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ABSTRACT: Control-Based Continuation (CBC) is a general
and systematic method to carry out the bifurcation analysis of
physical experiments. CBC does not rely on a mathematical model
and thus overcomes the uncertainty introduced when identifying
bifurcation curves indirectly through modeling and parameter
estimation. We demonstrate, in silico, CBC applicability to
biochemical processes by tracking the equilibrium curve of a
toggle switch, which includes additive process noise and exhibits
bistability. We compare the results obtained when CBC uses a
model-free and model-based control strategy and show that both
can track stable and unstable solutions, revealing bistability. We
then demonstrate CBC in conditions more representative of an in
vivo experiment using an agent-based simulator describing cell
growth and division, cell-to-cell variability, spatial distribution, and diffusion of chemicals. We further show how the identified curves
can be used for parameter estimation and discuss how CBC can significantly accelerate the prototyping of synthetic gene regulatory
networks.
KEYWORDS: control-based continuation, synthetic biology, bifurcations, toggle switch

The complexity of biological systems is widely acknowl-
edged. In native organisms, multiscale intracellular

interactions often result in complex nonlinear dynamics.
Consider, for example, switches and oscillations in gene
expression, which are used by cells to process external inputs
and program specific cell outputs. Synthetic biology aims at
engineering biological computation by recreating such dynamics
using circuits embedded into living cells.1−10

Mathematical modeling is widely used within synthetic
biology design−build−test−learn cycles. In the context of
engineered gene regulatory networks, models can both support
the design phase (indicating the parameter space that allows the
emergence of the desired dynamics, such as oscillations), and the
testing upon experimental implementation.Moreover, modeling
is currently the only way in synthetic biology to study the
relationship between physical parameters variations and
bifurcations; the latter represent stability boundaries where
qualitative and quantitative changes to the system’s dynamics
occur. For instance, saddle-node and Hopf bifurcations
(responsible for hysteresis and oscillatory behaviors, respec-
tively) that are commonly observed in native biological
systems11 can only be studied by nonlinear model analysis.
This means that, first, a mathematical model needs to be derived
and fitted to often ad hoc generated experimental data. Then,
nonlinear model analysis can be performed to identify the
bifurcation behavior being observed.

The derivation of biochemical models can however be
challenging, both in terms of model structure (which depends
on the underlying hypotheses on the system), and parameter
identification and validation (which can be troublesome in the
case of incomplete/noisy experimental data sets). Model
uncertainties will inevitably result in misleading conclu-
sions.12,13 As a consequence, the design and testing of
engineering synthetic biochemical circuits that perform as
intended is extremely difficult, unless various design, build, test
and learn iterations are performed.14

Control-based continuation (CBC), originally proposed by
Sieber and Krauskopf,15 is a general, systematic and model-free
testing method that applies the principles of numerical
continuation (a computational method for bifurcation analysis)
to physical experiments. The fundamental principles of CBC are
well established and the method has been applied to a wide
range of mechanical systems. For instance, Barton et al.16

studied the periodic responses of a bistable energy harvester; a
similar system was studied by Renson et al.17 The continuation
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method was also demonstrated on a multi-degree-of-freedom
structure exhibiting isolated curves of periodic responses and
quasi-periodic oscillations.18 CBC exploits feedback control to
explore the nonlinear dynamics of a system, detect bifurcations,
and eventually trace their evolution with respect to adjustable
parameters directly during experimental tests.
Recently, external feedback controllers have been exploited

for controlling gene expression in living cells by means of
microfluidics/microscopy or optogenetics platforms.19−27 From
a control theory standpoint, genetic networks are the processes
to be controlled, while the controller is implemented on a
computer. Biosensors are used to measure the state of the
process, usually by means of fluorescent reporter proteins. The
fluorescence evaluation can be done either at single-cell or at cell
population level; such measurement is fed back to a control
algorithm that evaluates the appropriate input aiming to steer
the process to a selected reference signal. Inputs are then
actuated on the process via light or chemical compounds.28

By employing external feedback controllers to steer gene
expression, it should be possible to apply CBC to track nonlinear

dynamics in biochemical systems, overcoming the need for a
model identification step and defining a shorter way for
bifurcation tracking that includes the isolation of unstable
equilibria (Figure 1A).
Here, we demonstrate, for the first time, the applicability of

CBC to prototype the dynamics of a synthetic gene regulatory
network and to estimate the parameters of a fixed model
structure using data collected after the CBC routine. We use as a
test bed the toggle switch, a bistable biological circuit, first
embedded in Escherichia coli cells by Gardner et al.,10 which is
often used to benchmark new control strategies and is
considered a fundamental tool for cell computation.11,29

Specifically, we run in silico experiments on a recent version of
the toggle switch, for which external feedback control was shown
to be successful.6 Moreover, we leveraged an agent-based
simulator called BSim30 to test the performance of the designed
algorithms in conditions more representative of an in vivo
experiment. Our in silico demonstration of CBC gives us the
confidence that the method should be exploitable in vivo to fully
explore the parameter space that allows the emergence of the

Figure 1. (A) A schematic Toggle Switch from Lugagne et al.6 Two different paths to the bifurcation diagram (- -): numerical continuation (path 1),
and control-based continuation (path 2). Unstable branch of the bifurcation curve (�) and bifurcation points (*) are highlighted. (B) Steps of the
CBC algorithm: at time t= 124 h the control pushes the system’s trajectoryTetR(IPTG) (�) toward the new referenceTetR* (blue line - -). At time t=
144 h transient dynamics are extinguished and a point IPTG TetR( , ) is saved (●). Then, the reference signal is increased and the process is repeated.
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desired dynamics (in our example, hysteresis), leading to rapid
and model-free characterization, and also parameter estimation,
of engineered synthetic modules.

■ RESULTS AND DISCUSSION
CBC retrieves stable and unstable invariant solutions of a
dynamical system through the application of an external control
action. In order to acquire the bifurcation diagram, the
controller should not modify the position in the parameter
space of the uncontrolled system’s invariant solutions. For
example, the equilibria of a controlled system are in general
different from the one of the uncontrolled system and, to recover
the response of the underlying uncontrolled system of interest,
CBC seeks a control signal that decays asymptotically to zero,
i.e.,

u x t xlim ( ( ), ) 0
t

ref (1)

where x is the system’s state, xref is the control
reference signal, and t is time. Although the control signal is
asymptotically converging to zero, it is synthesized in order to
stabilize the local dynamics of the system such that unstable
equilibria become stable and hence detectable forward in time. A
control strategy that satisfies eq 1 is called noninvasive and does
not modify the system’s equilibrium positions in the parameter
space. Finding a noninvasive control signal usually requires
finding the “right” reference input (xref) for the controller such
that eq 1 is satisfied, while the solution of interest is stabilized.
When the control input can be chosen as the bifurcation

parameter of interest, the methodology can be significantly
simplified as the control signal is only required to settle to a
constant value. Indeed, when this condition is achieved, the
nonzero constant control signal can be viewed as a mere shift in
the bifurcation parameter value. This simplified method is used
in this paper, and more details about its implementation can be
found in the Methods section. Furthermore, CBC can also be

extended to characterize systems exhibiting oscillations and
other bifurcations as described in the literature.17,18,31,32

The applicability of CBC is demonstrated here in silico on a
synthetic gene network, the toggle switch (Figure 1). The
mathematical model developed by Lugagne et al.6 is used. From
a control system standpoint, it is a 2-input (aTc and IPTG) 2-
output (LacI and TetR) nonlinear dynamical system. The inputs
correspond to drugs that can be added to the cell culture
environment, while the outputs are proteins synthesized by cells
and detected by tagging them with fluorescent reporters. Here
the control signal (specifically IPTG) plays a dual role: it not
only pushes the system into a new state, but also it keeps the
system stable, allowing it to explore the nearby unstable
dynamics that would not be collected otherwise (see the red
branch of the bifurcation diagram in Figure 1A). The model
derivation and further information about the network can be
found in the Methods section.
Figure 1B illustrates an experiment conducted with CBC; data

points collected with CBC (blue points) are compared to the
actual bifurcation curve obtained using standard model-based
numerical continuation algorithms (gray dashed line). First, a
particular control reference value (xref = TetR*) is selected
(dashed-blue line). The reference signal is compared to the
current expression of the gene of interest to compute a control
error. This is fed to the controller, which evaluates a control
signal (IPTG concentration), translated into an input to the
toggle switch that will therefore change its state (the red line in
Figure 1 B shows the system transient dynamics). At every
sampling time, a new measure is acquired and the entire process
is repeated until a steady state value is reached. The steady state
value of the state variables, together with the associated control
signal, are then saved to define a point IPTG TetR( , ) in the
bifurcation diagram. Subsequently, a new reference value is
picked (see Methods) and the entire process is repeated. To
trace out the entire equilibrium curve, the continuation
algorithm requires a set of control reference values, broadly

Figure 2.CBC with P controller applied to the deterministic toggle switch model eq 2. (A) Equilibrium curve measured using CBC (●). TetR(IPTG)
transient trajectories (···). Reference equilibrium curve obtained using numerical continuation (- -). (B) Time evolution of TetR and the control
reference signal TetR*. (C) Time evolution of IPTG (i.e., control signal). Parameter values: kp = 0.0016 and aTc = 25 ng mL−1.
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covering the range of gene expression of interest (in our case the
TetR fluorescence expression).
CBC is a model-free method because it does not require the

knowledge of a mathematical model of the system to be applied
to, and the results’ accuracy does not depend on the structure
and parameter values of a model. Furthermore, the controller
within CBC is only required to be stabilizing and noninvasive. As
such, CBC is not tied to a specific type of feedback controller,
and control laws that do not require a mathematical model of the
system can be used. However, the design, parameter tuning, and
overall performance of the controller can be improved if some
knowledge (like a model) of the system dynamics is available.
Here, the use of a model-free proportional (P) controller and a
model-predictive controller (MPC) is compared. The former
controller was chosen as it is widely used in CBC applications,
while the latter because it is commonly exploited in synthetic
biology.20 When using Model Predictive control strategies,
simple linear models work well, showing that detailed
mathematical representations are not needed for CBC to
work. A sampling time of 5 min is considered in this work; this is
a realistic time interval that we previously used to image and
externally control bacterial cells.22,25 Note that with the
simplified CBC approach, the controller is not required to
take the control error to zero, but only to stabilize the system to a
nearby equilibrium point. This does not affect the accuracy of
results, as further explained in the Methods.
CBC Can Reconstruct the Toggle Switch Bifurcation

Diagram under Deterministic Simulation Settings. We
first applied CBC on the deterministic model of the toggle
switch. During the in silico experiment, 30 steady state points
IPTG TetR( , ) were acquired by varying the reference input to
the control strategy between TetR* = 1800 [a.u.] (or 1200
[a.u.]) and TetR* = 0 [a.u.]. The maximum duration of a single
equilibrium acquisition was constrained to 9 h and 55 min, after
which the control reference was modified. The steady states
values were computed by taking the average of the samples
recorded in the last 60 min (12 samples) of the simulation

carried out for each value of the reference signal. Averaging is not
essential in a deterministic scenario, but becomes fundamental
in a noisy environment as a way to filter out some noise. Points
collected with the CBC perfectly overlap with the numerical
continuation diagram (Figure 2A and 3A). Both control
strategies have comparable tracking performances and proved
able to stabilize the unstable branch of equilibria delimited by
the Saddle-Node bifurcations, capturing the whole bifurcation
curve.
The proportional control signal is linearly dependent on the

error signal. Every time the reference is modified (Figure 2B),
the error changes and consequently the control signal as well
changes (Figure 2C). As the controller does not include an
integral action, the error never nullifies, but it becomes constant
once the system reaches the equilibrium.When this happens, the
control signal and bifurcation parameter IPTG become constant
as well (because the proportional contribution is constant), and
the steady state can be collected.
With MPC, the control action is computed as the optimal

signal that minimizes the error, and therefore its contribution
pushes the system’s trajectories toward the reference signal,
generating some early oscillations (Figure 3B,C). As the
bifurcation parameter is not directly proportional to the control
error, the latter does not have to be different from zero. The
steady state error introduced by the MPC algorithm is much
lower than the proportional one (see Figure 2B and Figure 3B);
thus, it is easier to define the range of reference values for the
MPC as it corresponds to the effective dynamical range explored
by the continuation algorithm. Instead, when using a propor-
tional controller, the range of the control reference may need to
be varied significantly (as in Figure 2B, where the maximum
reference was set to TetR* = 1800 [a.u.] in order for the
algorithm to get a full coverage of the bifurcation diagram). This
should not be considered as a fault of the proportional algorithm,
but only as a difference between the two control strategies.
Results in Figure 2 and Figure 3 are also represented in
Supplementary Movies S1 and S2.

Figure 3. CBC with MPC applied to the deterministic toggle switch model eq 2. (A) Equilibrium curve measured using CBC (●). TetR(IPTG)
transient trajectories (···). Reference equilibrium curve obtained using numerical continuation (- -). (B) Time evolution of TetR and the control
reference signal TetR*. (C) Time evolution of IPTG (i.e., control signal). Parameter values: γ = 0.3 (eq 25) and aTc = 25 ng mL−1.
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To decrease the total time of each simulation we also
implemented a steady state detection routine that changes the
reference each time the system reaches steady state (Methods).
This, together with a smaller number of collected points, allowed
to decrease the experimental time to approximately 55 h for both
the controllers, see Figure S1 and S2.
CBC Can Reconstruct the Toggle Switch Bifurcation

Diagram under a Stochastic Simulation Setting. CBC is
now demonstrated on a stochastic toggle switch model to
reproduce conditions more similar to an in vivo experiment. As
noise can strongly modify results of a single continuation
experiment, we consider 10 repetitions of the same experiment.

In each we collect 30 points, with the steady state values
computed as described for the ODE case.
The resulting plot is a density map made of all the collected

steady states IPTG TetR( , ) over the 10 simulations, that we can
compare with the numerically computed bifurcation diagram
(Figure 4A and 5A). The results show dense clouds of points
falling in the area where the branch of equilibria is, confirming
the ability of the strategy to work also in a stochastic setting:
both controllers were able to track the unstable branch of
equilibria, preventing the system from jumping between the two
stable steady states. For simplicity, we only show one out of 10

Figure 4. CBC with P controller applied to the stochastic toggle switch model eq 4. (A) Density plot of equilibrium curve measured using CBC.
Reference equilibrium curve obtained using numerical continuation (- -). (B) Time evolution of one simulation ofTetR and the control reference signal
TetR* (�). (C) Time evolution of IPTG (i.e., control signal). Parameter values: kp = 0.0016 and aTc = 25 ng mL−1.

Figure 5. CBC with MPC applied to the stochastic toggle switch model eq 4. (A) Density plot of equilibrium curve measured using CBC. Reference
equilibrium curve obtained using numerical continuation (- -). (B) Time evolution of one simulation of TetR and the control reference signal TetR*.
(C) Time evolution of IPTG (i.e., control signal). Parameter values: γ = 0.3 (eq 25) and aTc = 25 ng mL−1.
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computed trajectories of TetR and IPTG in Figure 4B,C and
5B,C.
For both the proportional controller and MPC, the output

signal shows oscillations due to noise, which also affect the
control signal u. However, these oscillations do not seem to
strongly alter the average values we take as steady state points.
Similar observations to the deterministic case can be made. For
the proportional controller, the error does not nullify and the
reference signal is chosen in a wider range of values than for the
MPC in order to uncover the full bifurcation curve (Figure 4B).
As in the deterministic scenario, the simulation time can be

drastically decreased considering a variable step time associated

with the computation of the steady states and a reduced amount
of collected points. The resulting bifurcation curves can be seen
in Figure S3A and S4A, while panels B and C show just one
representative trajectory of TetR and IPTG, respectively.
Furthermore, for the stochastic scenario, we also considered
the case of a steady state check with the full amount of points
(30). We found that the reference shift guided by steady state
detection could only reduce the total time to 228 h for a
proportional controller and 233 h in case ofMPC algorithm (see
Figure S5 and S6), i.e., a 23.4% and a 21.8% reduction,
respectively. Reducing the total testing time requires to decrease
the number of points collected, which can be achieved without

Figure 6. CBC with P controller applied to the stochastic toggle switch model eq 4 in BSim. (A) Density plot of equilibrium curve measured using
CBC. Reference equilibrium curve obtained using numerical continuation (- -). (B) Time evolution of one simulation ofTetR and the control reference
signal TetR*. (C) Time evolution of IPTG (i.e., control signal). Parameter values: kp = 0.0016 and aTc = 25 ng mL−1.

Figure 7. CBC with MPC applied to the stochastic toggle switch model eq 4 in BSim. (A) Density plot of equilibrium curve measured using CBC.
Reference equilibrium curve obtained using numerical continuation (- -). (B) Time evolution of one simulation ofTetR and the control reference signal
TetR*. (C) Time evolution of IPTG (i.e., control signal). Parameter values: γ = 0.3 (eq 25) and aTc = 25 ng mL−1.
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losing accuracy in the diagram retrieved as shown in Figures S3
and S4. Nonetheless, the present method could be improved by
developing an algorithm for automatic reference stepping with a
variable number of points collected.
Single-Cell CBC Using Agent-Based Simulations. To

further prove the applicability of CBC to synthetic biology, we
validated the method in BSim, a Java-based bacteria
simulator,30,33 where it is possible to reproduce a microfluidics
experiment including a mathematical representation of move-
ment, growth and division of cells as well as spatial distribution
and diffusion of chemicals. We implemented single cell control
considering the same model used for the stochastic scenario (eq
4). Simulation settings (i.e., sampling time, number of collected
points, gains, etc.) were kept the same as above, with minor
differences due to changes in the programming language.
In Figures 6B, 7B, and Supplementary Movies S3 and S4

representative examples of TetR and IPTG trajectories are
shown. The bifurcation curves that are obtained, shown in
Figure 6A and 7A, are comparable with previous results obtained
on the stochastic model. However, we observed worse control
performances for the proportional controller in BSim. This is
mainly due to additional factors introduced in simulations.
Specifically, the cells biomechanics and their flush out from the
microfluidic chamber are simulated, as well as the chemicals’
spatial distribution and diffusion that introduce additional delay
in the control input delivery. Also, in BSim we explicitly simulate
an actuation delay due to the time the media takes to be
delivered to the cells within the microfluidic device. All these
factors might contribute to the performances exhibited by the
proportional controller. A similar result when using more
realistic simulation environments was also found in ref 34, where
the authors showed that the performance of a PI controller
considerably deteriorated when the algorithm was tested on an
agent based model, while an MPC algorithm was able to
maintain similar performance. Further information about BSim
can be found in the Methods section.
Results with reduced points and steady state detection

obtained in BSim (Figure S7 and Figure S8) were similar to
short stochastic simulations in Matlab. Here, the increased
complexity of simulations takes into account many sources of
noise (such as spatial diffusion of chemicals); for this reason,
results are more scattered around the numerically computed
bifurcation diagram (see Figure S7A and Figure S8A).
Nonetheless, implemented controllers manage to stabilize
trajectories along the unstable branch of equilibria.
Considering the stochasticity of the experiments, there might

be variability in the amount of time needed to uncover the
bifurcation curve but, in general, it can be reduced up to less than
a third of the original simulations.
Model Calibration via Data Collected Using CBC in a

Noisy Scenario. Methods for parameter identification in
nonlinear systems often rely on optimization routines: given a
model, parameter identification allows to calibrate its output in
order to match experimental data (refer to the literature35,36 for
further information).
Using the approach by Beregi et al.,32 we show how the

equilibria measured using CBC can be exploited to estimate the
toggle switch model parameters, and how data corresponding to
unstable equilibria help in retrieving a model that captures the
bistable behavior of the system. Further information about the
identification process can be found in the Methods.
The equilibrium curves obtained from parameters identified

using CBC data are shown in Figure S9D for the deterministic

scenario and in Figure S9E,F for the stochastic scenario (in
green and red data associated with the proportional controller
and with the MPC, respectively). For the sake of comparison,
model parameters were also estimated from points collected
using a traditional, open-loop parameter sweep where different
levels of input parameter (IPTG) were tested for both noise-free
and noisy scenarios (Figure S9A and B,C, respectively). The
equilibrium curve obtained in this way generally does not
reproduce the bistable behavior of the system, except slightly in
the ideal case of the deterministic simulations (Figure S9A). On
the other hand, data collected with CBC still capture bistability
even in stochastic simulations (Figure S9E,F), although without
being able to reproduce the original numerical bifurcation curve.
Parameter estimation results show that the use of data

including unstable equilibria helps to estimate parameters that
reproduce bistability. As such, it is thought that theMPC control
approach is preferable compared to the proportional control as it
offers greater control over the distribution of data points along
the equilibrium curve. Estimated parameters are shown in Table
S1 for all different collected data. Interestingly, the variation of
some parameters does not significantly affect the resulting fitted
curve. Take, for example, the red line in Figure S9D, which is in
excellent agreement with the reference equilibrium curve but
was calculated with some identified parameters values being up
to 41% different from their nominal value, hinting to
nonidentifiability of some parameters. We confirmed this by
performing a structural identifiability analysis on the system,
using the STRIKE-GOLDD toolbox,37 which showed un-
identifiability of 9 parameters out of 14 when we considered two
measurable outputs (LacI and TetR), one known control input
(IPTG), and one other input as a fixed constant (aTc). For
further reference, structural unidentifiability of the 2 ODEs
toggle switch system for fixed inputs was also highlighted by
Villaverde et al.38

We note that bifurcation curves estimated from sweeps can be
improved to reproduce bistability if additional knowledge about
the presence of horizontal asymptotes for the stable branches is
introduced in the cost function used for parameter estimation
(Figure S10A−C). However, obtaining qualitatively different
results for similar estimation approaches would typically lead to
poor confidence in the results. This modified approach is also
not systematic, as the true behavior of the system is assumed to
be known. Using this new approach with CBC data further
improves the agreement between the reference and identified
models (Figure S10D−F).
Concluding Remarks. This paper presents the first

application, in silico, of CBC to biochemical systems. In
particular, CBC can track the stable and unstable equilibria of
a synthetic gene network behaving as a toggle switch. In the
absence of noise, a perfect agreement between equilibrium
curves measured using CBC and standard numerical continu-
ation methods is found. A notable challenge in biological
applications, as compared to the mechanical systems studied so
far with CBC, is the significant presence of (process) noise. Our
results on the stochastic models (Matlab and Bsim) clearly show
that CBC is still able to uncover the bistable nature of the
system, as recorded data points qualitatively follow the
equilibrium curve of the underlying deterministic model.
Besides exploring the nonlinear dynamics of the physical

system directly in the experiment, CBC provides informative
data for parameter estimation. Our results show that the
measured data, especially those falling in the unstable region,
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was critical for the identification of model parameters that can
reproduce bistability.
CBC appears therefore as a valuable tool for uncovering the

dynamics of potentially more complex synthetic gene networks
even in the presence of significant levels of noise. CBC can also
be used to characterize oscillations39 and other bifurcations.17,40

The information gathered with CBC has the potential to enable
a more accurate understanding of biochemical interactions and
thus a more precise prototyping of those behaviors into novel
synthetic gene circuits.
An important feature of CBC is that it is a model-free method,

since it does not require a model of the system to work, and the
accuracy of the results is independent from any modeling
assumption. CBC also does not rely on a particular control
strategy, provided the controller can be made noninvasive and is
able to stabilize unstable trajectories. In this regard, the use of a
mathematical model (even approximate) can improve the
control performance. For instance, the initial estimate of a
proportional controller gain can be obtained based on a model
and then further refined by trial and error during experiments.
We also showed that a model-predictive controller, based on a
simple linear model, can provide a smaller steady-state control
error, resulting in better discretization of the equilibrium curve
and beneficial for parameter estimation. MPC is a controller
broadly used in biology,20 which generally performs best for fast
varying references.41 We hope that the use of MPC in the
present paper paves the way for a wide range of applications of
CBC in systems and synthetic biology.
Future Developments. In future studies we aim to apply

the strategy in vivo, using the microfluidic experimental setup
already described in the literature,24,20,22 which proved to be
successful for control experiments involving both mammalian
and bacterial cells.
Several challenges will have to be addressed to enable a wider

uptake of CBC:

1. Noise. The presence of noise can make stabilization more
difficult, as observed here and also highlighted by Lugagne
et al.6 Moreover, the presence of noise affects the
noninvasiveness associated with the control input.
Indeed, noise introduces variations in the control signal
that cannot be suppressed completely. While this appears
to have a mild effect on the system considered here, this is
arguably not the case in general. As of now, some noise-
related effects can be compensated by considering signal
processing techniques, but more rigorous methods are
required.

2. Control. As of now, there are no general and systematic
methods to design the controller used in CBC. Currently,
control parameters are found by trial and error. While this
works for simple systems, this approach does not scale to
more complex systems where more sophisticated control
strategies including, for instance, multiple inputs and
outputs, will be needed. A step in that direction has
recently been made by Li and Dankowicz,42 who
proposed adaptive control design strategies for CBC.

3. Experimental time. Our initial simulations were partic-
ularly long (298 h in Figures 4−7). While such
experiments can be achieved with some experimental
set-ups�Balagadde ́ et al.43 performed experiments on an
Escherichia coli prey−predator system that lasted between
200 and 500 h using a microchemostat platform�this is
currently not possible using microscopy/microfluidic

platform.6,22 It is in principle possible to significantly
reduce testing time by improving the performance of the
controller to reduce the transient. However, this can
prove difficult due to the significant presence of noise in
biochemical systems. Nonetheless, we showed that, for
the presented gene network, it is possible to adjust the
number of recorded points and CBC parameters to
significantly reduce experimental time (2−3 days in the
deterministic case, and 3−4 days in the stochastic case)
while preserving a fine discretization of the equilibrium
curve.

■ METHODS
Model of the Toggle Switch.The genetic toggle switch is a

well-characterized bistable biological circuit, first embedded in
Escherichia coli by Gardner et al.10 The system consists of two
repressors (LacI and TetR), which mutually repress each other,
and two inducers (aTc and IPTG), which can externally tune the
genes’ production (Figure 1 A). In the absence of inducers, the
circuit exhibits two stable equilibria. Levels of LacI and TetR can
be measured via fluorescent reporters: for example, mKa-
te2(RFP) and mEGFP(GFP) can be used to monitor LacI and
TetR, respectively.6

Here, we will refer to the Hill-type model developed by
Lugagne et al.,6 representing mRNA transcription, translation,
and degradation/dilution due to growth. Mathematically, the
system is described by a set of four ordinary differential
equations:
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where the system states are given by the genes production LacI
and TetR and the associated mRNAs (mRNALacI, mRNATetR),
kL T

m
/
0 is the leakage transcription rate, kL T

m
/ is the transcription

rate, kL T
p

/ the translation rate, gL T
m

/ the mRNA degradation rate,
and gL T

p
/ is the protein degradation rate. Parameters are listed in

Table 1.
The authors assumed that the repressors could be modeled

with Hill function (h(x, θ, η) = 1/(1 + x/θ)η), where θ
represents a threshold parameter for the Hill function and η is
the Hill coefficient. Twomore equations were added to take into
account inducers diffusion through the cell membrane.
Formally:
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The deterministic version of the model does not capture the
intrinsic stochasticity of biochemical processes. A more accurate
description is provided by the stochastic modeling procedure,
on the basis of the pseudoreactions listed in Table 2.
Specifically, we employed a SDE based model for the

description of biochemical systems:44

= +x Sf x t Sdiag f x dWd ( ) d ( ( ) ) (4)

Here:
• S is the stoichiometry matrix where each row is associated

with a state variable and each column i includes
stoichiometry coefficients associated with the reaction i.

• f is a vector where each element i corresponds to a
propensity function. The latter is a function describing the
probability of a certain reaction given the concentration of
the chemical species.45

• dW is a vector containing the Wiener Process increments.
Pseudoreactions and propensity functions were all given in ref

6, and here are reported in Table 2.
All simulations were performed using Matlab R2019b, unless

stated otherwise. To solve the system eq 2 we used the function
ode45, while for the stochastic model in eq 4 we implemented
the Euler−Maruyama method,44 which is known to be slightly
less accurate than the Stochastic Simulation Algorithm,45 but
more computationally efficient.
Throughout the paper we have assumed aTc to be fixed to 25

ng mL−1 for all simulations.

Control-Based Continuation Theory: Using Control to
Track Equilibria of the Underlying Uncontrolled System.
CBC seeks to define a bifurcation diagram by the application of a
noninvasive control action, which does not modify the
underlying uncontrolled system’s equilibria position in param-
eter space. To do so, the original method looks for a control
action whose contribution vanishes asymptotically (eq 1).
However, the same noninvasiveness can be achieved with a
slightly simplified method, provided that the control action
enters the system as bifurcation parameter.31 The fundamental
principles of the simplified CBC method used in this paper can
be explained using the scalar differential equation:

= +x x2 (5)

where is the bifurcation parameter. Equation 5
corresponds to the normal form of a fold (or saddle-node)
bifurcation. The equilibria of the above system are given by the
formula:

= ±x (6)

To trace out the equilibrium curve of eq 5, including both stable
and unstable equilibria, CBC relies on the presence of a
stabilizing feedback controller. The equation of motion of the
system including feedback control is given by

= + +x x u2 (7)

where u is the control signal given by a suitable, i.e., stabilizing,
control law. When the control signal and bifurcation parameter
affect the system in the same way (as in eq 7), the static
component of the control signal can be interpreted as a shift of
the bifurcation parameter μ. In this paper, a simple linear
proportional (P) law will be considered such that u is given by

Table 1. Parameters for the Toggle Switch Model

parameters description value

kLm0 Transcription rates (mRNA min−1) 3.20 × 10−2

kTm0 − 1.19 × 10−1

kLm − 8.30
kTm − 2.06
kLp Translation rates (a.u. mRNA−1 min−1) 9.726 × 10−1

kTp − 1.170
gLm Degradation rates (min−1) 1.386 × 10−1

gTm − 1.386 × 10−1

gLp − 1.65 × 10−2

gTp − 1.65 × 10−2

θLacI plac regulation by TetR (−) 31.94
ηLacI − 2.00
θIPTG − 9.06 × 10−2

ηIPTG − 2.00
θTetR ptet regulation by LacI (−) 30.00
ηTetR − 2.00
θaTc − 11.65
ηaTc − 2.00
kIPTGin IPTG exchange rate (min−1) 2.75 × 10−2

kIPTGout − 1.11 × 10−1

kaTcin aTc exchange rate (min−1) 1.62 × 10−1

kaTcout − 2.00 × 10−2

Table 2. Pseudoreactionsa
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are gene regulation functions, and h(x, θ, η) = 1/(1 + x/θ)η is the
decreasing Hill function. The other arrow superscripts are parameters
that can be found in Table 1.
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=u K x t x t( ( ) ( ))p ref (8)

where xref(t) is the control reference (or target) and Kp is the
proportional gain. Using eq 8 as control input, eq 7 becomes

= + +x x K x t x t( ( ) ( ))2
p ref (9)

which can be reordered as

= + +x x K x K x( ( ))2
p p ref (10)

Thus, we can write the equilibria of eq 10 and the control signal
at steady state as
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Writing xref as a function of the steady state control action u, we
can substitute eq 12 in eq 11 to obtain
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Solving the squared term and simplifying the equation we can
thus obtain

= ± +±x u( ) (16)

Equation 16 defines the same equilibrium curve as eq 6 for a
parameter * = + u . Therefore, the steady state contribution
of the control signal does not have to be removed, and it can
simply be considered as a shift in parameter space. The control
strategy so defined is noninvasive (it does not modify the
position of system’s equilibria in parameter space), and the
requirement of eq 1 can be translated into the following:

+
u tlim ( ) 0

t (17)

which is equivalent to converging to a steady state value.
Here we demonstrated how CBC can be applied to track the

equilibria of a system by the application of a stabilizing
proportional controller. However, the same results could be
achieved with other control strategies as long as the controller
stabilizes the system’s unstable equilibria. In fact, CBC is not
restricted to a particular form of control, and thus the control law
can in principle take a general form:

=u t g x t x t( ) ( ( ) ( ))ref (18)

Main Steps of the Control-Based Continuation
Algorithm. The algorithm applied for control-based continu-
ation can be briefly summarized in the following steps:

1. Set a new control reference. A reference value xref = TetR*
is used to evaluate the error (the difference between the
measured TetR and the reference target), and it is given to

the controller. The range where the reference is picked
normally covers the minimum and maximum expression
of the protein of interest, but it can be modified according
to the need (Figure 2 B shows a maximum reference value
of TetR* = 1800 [a.u.], although the maximum expression
of TetR is 1200 [a.u.]).

2. Compute the control action. Depending on the control
strategy, either the MPC performs optimization and
defines the optimal control input or the proportional
controller evaluates the control action depending on the
error value.

3. Feed the control action to the system. The computed
control action u is fed to the system for 5 min
continuously, as it is considered to be the minimum
sampling time for measurements and actuation in an
hypothetical microfluidics/microscopy experimental
setup. After 5 min, the system output is measured and a
new error is computed. Steps 2 and 3 are repeated until
the process is considered at steady state.

4. Check for steady state. The initial implementation of the
algorithm considers the system at steady state after a fixed
amount of time (9 h and 55 min for experiments shown in
the Results and Discussion section). The algorithm allows
a variable time for steady state computation. In this case,
to compute the steady state ofTetR and IPTG, the slope of
the linear curve fitting the last 12 samples after 3 h of
simulation is calculated for both the error and the control
signals (where the slope corresponds to the angle the
curve makes with respect to the x-axis). If the computed
value is below a user-defined tolerance, the system is
assumed at steady state. Otherwise, the simulation
continues and the steady state is checked every new
sample, until the slope is sufficiently small. A threshold is
set on both the error and the control slopes, which may
vary between a deterministic and a stochastic simulation.

5. Acquire the steady state. The steady state values of TetR
and IPTG (TetR and IPTG) are saved as the average value
computed over the last 12 samples of each signal, and the
algorithm goes back to step 1.

All steps are repeated until enough steady states are collected,
or until the range of output and parameter values has been
covered. An initial guess is given as initial state for the algorithm
to start with. A schematic of few steps can be seen in Figure 1B.
Results of the variable stepping reference algorithm can be

seen in Figures S1−S8 for both the deterministic and the
stochastic scenarios.
Data Availability. The code used in this publication is

available at: https://github.com/lrenson/cbc-synbio-paper,
https://github.com/diBernardoGroup/Control-Based-
Continuation-of-a-genetic-Toggle-Switch.
Movies S1, S2, S3, and S4 are provided as Supporting

Information.
Proportional Controller. The simplest controller that can

satisfy CBC requirements is a proportional controller, formally
described by the control law of eq 8. The error signal is
computed by subtracting the measured output to the control
reference (TetR* − TetR). The error is then fed to the controller
to evaluate the control input IPTG given to the toggle switch
system. A schematic of the control loop can be seen in Figure
S11A.
Despite its simplicity, the proportional controller has proved

to be a solid choice for CBC. As long as the controller can
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stabilize the system, the control action is noninvasive, and thus
the points collected through the CBC routine correspond to the
equilibria of the underlying uncontrolled system.
To tune the proportional gain Kp we linearized the system

around an unstable equilibria and then we used the root locus to
find the minimum gain able to stabilize the linearized system.
Depending on the type of simulation, deterministic or
stochastic, the Kp gain is then adjusted by trial and error.
Model Predictive Controller.Model predictive control is a

control scheme based on two main features: prediction and
optimization. At each step, a model reproducing the process
behavior is used to predict the process outputs to given input
signals. The input minimizing a cost function is computed using
an optimization algorithm and fed to the controlled process. We
chose a linear model to reproduce behaviors we expect from the
real process. A further requirement for the prediction procedure
is the process current state which, if not fully measurable, can be
estimated using a Kalman filter. A schematic of the control loop
can be seen in Figure S11B.
System Identification to Reproduce the Process

Experimental Behavior through a Simplified Model.
The MPC strategy requires a model to predict the process
trajectories and carry out the optimization routine. We
artificially reproduced the experimental behaviors using
stochastic numerical simulations. Specifically, we measured the
response of the system’s outputs (LacI and TetR) to different
randomly generated pulses of aTc and IPTG, both with fixed and
variable amplitude. This data set was used to identify a LTI
system via noniterative subspace estimation algorithm, using the
Matlab System Identification toolbox. The result was a
continuous-time identified state space model of the following
form:
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= + +
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where x(t) is the state, u(t) is the input to the system, y(t) is the
system output, d(t) is the state disturbance, and K is its
associated matrix.46

Here, A, B, C, and K are free parameters to estimate, while D
was set to 0. Equation 19 is called innovation form of the state-
space model, and the matrix K corresponds to the Kalman gain
matrix associated with the identified system.
Definition of the Kalman Predictor to Reconstruct

Unmeasurable States.Considering the Toggle Switch system
eq 2, we measure only LacI and TetR concentrations.
To estimate the remaining states we opted for a Kalman filter,

defined as
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where x is the state estimate, y is the output estimate, and all the
matrices A, B, C,D, K correspond to those obtained through the
identification process.
Equation 20 can be rewritten as follows:
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The addition of a correction based on the measured outputs
LacI and TetR = [ [ ]]U u t LacI TetR( ( ); , )k enables a better fit of
the original process outputs.47

The ability to predict the data recorded is evaluated using the
percentage of the output variation that is reproduced by the
model. This is defined as
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where y is the measured output, y is the simulated predicted
model output, and y is the mean value of y. Fit percentages of
LacI and TetR outputs for the system in eq 21 are 96.4% and
92.2%, respectively.
Definition of a Cost Function to Compute an Optimal

Control Action. To compute the optimal control action, we
employed a genetic algorithm.48 Commonly, MPC algorithms
use quadratic cost functions weighting both the state of the
system and the control action. Considering a scalar example, a
quadratic cost function could be defined as
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Here, α and β correspond to weighting coefficients reflecting the
relative importance of the error e and the control input u; N
represents the prediction horizon, and i the current time. To
adapt the cost function to CBC and guarantee noninvasiveness
of the control input, we initially replaced the control input u by
its variation Δu as follows:

= + + +
= =

J i e i k u i k( ) ( ) ( )
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N

k
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1

2

1

2

(24)

In this way, the optimization finds the best trade off between
regulation accuracy and control variation. Although eq 24
granted us good results in most of the simulations, the tuning of
both α and β was difficult, as small changes into the CBC
algorithm variables (such as the number of points collected
during a single simulation) affected the quality of the results and
demanded for retuning of the cost function parameters.
To simplify the cost function, we set β = 0 and α = N − k + 1

and forced the optimizer to limit both the control input
amplitude and variation at each iteration point. Formally we
defined the following constraints:

< <

< < +

u t

u u u t u u u u

0 ( ) 1

( )

init

prev prev curr prev prev curr init

(25)

where uinit(t) is the control input during the first step of the
algorithm, ucurr(t) is the control input for all other steps except
for the first one, and uprev is the control input steady state value,
saved before stepping the reference in the algorithm.
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The presence of external constraints on the control action
allows to have a noninvasive contribution without the need for
the βΔu(i + k)2 term in the cost function. The parameter γ
defines a percentage bandwidth that we consider acceptable for
the control action to vary between. In other words, at each
iteration of the CBC algorithm�by which we mean every time
we change the reference signal�the control action cannot vary
more than γ with respect to the previous registered steady state
input. In our simulations, γ was set to 0.3 for 30 points (Figure 3,
5) and to 0.5 for 11 and 12 points (Figure S2, S4). Other settings
for γmight be found in the figure captions. Fewer points result in
larger control reference steps, which can be associated with
bigger steps in the control input, and for this reason γ can be
more easily calibrated just by considering the amount of points
to be collected in a simulation.
Parameter Estimation Process. For the estimation

process, we calculated the analytical solutions of our toggle
switch model eq 2 that is used to build the cost function for
parameter estimation. In particular, we want to define the
function:

=IPTG g TetR( , ) (26)

that has a unique real solution for each admissible value of TetR
and for a chosen set of parametersΘ = (klm0, klm, θaTc, ηaTc, θTetR,
ηTetR, ktm0, ktm, θIPTG, ηIPTG, θLacI, ηLacI, klp, ktp), which is the
subject of the estimation process. The full eq 26 is presented in
the Supporting Information. Here we considered the parameters
(gtm, glm, glp, gtp) to be fixed to the values computed in ref 6,
and therefore we did not estimate them.
Once we computed the analytical definition of g(TetR, Θ), we

built the following cost function:

= [ ] [ ]J g TetR TetR IPTG TetR(min ( , ), , )
i k

k i 2

(27)

where [ ]IPTG TetR, i are the measured steady state values of
control input and control output out of the CBC routine for the i
point of the bifurcation curve. The k index looks for the
estimated point [ ]g TetR TetR( , ), with minimum distance (L2

norm) from the measured steady state considered by the index i.
TetR is normalized between 0 and 1 to be comparable with IPTG
.
Minimizing the cost function eq 27 for all points collected

during an experiment, it is possible to estimate the best set of
parameters Θ that allows to characterize a model of the toggle
switch reproducing the bistability behavior seen via experiments.
Once a set of parameters is found (using a genetic algorithm), it
is possible to build the bifurcation curve by solving eq 26 for
fixed values of TetR. Sets Θ that gave complex values of IPTG
were directly discarded. Estimates of parameters for different
experimental settings and percentage variation with respect to
nominal values can be seen in Table S1.
In order to validate the results of the estimation using data

collected with the CBC algorithm, a comparison with the
parameter sweeps method was made. Parameter sweeps is a
simple experimental design to collect data at different values of a
parameter of interest and is commonly used for parameter
estimation. Considering the example of the toggle switch,
parameter sweeps are implemented registering the steady state
signal TetR for fixed values of the input IPTG. Collected points
IPTG TetR( , ) fall on the stable branches of our bifurcation
curve, as shown in Figure S9A−C. This method does not allow

to collect unstable steady states, as there is no control over the
system.
We showed that CBC grants a more robust estimation by

collecting data in the unstable branch, which is not possible
through simple parameter sweeps, and allows to retrieve the
bistability of the system (see Figure S9D,E,F).
As highlighted in the main text, assuming an a priori

knowledge of the system’s bistability, we could improve the
performances of our calibration by releasing the constraint on
setsΘ that generate complex values of IPTG. Furthermore, more
complex cost function could be considered. Figure S10 shows
this latter improved case, with very good fitting performances
compared to the initial estimation. Although a noticeable
improvement, the modified cost function requires a much longer
computational time and knowledge of the system of interest’s
dynamics, which is often not the case when CBC is applied
experimentally.
Agent-Based Simulations. All agent based simulations

were performed using BSim, an agent-based environment
designed to simulate bacterial populations.30,33 Here, cell
biomechanics are explicitly modeled, together with cell growth
and division. The spatial configuration and dynamics of the
chemical inducers added in the culture environment are also
simulated, introducing an extra time delay in the delivery of the
inducer molecules to the cells. In addition, it is possible to mimic
microfluidic-based experimental platforms, including related
physical and technological constraints (e.g., dimensions and
shape of microfluidic chambers, flush out of cells). Specifically,
we can define the geometry and dimension of the microfluidic
chamber, and the physical interactions of the cells with the
device. We can account for cells’ movement and collision inside
the growth chamber and simulate the flushing out of the cells
from the chamber with their consequent removal from the set of
analyzable cells. The CBC algorithm was implemented by
adding to the simulation environment both the proportional and
the MPC controllers.
As previously done in Shannon et al.22 and Salzano et al.,49 the

simulation environment has been complemented with the SDE
solver based on the Euler−Maruyama method eq 4.
BSim simulates experiments via a microfluidic-based system

composed by a microfluidic device, a microscope, a computer,
and an actuation system. Dimensions of the growth chamber
were initially taken from Lugagne et al.,6 but then set to 16 μM×
1.5 μM × 1 μM to reduce the simulation time. The proportional
controller was implemented directly in BSim, while the MPC
was implemented in Matlab and externally called by the agent-
based simulator. All biomechanical parameters of the cells were
set to the same values used byMatyjaszkiewicz et al.30Moreover,
realistic constraints on the sampling and actuation time were
considered, similarly to what was already done for Matlab CBC
simulations. More precisely, we enforced the state of the cells to
be measured every 5 min, and we assumed the input provided to
be changed at most every 5 min. Finally, we assumed a 40 s delay
on the actuation of the control inputs, accounting for the time
the inducers would take to reach the microfluidics cell culture
chambers in a physical experiment.
All the factors taken into account in BSim added additional

sources of variability to the simulations, sometimes affecting the
performance of the control algorithms, as discussed in the
Results and Discussion section.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00632
ACS Synth. Biol. 2022, 11, 2300−2313

2311

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_001.pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssynbio.1c00632.

Figures of short CBC simulations in a deterministic
setting (Figure S1 and S2) and in a stochastic setting
(Figure S3 and S4) with both controllers and reduced
points; Figures of short CBC simulations in a stochastic
setting (Figure S5 and S6) with both controllers and all
points; Figures of short CBC simulations in a stochastic
setting with BSIM (Figure S7 and S8); Equilibrium curve
computed for model parameters estimated with con-
straints on IPTG complexity using parameter sweep data,
CBC with MPC data and CBC with P controller data
(Figure S9); Equilibrium curve computed for model
parameters estimated without constraints on IPTG
complexity using parameter sweep data, CBC with
MPC data and CBC with P controller data (Figure
S10); Control Feedback Loops, both MPC and P,
implemented for CBC (Figure S11); Estimated param-
eters for the toggle switch model depending on the
method used to collect data (Table S1); Full IPTG =
g(TetR, Θ) equation for parameter estimation; CBC
movie legends (PDF)
Movie S1 (MP4)
Movie S2 (MP4)
Movie S3 (MP4)
Movie S4 (MP4)

■ AUTHOR INFORMATION
Corresponding Authors

Ludovic Renson − Department of Mechanical Engineering,
Imperial College London, London SW7 2BX, U.K.;
Email: l.renson@imperial.ac.uk

Lucia Marucci − Engineering Mathematics Department,
University of Bristol, Bristol BS8 1TW, U.K.; BrisSynBio,
University of Bristol, Bristol BS8 1TQ, U.K.; School of Cellular
and Molecular Medicine, University of Bristol, Bristol BS8
1UB, U.K.; orcid.org/0000-0002-7553-6358;
Email: lucia.marucci@bristol.ac.uk

Authors
Irene de Cesare − Engineering Mathematics Department,
University of Bristol, Bristol BS8 1TW, U.K.; Department of
Electrical Engineering and Information Technologies,
University of Naples Federico II, 80125 Naples, Italy

Davide Salzano − Engineering Mathematics Department,
University of Bristol, Bristol BS8 1TW, U.K.; Department of
Electrical Engineering and Information Technologies,
University of Naples Federico II, 80125 Naples, Italy

Mario di Bernardo − Department of Electrical Engineering and
Information Technologies, University of Naples Federico II,
80125 Naples, Italy

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssynbio.1c00632

Author Contributions
#M.d.B., L.R., and L.M. are co-senior authors.
Author Contributions
I.d.C. designed and carried out the simulations in Matlab2019b
and wrote the manuscript with input from all the authors. D.S.
developed the BSim code and wrote the agent-based simulations

section. M.d.B. supervised the initial development of CBC and
the agent-based implementation. L.R. provided the initial
framework for the CBC code. L.R. and L.M. conceived the
project and supervised the entire work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
I.d.C. is supported by an EPSRC DTP Scholarship. L.M. is
supported by the Medical Research Council Grant MR/
N021444/1, by the Engineering and Physical Sciences Research
Council Grants EP/R041695/1 and EP/S01876X/1, and by the
European Union’s Horizon 2020 under Grant Agreement No.
766840. L.R. is funded by a Research Fellowship from the Royal
Academy of Engineering (RF1516/15/11).

■ ABBREVIATIONS
CBC, control-based continuation; MPC, model predictive
control; P, proportional control.

■ REFERENCES
(1) Din, M. O.; Danino, T.; Prindle, A.; Skalak, M.; Selimkhanov, J.;
Allen, K.; Julio, E.; Atolia, E.; Tsimring, L. S.; Bhatia, S. N.; Hasty, J.;
et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature
2016, 536 (7614), 81−85.
(2) Elowitz, M. B.; Leibler, S. A synthetic oscillatory network of
transcriptional regulators. Nature 2000, 403 (6767), 335−338.
(3)Marucci, L.; Barton, D. A.W.; Cantone, I.; Ricci, M. A.; Cosma,M.
P.; Santini, S.; di Bernardo, D.; di Bernardo, M. How to turn a genetic
circuit into a synthetic tunable oscillator, or a bistable switch. PLoS
ONE 2009, 4 (12), No. e8083.
(4) Stricker, J.; Cookson, S.; Bennett, M. R.; Mather, W. H.; Tsimring,
L. S.; Hasty, J. A fast, robust and tunable synthetic gene oscillator.
Nature 2008, 456 (7221), 516−519.
(5) Tigges, M.; Denervaud, N.; Greber, D.; Stelling, J.; Fussenegger,
M. A synthetic low-frequency mammalian oscillator. Nucleic Acids Res.
2010, 38 (8), 2702−2711.
(6) Lugagne, J.-B.; Sosa Carrillo, S.; Kirch, M.; Kohler, A.; Batt, G.;
Hersen, P. Balancing a genetic toggle switch by real-time feedback
control and periodic forcing. Nat. Commun. 2017, 8 (1), 1−8.
(7) Kramer, B. P; Viretta, A. U.; Baba, M. D.-E.; Aubel, D.; Weber, W.;
Fussenegger, M. An engineered epigenetic transgene switch in
mammalian cells. Nat. Biotechnol. 2004, 22 (7), 867−870.
(8) Perez-Carrasco, R.; Barnes, C. P.; Schaerli, Y.; Isalan, M.; Briscoe,
J.; Page, K. M. Combining a toggle switch and a repressilator within the
ac-dc circuit generates distinct dynamical behaviors. Cell Syst. 2018, 6
(4), 521−530.
(9) Siciliano, V.; Menolascina, F.; Marucci, L.; Fracassi, C.; Garzilli, I.;
Moretti, M. N.; di Bernardo, D. Construction and modelling of an
inducible positive feedback loop stably integrated in a mammalian cell-
line. PLoS Comput. Biol. 2011, 7 (6), No. e1002074.
(10) Gardner, T. S.; Cantor, C. R.; Collins, J. J. Construction of a
genetic toggle switch in escherichia coli. Nature 2000, 403 (6767),
339−342.
(11) Balazsi, G.; van Oudenaarden, A.; Collins, J. J. Cellular decision
making and biological noise: from microbes to mammals. Cell 2011,
144 (6), 910−925.
(12) Marucci, L. Nanog dynamics in mouse embryonic stem cells:
results from systems biology approaches. Stem Cell Int. 2017, 2017, 1.
(13) Babtie, A. C.; Kirk, P.; Stumpf, M. P. H. Topological sensitivity
analysis for systems biology. Proc. Natl. Acad. Sci. U. S. A. 2014, 111
(52), 18507−18512.
(14) Hsiao, V.; Swaminathan, A.; Murray, R. M. Control theory for
synthetic biology: recent advances in system characterization, control
design, and controller implementation for synthetic biology. IEEE
Control Syst. 2018, 38 (3), 32−62.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00632
ACS Synth. Biol. 2022, 11, 2300−2313

2312

https://pubs.acs.org/doi/10.1021/acssynbio.1c00632?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_002.mp4
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_003.mp4
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_004.mp4
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00632/suppl_file/sb1c00632_si_005.mp4
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ludovic+Renson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:l.renson@imperial.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lucia+Marucci"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7553-6358
mailto:lucia.marucci@bristol.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Irene+de+Cesare"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Davide+Salzano"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mario+di+Bernardo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00632?ref=pdf
https://doi.org/10.1038/nature18930
https://doi.org/10.1038/35002125
https://doi.org/10.1038/35002125
https://doi.org/10.1371/journal.pone.0008083
https://doi.org/10.1371/journal.pone.0008083
https://doi.org/10.1038/nature07389
https://doi.org/10.1093/nar/gkq121
https://doi.org/10.1038/s41467-017-01498-0
https://doi.org/10.1038/s41467-017-01498-0
https://doi.org/10.1038/nbt980
https://doi.org/10.1038/nbt980
https://doi.org/10.1016/j.cels.2018.02.008
https://doi.org/10.1016/j.cels.2018.02.008
https://doi.org/10.1371/journal.pcbi.1002074
https://doi.org/10.1371/journal.pcbi.1002074
https://doi.org/10.1371/journal.pcbi.1002074
https://doi.org/10.1038/35002131
https://doi.org/10.1038/35002131
https://doi.org/10.1016/j.cell.2011.01.030
https://doi.org/10.1016/j.cell.2011.01.030
https://doi.org/10.1155/2017/7160419
https://doi.org/10.1155/2017/7160419
https://doi.org/10.1073/pnas.1414026112
https://doi.org/10.1073/pnas.1414026112
https://doi.org/10.1109/MCS.2018.2810459
https://doi.org/10.1109/MCS.2018.2810459
https://doi.org/10.1109/MCS.2018.2810459
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(15) Sieber, J.; Krauskopf, B. Control based bifurcation analysis for
experiments. Nonlinear Dynamics 2008, 51 (3), 365−377.
(16) Barton, D. A.; Mann, B. P; Burrow, S. G Control-based
continuation for investigating nonlinear experiments. J. Vib. Control
2012, 18 (4), 509−520.
(17) Renson, L.; Barton, D. A. W.; Neild, S. A. Experimental tracking
of limit-point bifurcations and backbone curves using control-based
continuation. Int. J. Bifurcation Chaos 2017, 27 (01), 1730002.
(18) Renson, L.; Shaw, A.D.; Barton, D.A.W.; Neild, S.A. Application
of control-based continuation to a nonlinear structure with
harmonically coupled modes. Mech. Syst. Signal Process. 2019, 120,
449−464.
(19) Menolascina, F.; Fiore, G.; Orabona, E.; De Stefano, L.; Ferry,
M.; Hasty, J.; di Bernardo, M.; di Bernardo, D. In-vivo real-time control
of protein expression from endogenous and synthetic gene networks.
PLoS Comput. Biol. 2014, 10 (5), No. e1003625.
(20) Postiglione, L.; Napolitano, S.; Pedone, E.; Rocca, D. L.;
Aulicino, F.; Santorelli, M.; Tumaini, B.; Marucci, L.; di Bernardo, D.
Regulation of gene expression and signaling pathway activity in
mammalian cells by automated microfluidics feedback control. ACS
Synth. Biol. 2018, 7 (11), 2558−2565.
(21) Pedone, E.; Postiglione, L.; Aulicino, F.; Rocca, D. L.; Montes-
Olivas, S.; Khazim, M.; di Bernardo, D.; Pia Cosma, M.; Marucci, L. A
tunable dual-input system for on-demand dynamic gene expression
regulation. Nat. Commun. 2019, 10 (1), 1−13.
(22) Shannon, B.; Zamora-Chimal, C. G.; Postiglione, L.; Salzano, D.;
Grierson, C. S.; Marucci, L.; Savery, N. J.; di Bernardo, M. In vivo
feedback control of an antithetic molecular-titration motif in
escherichia coli using microfluidics. ACS Synth. Biol. 2020, 9 (10),
2617−2624.
(23) Uhlendorf, J.; Miermont, A.; Delaveau, T.; Charvin, G.; Fages, F.;
Bottani, S.; Batt, G.; Hersen, P. Long-term model predictive control of
gene expression at the population and single-cell levels. Proc. Natl. Acad.
Sci. U. S. A. 2012, 109 (35), 14271−14276.
(24) Pedone, E.; de Cesare, I.; Zamora-Chimal, C. G.; Haener, D.;
Postiglione, L.; La Regina, A.; Shannon, B.; Savery, N. J.; Grierson, C.
S.; di Bernardo, M.; Gorochowski, T. E.; Marucci, L.; et al. Cheetah: a
computational toolkit for cybergenetic control. ACS Synth. Biol. 2021,
10 (5), 979−989.
(25) de Cesare, I.; Zamora-Chimal, C. G.; Postiglione, L.; Khazim,M.;
Pedone, E.; Shannon, B.; Fiore, G.; Perrino, G.; Napolitano, S.; di
Bernardo, D.; Savery, N. J.; Grierson, C.; di Bernardo, M.; Marucci, L.
Chipseg: An automatic tool to segment bacterial and mammalian cells
cultured in microfluidic devices. ACS Omega 2021, 6 (4), 2473−2476.
(26) Khazim, M.; Pedone, E.; Postiglione, L.; di Bernardo, D.;
Marucci, L. A microfluidic/microscopy-based platform for on-chip
controlled gene expression in mammalian cells. In Synthetic Gene
Circuits; Springer, 2021; pp 205−219.
(27) Khazim, M.; Postiglione, L.; Pedone, E.; Rocca, D. L.; Zahra, C.;
Marucci, L. Towards automated control of embryonic stem cell
pluripotency. IFAC-PapersOnLine 2019, 52 (26), 82−87.
(28) Del Vecchio, D.; Dy, A. J.; Qian, Y. Control theory meets
synthetic biology. J. R. Soc. Interface. 2016, 13 (120), 20160380.
(29) Wu, M.; Su, R.-Q.; Li, X.; Ellis, T.; Lai, Y.-C.; Wang, X.
Engineering of regulated stochastic cell fate determination. Proc. Natl.
Acad. Sci. U. S. A. 2013, 110 (26), 10610−10615.
(30) Matyjaszkiewicz, A.; Fiore, G.; Annunziata, F.; Grierson, C. S.;
Savery, N. J.; Marucci, L.; di Bernardo, M. Bsim 2.0: an advanced agent-
based cell simulator. ACS Synth. Biol. 2017, 6 (10), 1969−1972.
(31) Barton, D. A. W.; Sieber, J. Systematic experimental exploration
of bifurcations with noninvasive control. Phys. Rev. E 2013, 87 (5),
052916.
(32) Beregi, S.; Barton, D. A. W.; Rezgui, D.; Neild, S. A. Robustness
of nonlinear parameter identification in the presence of process noise
using control-based continuation. Nonlinear Dynamics 2021, 104 (2),
885−900.
(33) Gorochowski, T. E.; Matyjaszkiewicz, A.; Todd, T.; Oak, N.;
Kowalska, K.; Reid, S.; Tsaneva-Atanasova, K. T.; Savery, N. J.;
Grierson, C. S.; di Bernardo, M. Bsim: an agent-based tool for modeling

bacterial populations in systems and synthetic biology. PLoS One 2012,
7, e42790.
(34) Guarino, A.; Fiore, D.; Salzano, D.; di Bernardo, M. Balancing
cell populations endowed with a synthetic toggle switch via adaptive
pulsatile feedback control. ACS Synth. Biol. 2020, 9 (4), 793−803.
(35) Walter, E.; Pronzato, L. Identification of Parametric Models: From
Experimental Data; Springer Verlag, 1997.
(36) Ljung, L. Perspectives on system identification. Ann. Rev. Control
2010, 34 (1), 1−12.
(37) Villaverde, A. F.; Barreiro, A.; Papachristodoulou, A. Structural
identifiability of dynamic systems biology models. PLoS Comput. Biol.
2016, 12 (10), No. e1005153.
(38) Villaverde, A. F.; Tsiantis, N.; Banga, J. R. Full observability and
estimation of unknown inputs, states and parameters of nonlinear
biological models. J. R. Soc., Interface 2019, 16 (156), 20190043.
(39) Sieber, J.; Krauskopf, B.;Wagg, D.; Neild, S.; Gonzalez-Buelga, A.
Control-based continuation of unstable periodic orbits. J. Comput.
Nonlinear Dynamics 2011, DOI: 10.1115/1.4002101.
(40) Renson, L.; Sieber, J.; Barton, D. A. W.; Shaw, A. D.; Neild, S. A.
Numerical continuation in nonlinear experiments using local gaussian
process regression. Nonlinear Dynamics 2019, 98 (4), 2811−2826.
(41) Fiore, G.; Perrino, G.; di Bernardo, M.; di Bernardo, D. In vivo
real-time control of gene expression: a comparative analysis of feedback
control strategies in yeast. ACS Synth. Biol. 2016, 5 (2), 154−162.
(42) Yang, L.; Dankowicz, H. Adaptive control designs for control-
based continuation in a class of uncertain discrete-time dynamical
systems. J. Vib. Control 2020, 1077546320913377.
(43) Balagadde, F. K; Song, H.; Ozaki, J.; Collins, C. H; Barnet, M.;
Arnold, F. H; Quake, S. R; You, L. A synthetic escherichia coli
predator−prey ecosystem. Mol. Syst. Biol. 2008, 4 (1), 187.
(44) Lakatos, E. Stochastic analysis and control methods for molecular
cell biology. Ph.D. Thesis. Imperial College London, 2017.
(45) Gillespie, D. T. Exact stochastic simulation of coupled chemical
reactions. J. Phys. Chem. 1977, 81 (25), 2340−2361.
(46) MATHWORKS Repository. https://it.mathworks.com/help/
ident/ug/identifying-state-space-models-with-independent-process-
and-measurement-noise.html.
(47) MATHWORKS Repository. https://it.mathworks.com/help/
ident/ug/definition-simulation-and-prediction.html.
(48) Davis, L. Handbook of Genetic Algorithms; Van Nostrand
Reinhold, 1991.
(49) Salzano, D.; Fiore, D.; di Bernardo, M. Controlling reversible cell
differentiation for labor division in microbial consortia. bioRxiv, August
3, 2021. DOI: 10.1101/2021.08.03.454926.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00632
ACS Synth. Biol. 2022, 11, 2300−2313

2313

https://doi.org/10.1007/s11071-007-9217-2
https://doi.org/10.1007/s11071-007-9217-2
https://doi.org/10.1177/1077546310384004
https://doi.org/10.1177/1077546310384004
https://doi.org/10.1142/S0218127417300026
https://doi.org/10.1142/S0218127417300026
https://doi.org/10.1142/S0218127417300026
https://doi.org/10.1016/j.ymssp.2018.10.008
https://doi.org/10.1016/j.ymssp.2018.10.008
https://doi.org/10.1016/j.ymssp.2018.10.008
https://doi.org/10.1371/journal.pcbi.1003625
https://doi.org/10.1371/journal.pcbi.1003625
https://doi.org/10.1021/acssynbio.8b00235?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.8b00235?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-019-12329-9
https://doi.org/10.1038/s41467-019-12329-9
https://doi.org/10.1038/s41467-019-12329-9
https://doi.org/10.1021/acssynbio.0c00105?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.0c00105?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.0c00105?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1206810109
https://doi.org/10.1073/pnas.1206810109
https://doi.org/10.1021/acssynbio.0c00463?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.0c00463?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c03906?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c03906?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ifacol.2019.12.240
https://doi.org/10.1016/j.ifacol.2019.12.240
https://doi.org/10.1098/rsif.2016.0380
https://doi.org/10.1098/rsif.2016.0380
https://doi.org/10.1073/pnas.1305423110
https://doi.org/10.1021/acssynbio.7b00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.7b00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevE.87.052916
https://doi.org/10.1103/PhysRevE.87.052916
https://doi.org/10.1007/s11071-021-06347-w
https://doi.org/10.1007/s11071-021-06347-w
https://doi.org/10.1007/s11071-021-06347-w
https://doi.org/10.1371/journal.pone.0042790
https://doi.org/10.1371/journal.pone.0042790
https://doi.org/10.1021/acssynbio.9b00464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.9b00464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.9b00464?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.arcontrol.2009.12.001
https://doi.org/10.1371/journal.pcbi.1005153
https://doi.org/10.1371/journal.pcbi.1005153
https://doi.org/10.1098/rsif.2019.0043
https://doi.org/10.1098/rsif.2019.0043
https://doi.org/10.1098/rsif.2019.0043
https://doi.org/10.1115/1.4002101
https://doi.org/10.1115/1.4002101?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s11071-019-05118-y
https://doi.org/10.1007/s11071-019-05118-y
https://doi.org/10.1021/acssynbio.5b00135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/msb.2008.24
https://doi.org/10.1038/msb.2008.24
https://doi.org/10.1021/j100540a008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100540a008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://it.mathworks.com/help/ident/ug/identifying-state-space-models-with-independent-process-and-measurement-noise.html
https://it.mathworks.com/help/ident/ug/identifying-state-space-models-with-independent-process-and-measurement-noise.html
https://it.mathworks.com/help/ident/ug/identifying-state-space-models-with-independent-process-and-measurement-noise.html
https://it.mathworks.com/help/ident/ug/definition-simulation-and-prediction.html
https://it.mathworks.com/help/ident/ug/definition-simulation-and-prediction.html
https://doi.org/10.1101/2021.08.03.454926
https://doi.org/10.1101/2021.08.03.454926
https://doi.org/10.1101/2021.08.03.454926?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

