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RIG-I-like receptors (RLRs) utilize a specialized,

multi-domain architecture to detect and respond to

invasion by a diverse set of viruses. Structural

similarities among these receptors provide a general

mechanism for double strand RNA recognition and

signal transduction. However, each RLR has

developed unique strategies for sensing the specific

molecular determinants on subgroups of viral RNAs. As a

means to circumvent the antiviral response, viruses

escape RLR detection by degrading, or sequestering or

modifying their RNA. Patterns of variation in RLR

sequence reveal a continuous evolution of the

protein domains that contribute to RNA recognition and

signaling.
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In mammalian cells, pattern recognition receptors (PRRs)

protect against host infection by recognizing specific

pathogen associated molecular patterns (PAMPs) and

eliciting signals that initiate an immune response [1–4].

A structurally related group of PRRs that include Retinoic

acid-Inducible Gene I (RIG-I), Melanoma Differen-

tiation-Associated Gene 5 (MDA5) and Laboratory of

Genetics and Physiology 2 (LGP2), sensitively detect

structural variations among viral RNA molecules [5–7].

These proteins, which are collectively called the RIG-I

like receptors (RLRs) play a key role in vertebrate

response to viral infection.
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RLR proteins are specialized RNA-dependent ATPases

that have evolved around a DExD/H-box ATPase core

that contains two RecA-like folds (Hel1 and Hel2) and a

specialized insertion domain (Hel2i) that promotes recog-

nition of double-stranded RNA (dsRNA) [8,9,10�,11�,12].

To facilitate the detection of a broad range of non-self

RNA targets, each RLR contains a similar but divergent

C-terminal domain (CTD) that mediates RLR-specific

interactions between bound nucleic acids or neighboring

protein partners [13,14]. The CTD is mechanically

coupled to the ATPase core and Hel2i via a pincer

domain that transduces information on molecular inter-

actions throughout the protein [9,10�,11�,12]. In addition

to these specialized target recognition domains, RIG-I

and MDA5 contain a pair of tandem caspase activation

and recruitment domains (CARDs) that engage the

innate immune response by activating the downstream

adaptor protein MAVS [15,16]. The importance of all

these components in RNA detection and signaling is

evident from mutational analyses and recent studies of

RLR evolution (vide infra).

RNA recognition by RLR proteins
Both RIG-I and MDA5 bind dsRNA through interactions

mediated by the CTD, the ATPase core, and the inser-

tion domain [12]; however, differences in the modes of

target recognition at the CTD cause the determinants for

non-self RNA recognition to vary considerably between

the two proteins. In RIG-I, the CTD has evolved to

engage in a high affinity interaction with a triphosphate

group [13,17,18��] present at the dsRNA termini of

deposited genomic RNA [19,20] or replicative intermedi-

ates [21] of target viruses (Figure 1 Detection). In addition

to recognizing this chemical moiety, the CTD of RIG-I

caps the duplex terminus through stacking interactions

with terminal base pairs [9,10�,11�,22]. Once bound to its

target RNA, RIG-I becomes competent for ATP hydroly-

sis and downstream signaling.

In contrast to RIG-I, target recognition by MDA5 is

chemically more general, and relies on the presence of

long, accessible RNA duplexes [23]. The CTD of MDA5

contains a shallow binding surface that forms sequence-

independent interactions with the minor groove of target

RNAs and accommodates a continuous RNA backbone.

Further, the CTD of one MDA5 molecule can form a

cooperative binding interface with the insertion domain

of a neighbor [7]. Multiple cooperative binding inter-

actions result in a propensity for oligomerization, causing

MDA5 to form long filaments along RNA duplexes [24]
www.sciencedirect.com
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Activation and evasion of RLRs by viral RNA in different cellular compartments. Detection: Viral RNA is differentially detected by RIG-I-like receptors

(RLRs). RIG-I specifically recognizes and binds to the 50 triphosphorylated, blunt-end termini of viral RNA targets. MDA5 recognizes long, double-

strand RNA and forms cooperative filaments along internal regions of target duplexes. Once bound to RNA, these proteins can initiate an immune

response through activation of the mitochondrial adaptor protein MAVS. In addition to monitoring the cytoplasm for viral RNA, RIG-I has been

observed in the perinuclear space, stress granules, and at membrane boundaries between the endoplasmic reticulum and mitochondria, potentiating

interactions with viruses that localize to subcellular compartments. Evasion: Viral strategies to avoid detection. Many viruses have developed

strategies to evade RLR recognition, including removing or occluding the triphosphate moiety, 50 end capping their RNA, and masking duplex regions

via binding of viral proteins. RIG-I is shown in red, MDA5 in green, MAVS in cyan, viral proteins in purple, and an endogenous RNA cap structure in

pink. Phosphates are represented by yellow circles. The area within the dashed circle represents a stress granule.
(Figure 1 Detection). These filaments may cause clustering

of the CARDs of MDA5, making them competent to

engage in immune signaling.

The role of cellular compartmentalization in
recognition by RLR proteins
Specific subcellullar localization of the RLRs plays a key

role in their ability to detect pathogenic RNA and activate

the anti-viral response. The RLRs are generally thought

to localize within the cytoplasm, where they can detect

genomic viral RNA and RNA replication intermediates

[19–21]. While cytoplasmic localization is likely to play a
www.sciencedirect.com 
major role in RLR targeting and signal transduction,

recent work suggests that variation in subcellular local-

ization may contribute to RNA recognition and function.

In a recent study aimed at visualizing RLR localization

during viral infection, a mutant form of influenza A was

used to infect live cells [25��]. The mutant form of the

influenza virus lacks the nonstructural protein 1 (NS1)

gene, which is a potent inhibitor of RIG-I signaling [26].

In cells infected with the influenza A virus lacking the

NS1 gene, the RLRs localize to speckle-like structures

known as stress granules [25��]. Stress granule formation
Current Opinion in Microbiology 2014, 20:76–81
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is induced by genomic RNA of the influenza virus [25��],
indicating that there is a specific mechanism by which the

cell compartmentalizes pathogenic RNA. Furthermore,

the appearance of stress granules correlates with the RIG-

I mediated interferon response in the cell [25��]. These

results indicate that the cytoplasmic stress granules

are compartments containing viral RNAs that are acces-

sible to the RLRs during the anti-viral response.

Distribution of RIG-I to the perinuclear region has been

shown to be important for MAVs-dependent anti-viral

signaling. Specifically, cellular fractionation and fluores-

cence microscopy experiments using cells infected with

Sendai virus provided new insights into RIG-I localiz-

ation [27��]. Analysis of the cytoplasmic and membrane

fractions of the cell revealed the presence of RIG-I in the

membrane during acute infection while RIG-I was strictly

observed in the cytoplasm in mock treated cells.

Additional experiments monitoring fluorescently tagged

RIG-I revealed that it is localized to the perinuclear

region of the cell, which is near the site of mitochon-

dria-associated membranes (MAMs) [27��,28]. Concomi-

tant with localization to the membranes, RIG-I associates

with the ubiquitin ligase, TRIM25, and the adapter

protein, 14-3-3e [27��]. These protein associations are

necessary for localization of RIG-I to the membrane

[27��]. Recruitment of RIG-I to the MAMs allows for

interaction with MAVs and initiation of anti-viral sig-

naling [27��].

In the absence of viral infection, RIG-I is distributed

among various cellular compartments. RIG-I associates

with the actin cytoskeleton and localizes to actin-

enriched membrane ruffles [29]. The CARDs mediate

these interactions, revealing a novel role for the RIG-I

signaling domains in cytoskeleton associations [29]. Close

inspection of confocal micrographs of fluorescently

tagged RIG-I [25��,27��,29] reveals its distribution

throughout the cytoplasm and slightly in the nucleus.

In support of this observation, an amino-terminal variant

of MDA-5 can also localize to the nucleus after stimu-

lation with pro-apoptotic factors that induce cleavage of

the CARDs [30]. These observations suggest that the

RLRs are multi-functional proteins that carry out their

roles in diverse compartments within the cell.

Viral strategies for RLR evasion: tricking the
RNA binding machinery
Because RIG-I, MDA-5 and the TLRs use different

strategies to bind RNA ligands, the vertebrate PRR

proteins are collectively able to detect a wide variety

of RNA and DNA viruses [31,32]. Nonetheless, viruses

are able to ultimately infect and replicate in host cells by

circumventing the machinery of the innate immune

response [33]. Because viral lethality and pathogenicity

are partly determined by the strength of the response

mounted in early infection [34], viruses evade RLRs by
Current Opinion in Microbiology 2014, 20:76–81 
preventing RNA binding [35,36�,37–39]. Strategies

employed by viruses to escape detection by RIG-I and

MDA-5 include modification, masking and degradation of

the viral RNA (Figure 1 Evasion), along with alteration of

its cellular compartmentalization.

A major (if not surprising) mechanism for viral evasion is

the incorporation of RNA modifications that prevent

RLR recognition. The 50 triphosphate is an important

determinant for RIG-I recognition, so the removal or

modification of this moiety is an effective strategy for

evading RIG-I detection. For example, Hantaan virus

(HTNV) and Crimean-Congo hemorrhagic fever virus

(CCHV), which belong to the Bunyaviridae family of

negative strand RNA viruses, do not trigger interferon

production [38]. In contrast, viruses from the same family,

such as Rift Valley fever virus (RVFV) and LaCross virus

(LACV), trigger a RIG-I-dependent innate immune

response via RIG-I binding to the 50 triphosphorylated

viral genomes [20,38]. To evade detection by RIG-I, the

50 triphosphates of the HTNV and CCHV genomes

are removed during a ‘prime and realign’ process whereby

the first nucleotide is cleaved by an exonuclease, leaving a

50 monophosphate [40]. Compounding this effect, nega-

tive strand viruses such as HTNV and CCHV do not

produce substantial amounts of dsRNA [40,41], thereby

eluding MDA-5 detection.

Viruses also modify the 50 termini of their RNA by

capping and 20-O-methylation. Cytoplasmic eukaryotic

mRNAs, which are not generally detected by RLRs,

are 50 end-capped with methylations on the first and

second nucleotides of the ribose-20-O position, thereby

conferring stability and preventing degradation [42]. It is

assumed that neither RIG-I nor MDA-5 recognize these

cap structures, which are comprised of a 7-methylguano-

sine linked to the first nucleotide through a 50–50 tripho-

sphate bridge. Viruses that replicate in the cytoplasm

have evolved machinery that is designed to cap and

methylate viral RNA in order to appear like host RNA

and thereby evade receptor recognition. In these cases,

viral RNA is capped using cellular machinery, viral

encoded cap machinery, or by a cap snatching mechanism

[42]. For example coronavirus strains with an inactivated

cap-methylating enzyme (20-O-methyltransferase) induce

higher levels of type I interferon production compared to

wild-type virus in human macrophages and in mice, in an

MDA-5 dependent manner [43��]. The 20-O-methylation

at the 50 cap appears to be a molecular feature that is

critical for the distinction of self and non-self RNA by

MDA-5, and it is readily exploited by the coronavirus.

In addition to altering deposited or replicative RNA,

viruses have also evolved strategies for masking the

determinants of RLR-mediated detection. This is often

achieved by encoding viral proteins that bind the RNA 50

terminus or duplex stems of viral RNA in order to
www.sciencedirect.com
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out-compete binding by RIG-I or MDA5. For example,

filoviruses, like Ebola virus and Marburg virus, encode

viral proteins (VP) that antagonize RLRs through RNA

binding. Recent crystal structures of Marburg virus VP35

and Ebola virus VP35 reveal interactions with the RNA

backbone and duplex ends, which effectively sequester

the RNA and preclude detection by both RIG-I and

MDA-5 [35,36�,44].

Degradation of RNA represents is another way that

viruses avoid detection. For example, Lassa fever virus,

belonging to the Arenaviridae family, encodes a multi-

functional nucleoprotein (NP) that acts as a 30–50 exori-

bonuclease on dsRNA. NP suppresses interferon

induction via its exoribonuclease function, presumably

by creating ssRNA regions and thus removing the dsRNA

PAMP [37].

Viruses also evade recognition by RIG-I and MDA-5 by

altering the subcellular compartmentalization of dsRNA.

Coronaviruses, like most RNA viruses, typically replicate

in the cytoplasm, where dsRNA replicative intermediates

are readily detected by RLRs. However, SARS-corona-

virus (SARS-CoV) has evolved a mechanism to sequester

the dsRNA. SARS-CoV induces formation of double-

membrane vesicles on an altered endoplasmic reticulum,

as revealed by electron tomography images of infected

cells [45]. Duplex RNA localizes to the interior of these

vesicles, suggesting a mechanism by which host cell

membranes are reorganized by SARS-CoV to conceal

viral RNAs from cytoplasmic RLRs. Although some

viruses may effectively avoid an immune response by

sequestering dsRNA, RLRs may combat similar evasion

mechanisms by localizing to various compartments in the

cell.

Evolution of RLRs provides insight into viral
recognition strategies
Studies on the evolutionary origin and variation of RLRs

provide important insights into the molecular targets of

these proteins. Previous work attempting to establish the

common ancestor and evolutionary heritage of RLR

proteins did not reach consensus [46,47], likely because

the studies were conducted prior to the availability of

structural information and boundaries between protein

domains were not well understood.

However, recent studies of sequence variation among

populations has revealed much about the evolutionary

history of RLRs, their individual target specificities, and

the protein domains that adapt to accommodate differ-

ent viral subtypes. For example, the first reported stu-

dies of genetic variation in human RLRs [48] show that

patterns of variation within the protein domains differ

greatly among the three RLRs, supporting the notion

that they each recognize significantly different PAMPs

and are under different levels and types of selection.
www.sciencedirect.com 
Intriguingly, diversity of RIG-I is the most strictly

constrained, consistent with increasing evidence that

it has other functions in the cell [25��,27��,29,30]. Pat-

terns of sequence variation within the individual RLRs

provide a window into the diversification of RNA bind-

ing modes. For example, geographically distinct human

populations display variation within RNA binding

domains of RIG-I, particularly at amino acids of the

CTD and Hel2i that directly contact the 50-triphosphate

and duplex region of RNA PAMPS, respectively,

suggesting that RIG-I has been tuned to recognize

subtle alterations in viral RNA structures.

An intriguing analysis of cause and effect between RIG-I

variation and viral susceptibility is provided by studies of

RLR variation in rabbits [49�], and its conclusions are

supported by larger studies of mammalian populations in

general [50��]. Myxomatosis (MYXV) is lethal for some

rabbits (European rabbits), while others (American cot-

tontails and brush rabbits) are not highly susceptible.

Given the role of RLRs in defense against MYXV in-

fection, investigators examined patterns of RLR

sequence variation and found important differences be-

tween European rabbits and others. For RIG-I, the most

pronounced variation occurs at the terminus of pincer,

and in the linker that connects pincer to the CTD, and at

the connection between Hel1 and CARD2. These

protein regions are essential for transmitting information

about RNA binding and ATP hydrolysis to the CARD

domains, suggesting that European rabbits have a defec-

tive connection between viral RNA binding and sig-

naling.

An elegant structure-based analysis of RIG-I variation

among diverse mammals also suggests that the pincer

domain plays an important role in coupling RNA binding

to signaling, and perhaps in tuning specificity for various

RNAs [50��]. Alternatively, the pincer variations may

indicate sites of interaction with other proteins, which

may allosterically regulate the RLR signaling apparatus

[50��]. Intriguingly, multiple studies [48,50��] have noted

sequence variation along the outer surface of Hel2i as it

appears in recent crystal structures. While this has been

attributed to a potential interaction interface between

Hel2i and other proteins, the same amino acids are

actually located at the intramolecular interface between

Hel2i and CARD2, which has been crystallographically

visualized in truncated versions of the RIG-I protein

[10�]. Prior to binding of RNA and ATP, the CARDs

can dock against Hel2i [12,14], and therefore any

sequence variation at this position will affect release of

the CARDs and downstream signaling.

Conclusion
New insights into RLR sensing are emerging from

diverse fields, in studies ranging from structural biology

and immunology to evolutionary analysis. Together,
Current Opinion in Microbiology 2014, 20:76–81
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these findings are revealing a complex network of RNA

sensors that sensitively detect and adapt to viral RNA

molecules within the environment, providing insights

into the continuous interplay between viruses and their

hosts.
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