.5802 0

GO cytokine mediated signaling
pathway

440 −2.5675 0

KEGG

KEGG focal adhesion 197 −2.6862 0

KEGG cytokine cytokine
receptor interaction

257 −2.5127 0

KEGG ecm receptor interaction 84 −2.512 0

KEGG proteasome 43 −2.4802 0

KEGG leishmania infection 69 −2.4718 0

KEGG viral myocarditis 68 −2.4178 0

KEGG hematopoietic cell
lineage

85 −2.4134 0

KEGG regulation of actin
cytoskeleton

211 −2.3911 0

KEGG allograft rejection 35 −2.3902 0

KEGG autoimmune thyroid
disease

50 −2.3778 0

Hallmark gene sets

Hallmark
epithelial-mesenchymal
transition

197 −3.2473 0

Hallmark inflammatory
response

197 −3.0190 0

Hallmark interferon gamma
response

197 −2.9964 0

Hallmark interferon alpha
response

94 −2.9491 0

Hallmark allograft rejection 199 −2.9010 0

Hallmark G2M checkpoint 194 −2.6389 0

Hallmark E2F targets 196 −2.6177 0

Hallmark TNF-a signaling via
NF-kB

198 −2.5512 0

Hallmark complement 195 −2.5475 0

Hallmark mTORC1 signaling 198 −2.441 0

All abbreviations are the same as in Table 1. A negative NES value indicates
that genes over-represented in the gene set are upregulated in the basal
subtype.
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FIGURE 2 | ROC curves for classification predictors and information for differentially expressed feature genes (DEFGs). (A) ROC curves for XGBoost, RF, and DTs
classifiers in mRNA, miRNA, lncRNA, and GSE32894 dataset. (B) An UpSet plot for intersected information between DEGs and the feature genes obtained by
XGBoost and RF. (C) A Circos plot for 278 DEFmRNAs with gene symbols, chromosomal cytobands, and other information. From inside to outside, variable weight
from RF (brown), fold change from DEGs (up in red, down in green), p-value from univariate Cox’s proportional regression analysis (p > 0.05 in red, p < 0.05 in
brown), DEFlncRNAs (coral), DEFmiRNAs (deep pink), DEFmRNAs (red). (D) Bubble plots for enriched GO terms generated from 278 DEFmRNAs. The x-axis
represents the –log10(p-value) of each term and the y-axis represents the number of genes in each term.

plots for DEFGs were shown in Figure 2B and Supplementary
Figures S2D–F. The genetic and clinical information of DEFGs
was visualized in Figure 2C. GO enrichment analysis indicated
that differentially expressed feature mRNAs are enriched with
adherens junction, cell-substrate junction, cell-cell junction, cell-
substrate adherens junction, and focal adhesion (Figure 2D).
These GO terms have been found to play roles in tumorigenesis
and tumor progression by regulating T-cell signaling, innate
immunity, TGF-β signaling, and Wnt signaling through post-
translational modification (Kikuchi et al., 2006; Lönn, 2010; Liu
et al., 2016; Cho et al., 2018; Kuwabara et al., 2018).

Construction of Subtype-Related
mRNA-miRNA-lncRNA Network
A miRNA-dependent mRNA-lncRNA co-expression network
was constructed, which consists of 90 mRNAs, 22 miRNAs,

and 14 lncRNAs (Figure 3A). The miRNA-dependent mRNA-
lncRNA crosstalks verified in miRWalk database contain four
miRNA-mediated mRNA-lncRNA interactions (Figure 3B). To
be specific, two co-expressed lncRNA-mRNA pairs, AC010326.3-
GATA3 and AC073335.2-GATA3, are positively regulated by
miR-141-3p; The lncRNA-mRNA pairs, such as MIR100HG–
CLIC4 and MIR100HG–PALLD, are negatively regulated by miR-
200c-3p and miR-141-5p, respectively. All the nine genes in the
network differ in their expression between the two subtypes
(Figure 3C). For instance, as compared to the luminal subtype,
the basal subtype is characterized by a lower expression level
of six genes (miR-200c-3p, miR-141-3p, miR-141-5p, GATA3,
AC010326.3, and AC073335.2) and a higher expression level
of the other three genes (MIR100HG, PALLD, and CLIC4),
suggesting that all the nine genes can be used as potential markers
for the two MIBC subtypes. In addition, GO analysis showed that
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FIGURE 3 | Subtype-related miRNA-dependent mRNA-miRNA interactions. (A) The co-expression network for miRNA-mediated mRNA-lncRNA interactions. The
crimson nodes represent miRNAs, the green nodes represent lncRNAs, and the sky blue nodes represent mRNAs. (B) miRNA-mediated mRNA-lncRNA interactions
validated by mirWalk 2.0. The green color represents downregulation in tumor compared with normal sample whereas the yellow color corresponds to upregulation
in the tumor. The blue lines represent positive correlations and black lines represent negative correlations. (C) The heatmap depicts the expression level of nine
DEFGs in basal and luminal subtypes. The yellow and turquoise colors correspond to high and low relative expression, respectively. Original expression value was
log2 transformed.

the mRNAs in the network (CLIC4, PALLD, and GATA3) are
related to cytoskeleton.

Survival Analysis of Crosstalk-Involved
Genes
The association between expression levels of crosstalk-involved
genes and MIBC prognosis was analyzed by K–M method.
Strikingly, the results revealed that all of them are closely related
to prognosis of MIBC. Specifically, the higher expression level
of miR-141-5p, miR-141-3p, AC010326.3, AC073335.2, miR-
200c-3p, and GATA3 predicts better prognosis, indicating that
they may function as tumor suppressors (Figures 4B–F,H); In
contrast, the higher expression level of MIR100HG, PALLD,
and CLIC4 is associated with worse prognosis, suggesting that
they may play an oncogenic role (Figures 4A,G,I). In addition,
the association between MIBC prognosis and expression levels
of crosstalk-related mRNAs (CLIC4, PALLD, and GATA3) was

validated in two independent microarray datasets (GSE13507
and GSE31684), suggesting again their prognosis value in MIBC
(Supplementary Figure S5).

DISCUSSION

In this study, we have investigated miRNA-dependent mRNA-
lncRNA interactions in MIBC basal and luminal subtypes
using bioinformatics approaches. On the basis of MIBC
mRNA, miRNA, and lncRNA expression datasets obtained from
TCGA, 403 MIBC samples were reliably classified into two
intrinsic molecular types, which resemble basal and luminal
subtypes identified previously (Choi et al., 2014a). A number
of subtype-related pathways were identified through GSEA.
Moreover, we conducted and compared subtype classification
performance among tree-based machine learning algorithms,
and found XGBoost outperforms other classifiers. Additionally,
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FIGURE 4 | Kaplan–Meier plots for crosstalk-involved genes. (A–I) The red lines represent the high expression of crosstalk-involved genes while blue lines represent
the corresponding low expression. The p-value was calculated using a log-rank test, where p < 0.05 represents statistical significance.

we implemented a gene co-expression analysis on DEFGs
and successfully identified subtype-specific mRNA-lncRNA
crosstalks, which differ considerably between basal and luminal
subtypes and have close relationships with the prognosis of
MIBC.

Subtype-related pathways presented in this study (Tables 1,
2) are largely consistent with the previously identified (Choi
et al., 2014a; Hurst and Knowles, 2014; McConkey et al., 2016;
Ochoa et al., 2016; Hau et al., 2017; Seiler et al., 2017; Baker
et al., 2018). In general, pathways that are involved in the
EMT, metastasis, and immune system process, are upregulated
in the basal subtype, whereas, metabolic-related pathways are
upregulated in the luminal subtype. Th pathways enriched in
basal and luminal subtypes provide a biological explanation for
their distinctively different clinical and pathological behaviors.
However, the mechanisms by which some other pathways

shown in our results, like valine leucine, isoleucine degradation,
autoimmune thyroid disease, hematopoietic cell lineage and
viral myocarditis, play a role in MIBC subtypes deserve further
investigation.

Many machine learning methods have been broadly applied
in many areas of biology such as gene family classification,
hepatotoxicity prediction, RNA methylation prediction, cancer
prediction and classification (Zou et al., 2014; Kourou et al.,
2015; Liao et al., 2017, 2018; Su et al., 2018; Wei et al., 2018a,b).
As suggested in previous studies, RF is a powerful classifier for
classifying gene expression data (Wu et al., 2003; Lee et al., 2005;
Ishwaran et al., 2010). And XGBoost keeps winning in “every”
Kaggle competition and has become a really popular tool among
data scientists (Ren et al., 2017; Torlay et al., 2017; Zhang and
Zhan, 2017). Recently, XGBoost has been successfully applied to
many classification problems, such as pan-cancer classification
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(Li et al., 2017) and prediction of RNA-protein interactions (Jain
et al., 2018). However, no comparison between RF and XGBoost
in terms of cancer classification has been made in the past. In
this study, we compared the performance of DTs, RF, XGBoost
in classifying basal and luminal subtypes. Our results clearly
demonstrated the advantage of XGBoost in gene expression data-
based cancer classification (Figure 2A).

Previous studies investigated MIBC-associated miRNAs and
their target genes without considering the genetic heterogeneity
of MIBC subtypes (Martens-Uzunova et al., 2014; Huang T.
et al., 2016; Xue et al., 2016; Zhong et al., 2016). It is therefore
important to elucidate the subtype-related molecular pathways
and identify novel biomarkers for MIBC subtypes. In this
study, we systematically explored MIBC subtype-related gene co-
expression networks. A total of three mRNAs (GATA3, CLIC4,
and PALLD), three miRNAs (miR-200c-3p, miR-141-3p, and
miR-141-5p), and three lncRNAs (AC010326.3, AC073335.2, and
MIR100HG) were found in miRNA-mediated mRNA-lncRNA
crosstalks, which differ considerably in their expression between
basal and luminal subtypes (Figure 3), and their expression level
is significantly associated with the prognosis of MIBC (Figure 4).
It was previously observed that miR-141-5p, miR-141-3p, miR-
200c-3p, and GATA3 are the most important markers of luminal
subtype, which is consistent with our results (Robertson et al.,
2017). Besides, previous studies found that the down-regulation
of miR-200c and miR-141 is associated with elevated ZEB1
(Wiklund et al., 2011; Shan et al., 2013; Mahdavinezhad et al.,
2015), and the down-regulation of miR-200c is also coupled with
the down-regulation of BMI-1 and E2F3 (Liu et al., 2014), which
play an important role in the invasion, migration, and EMT of
bladder cancer.

It has been shown that some other genes in the crosstalk
are also closely related to cancer. For example, AC073335.2, a
highly expressed lncRNA in human glioblastoma, is involved in
tumorigenesis via acting as a competing endogenous RNA of
miR-940 (Shi et al., 2017). MIR100HG was previously reported
to act as a regulator of hematopoiesis and oncogenes in many
cancers (Emmrich et al., 2014; Nair, 2016; Shang et al., 2016;
Wieczorek and Reszka, 2018; Zhang et al., 2018). In agreement
with our findings, MIR100HG was reported to be down-regulated
in MIBC and may serve as a significant biomarker for MIBC
(Wang et al., 2016). As reported previously, GATA3 is a
prognostic marker and inhibits cell migration and invasion in
MIBC (Miyamoto et al., 2012; Choi et al., 2014a,b). And, GATA3
is differentially expressed between basal and luminal subtypes
and can be used as a luminal-infiltrated marker (Robertson et al.,
2017). CLIC4 has a complicated role in cancer. For instance,
it functions as a tumor suppressor in lung adenocarcinomas
(Okudela et al., 2014). And it promotes the metastasis and
development of colorectal cancer (Deng et al., 2014; Peretti et al.,
2015). Previous studies have established that the expression of
CLIC4 in MIBC has a subtype-dependent pattern (Robertson
et al., 2017). And the overexpression of CLIC4 in stroma
increases cell migration and invasion and promotes epithelial
to mesenchymal transition in multiple human cancers (Shukla
et al., 2014). PALLD SNPs were reported to be a significant
predictor of prostate cancer-specific mortality (Bao et al., 2011).
Our findings are largely consistent with previously reported

results, suggesting crosstalk-implicated genes might be of great
significance in MIBC pathogenesis and post-transcriptional gene
regulation.

The combination of bioinformatics and several machine
learning approaches in this study have achieved reliable results
regarding the MIBC subtype classification, subtype-associated
pathways, and the network-associated markers for MIBC
subtypes. The subtype-related genes can not only be used for
subtype classification but also serve as a good predictor of cancer
prognosis. It is worth noting that we can enhance our study in
the following aspects in the future: (1) the crosstalks discovered
through computational analyses need to be verified by biological
experiments. (2) DEFGs were defined as the overlap between
DEGs and feature genes that were determined by XGBoost
based on the ranking approximates of Information Gain. This
procedure may result in the missing of some highly correlated
genes that are also biologically important.

CONCLUSION

By conducting bioinformatics analyses, we identified two
subtypes of MIBC and lncRNA-mRNA crosstalks mediated by
miR-200c and miR-141, which are found to be significantly
associated with prognosis, formation, and metastasis of bladder
cancer. Our results should be informative for molecular
subtype classification, prognosis and molecule-targeted therapy
of bladder cancer.
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FIGURE S1 | The graphs show the evaluation output of ACW, CPCC, 1K, and
PAC. CoC datasets represented by green line were used as the criteria to infer
optimal K. (A) ASW allows us to inference the optimal K by high ASW. (B) The
optimal K according to CPCC is that the magnitude of CPCC should be very close
to one. (C) The optimal K according to 1K is the K value before the ‘elbow’ or the
K where D(K) reaches its maximum. (D) PAC allows us to inference the optimal K
by the lowest PAC.
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FIGURE S2 | Volcano plots for DEGs and heatmap plots for DEFGs. (A–C)
Volcano plots for differentially expressed 4167 mRNAs, 208 miRNAs, and 2488
lncRNAs between tumor and normal samples (adjusted p-value < 0.05 and
|log2fold change| > 0.57). (D–F) Heatmap plots for 278 DEFmRNAs, 120
DEFmiRNAs, and 57 DEFlncRNAs. Basal, luminal, and normal samples are
represented by the red, blue, and yellow bar, respectively.

FIGURE S3 | Parameter selection and Performance of RF and XG in mRNA,
miRNA and lncRNA dataset. (A) The x-axis represents the number of mtry set for
RF classifier (1, 5, 10, 15, 20, 25). The y-axis represents the corresponding AUC.
(B) The x-axis represents the number of ntree set for RF (20, 400, 600, 800). The
y-axis represents corresponding obb error rates. The colors correspond to mtry
numbers. (C) The x-axis represents the number of fold set for RF. The y-axis
represents corresponding accuracy. The red color shows mean accuracy. (D) The

x-axis represents the number of iter set for XG (1, 400, 800, 1200, 1600, 2000,
2400) and the y-axis represents the corresponding accuracy.

FIGURE S4 | Heatmap and K–M plots for basal and luminal subtypes of
GSE32894. (A) Heatmap depicts the expression profiles of basal (up) and luminal
(down) biomarkers in GSE32894. The yellow and turquoise color corresponds to
high and low relative expression, respectively. B. A K-M plot for the overall 5-year
survival of basal and luminal subtypes (basal = 52, luminal = 62, p < 0.01).

FIGURE S5 | Kaplan-Meier plots for CLIC4, PALLD, and GATA3 in GSE13507
and GSE31684. (A–C) K–M survival curves showing overall survival according to
high expression and low expression of CLIC4, PALLD, and GATA3 in GSE13507.
(D–F) K–M survival curves showing overall survival according to high expression
and low expression of CLIC4, PALLD, GATA3, and MIR100HG in GSE31684.
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