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Hypoxic culture is widely recognized as a method to efficiently expand human mesenchymal stem cells (MSCs) without 
loss of stem cell properties. However, the molecular basis of how hypoxia priming benefits MSC expansion remains 
unclear. We report that hypoxic priming markedly extends the cell cycle lifespan rather than augmenting the multi-
potency of MSC differentiation lineage. Hypoxic priming does not affect to chromosome damage but significantly at-
tenuates the susceptibility of chromosome damage. Our results provide important evidence that multipotency of human 
MSCs by hypoxic priming is determined by cell cycle lifespan.
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Introduction 

  Human mesenchymal stem cells (MSCs) are able to 
self-renew or differentiate to other lineages (1-3), and 
these cells have been isolated from different tissues such 

as brain, liver, bone marrow, adipose tissue, foetal tissues, 
umbilical cord (UC), and placenta (4-7). Various types of 
human mesenchymal stem cells (MSCs) reside in the hy-
poic microenvironment, which seems to be conductive to 
stem cell longevity and the physiological niches (8, 9). 
Hypoxia has a strong effect on several aspects of cell biol-
ogy such as metabolism, angiogenesis, innate immunity 
and stemness induction, and hypoxic is also essential for 
the self-renewal and the maintenance of multipotency of 
human MSCs and hematopoietic stem cells (HSCs) (9-11). 
In recent years, many studies support that the hypoxic 
culture of human MSCs inhibits cellular senescence, 
maintains MSCs properties, augments the differentiation 
capacity, and enhances their tissue regenerative potential, 
indicating that hypoxia increases the lifespan and the dif-
ferentiation potential of MSCs (10-13).
  MSCs-based cell therapy is a potential therapeutic ap-
proach for the treatment of various diseases, including 
stroke and myocardial infarction (14-17), traumatic brain 
injuries (18), diabetes mellitus (19), inflammatory bowel 
disease (20), and acute kidney (21, 22) and liver injuries 
(23-25). However, the large amount of engrafted MSCs de-
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creased dramatically after transplantation due to immune 
rejection and toxic microenvironments. Thus, adopting 
appropriate priming strategies provide an effective way of 
promoting survival and avoiding immune rejection (14). 
In addition, recent studies have also shown that hypoxic 
priming induces the expression of pro-survival markers 
(26), and growth factors involved in cell proliferation, an-
ti-apoptosis and angiogenesis (27) in MSCs. However, it 
is not yet clear whether the benefit of hypoxic priming 
is the expansion, cellular longevity, or multi-potent differ-
entiation capacity of human MSCs. In this study, we 
found that hypoxic priming extends cell cycle lifespan but 
reduce genetic damage susceptibility, and thus maintain 
the multipotency of MSCs during differentiation lineage.

Materials and Methods

Cell culture
  Human umbilical cord blood derived mesenchymal 
stem cells (hUCB-MSCs; PromoCell) were grown in 
Dulbecco’s Modified Eagle’s Medium (DMEM; Hyclone) 
containing 10% fetal bovine serum (FBS; GIBCO) and 1% 
Penicillin/Streptomycin antibiotics at 37oC in a 5% CO2 
incubator with 21% O2 (normoxia) or 1% O2 (hypoxia). 

Carboxyfluorescein succinimidyl ester (CFSE) assay
  For assessment of the potential of cell proliferation, 
MSCs were trypsinized and washed once with phosphate 
buffered saline (PBS). CFSE (Invitrogen, 10 mM in PBS) 
was added to the cells and incubated at 37oC in the dark 
for 15 min. An equal volume of serum containing growth 
medium was added for quench the CFSE reaction. Cells 
were again incubated at 37oC in the dark for 5 min. 
CFSE-labeled MSCs were washed twice with growth me-
dium and seeded in a culture plate.

Senescence associated β-galactosidase (β-gal) assay
  Cells were fixed with 4% formaldehyde for 10 min and 
incubated overnight at 37oC with 1 mg/ml X-gal (5-bromo-4- 
chloro-3-indolyl-β-D-galactopyranoside), 5 mM K3Fe(CN)6, 
5 mM K4Fe(CN)6, 150 mM NaCl, and 2 mM MgCl2 in 
40 mM citric acid/sodium phosphate pH 6.0.

Immunofluorescence
  hUCB-MSCs were grown on coverslips (1×104 cells) for 2 
days. Cells were fixed with 4% formaldehyde in PBS for 10 
min and rinsed three times with a wash solution of (0.1% 
Triton X-100 in PBS. Cells were blocked with 3% skim 
milk/wash solution for 30 min and incubated with primary 
antibody (1:200) and secondary antibody (1:200) for 1 hr.

Metaphase chromosome spreading assay
  Cells were incubated with colcemid (final concentration 
100 ng/ml) for cell cycle arrest around metaphase. Mitotic 
cells were then collected by gentle pipetting, washed with 
PBS twice, counted, and suspended in a hypotonic sol-
ution (0.8% sodium citrate). After 15 min incubation at 
room temperature, swelled cells were centrifuged (1,000 
rpm, 4 min, 4oC). Most of the supernatant was aspirated 
and the pellet was gently in the remaining approximately 
500 μl of supernatant. Carnoy’s fixative solution (75% 
methanol, 25% acetic acid) was slowly added and in-
cubated at room temperature for 10 min. The fixation was 
repeated 3∼4 more times. The suspended cells were drop-
ped onto cold wet slides and allowed to dry at room 
temperature. The slides were mounted and examined by 
fluorescence microscopy (Carl Zeiss). 

Statistical analysis
  All data were presented as means±standard errors of 
means (SEMs). Statistical analyses were performed using 
the Student t test. 

Fluorescence-activated cell sorting (FACS)
  Human UCB-MSCs were evaluated using surface mark-
er detection at passage 5 (P5) to confirm the effect of oxy-
gen concentration (hypoxia and normoxia) on MSC char-
acterization. hUCB-MSCs at 80% confluence were har-
vested and suspended in FACS buffer (1×107 cells/ml). 
Antibody was then added to each samples: Anti-CD90 flu-
orescein isothiocyanate (FITC), Anti-CD44 phycoerythrin 
(PE), Anti-CD105-PerCP-Cy5.5, Anti-CD73-allophycocya-
nin (APC), MSC negative antibodies set (Anti-CD34/CD11b/ 
CD19/CD45/HLA-DR-PE), positive isotype cocktail (mIgG- 
FITC, mIgG-PerCP-Cy5.5, mIgG-APC), negative isotype 
cocktail (mIgG1-PE, mIgG2a-PE) (562245, BD Biosciences) 
followed by incubation at 4oC for 30 min. For cell cycle 
analysis using propidium iodide, cells were fixed with cold 
70% ethanol overnight at −20oC. They were then washed 
once with PBS and incubated in PBS containing 50 μg/ml 
propidium iodide and 1 mg/ml RNase A for 30 min at 
room temperature. After staining, cells were washing with 
PBS and measured by flow cytometry. Antibodies listed 
above are purchased from BD Biosciences.

Results and Discussion

Hypoxia extends cell cycle lifespan and multi-potency 
of humans MSCs
  To delineate the key mechanistic benefit of hypoxic pri-
ming, human MSCs were isolated from human umbilical 
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Fig. 1. Comparison of potentialities of proliferation, multipotency, and senescence between normoxic and hypoxic conditioning. (A) Phase 
contrast images of human umbilical cord blood-derived MSCs (MSCs) were cultured in normoxic (21% O2) or hypoxic (1% O2) conditions 
through multiple passages (passages 3, 5 and 7, respectively). (B) Several different passages of MSCs derived from the same source of 
MSCs were further cultured in normoxic (21% O2) and hypoxic (1% O2) conditions, and cell numbers were counted at designated times. 
(C) The graph shows the relative comparison of proliferating cell number following normoxic or hypoxic priming at several passages of 
MSCs culture. (D) The graph shows the relative incidence of senescence associated β-galactosidase positive MSCs. Data (mean±SEM)
are representative of 3 independent experiments.
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Fig. 2. Effect of hypoxic priming on the DNA and chromosome damage and senescence of MSCs. (A) Three different passages of MSCs 
grown in normoxic or hypoxic condition were analyzed by senescence associated β-galactosidase (SA-β-gal) staining. The graph shows 
the relative percentage of SA-β-gal positive cells. (B) MSCs were cultured in normoxic or hypoxic condition, or in normoxic condition 
in combination with 0.5 mM doxorubicin (Doxo) treatment, and stained with anti-γH2AX (a marker for DNA double-strand breaks) and 
DAPI for DNA. Graph shows the percentage of γH2AX-positive cells at three different passages. (C) Three different passages of MSCs 
were grown in normoxic or hypoxic condition, and harvested for metaphase chromosome spreading analysis. Arrows indicate the break 
chromosome. The graphs show the percentage of metaphase MSCs containing the break chromosome. (D) Total number of chromosome 
in each MSC was examined at passages 4, 8, and 12, respectively. Data (mean±SEM) are representative of 3 independent experiments.

cord blood (UCB) by adhesion to tissue culture-coated 
plates in complete culture medium as previously described 
(14). Culture passaging generated a homogenous pop-
ulation of UCB-MSCs (hereafter MSCs) that were used to 

measure proliferation rate, multi-potency, and senescence 
(Fig. 1A∼1C). Human MSCs were cultured under nor-
moxic (21% oxygen) or hypoxic (1% oxygen) conditions. 
When the culture became nearly confluent, the cells were 
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Fig. 3. Application of hypoxia to MSCs stimulates their proliferating potential and the potential of multi-lineage differentiation. (A) Multi-pas-
saged MSCs were cultured in normoxic or hypoxic condition, labeled with antibodies against specific surface antigens, CD44, CD73, CD90, 
and CD105 for MSC positive markers and CD31, CD34, and CD45 for MSC negative markers, and analyzed by counting 10,000 cells 
at passages 4, 7, and 9, respectively. The surface antigen phenotype was characterized by FACS. Immunoglobulin isotype was used as 
a negative control for FACS analysis. Negative indicates the labelling of cells with CD34, CD45, and CD11b antibodies. Red-colored histo-
grams illustrate the control immunoglobulin, and blue-colored histograms represent the staining against each specified antibodies as 
indicated. (B) The graph shows the positive percentages of each MSC marker expression. (C) The graph shows the potency of adipogenic 
differentiation rate at indicated passages. Data (mean±SEM) are representative of 3 independent experiments.
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trypsinized and subcultivated. As expected, hypoxia sig-
nificantly accelerated the proliferation rate and extended 
the life span of human MSCs compared to normoxic cul-
tures (Fig. 1B and 1C). Similar results were obtained with 
MSCs from two different donors (data not shown). 
  Under the hypoxic condition, late passaged MSCs con-
tinuously proliferated and maintained a similar morphol-
ogy as early passaged cells (Fig. 1B and 1C). However, 
most of late passaged MSCs (passage 8 and later) cultured 
in the normoxic condition almost completely lost their 
proliferation capacity and adopted a flat, enlarged shape 
and ceased proliferation at subconfluent densities, thus 
manifesting characteristics of senescence (Fig. 2A), in-
dicating that hypoxia extended the cell proliferation life 
span of MSCs. In support of this notion, cytochemical sen-
escent phenotype analysis involving staining of the sen-
escence-associated β-galactosidase (SA β-Gal) showed 
that cells in normoxic cultures of late passaged MSCs 
mostly displayed SA β-Gal activity, while hypoxic cul-
tures showed significantly less amounts of SA β-Gal 
staining (Figs. 1D and 2A). In addition, the percentage 
of H2AX-positive cells (as a marker for DNA double 
strand breaks) was markedly decreased compared to nor-
moxic culture (Fig. 2B). Further metaphase chromosome 
spreading assays also showed significantly less population 
of MSCs with chromosome damage (Fig. 2B and 2C). 
Together, these results indicate that hypoxia extends cell 
cycle lifespan but reduces chromosome damage susceptibility.

Uncoupling between cell cycle lifespan and 
multi-potency of hypoxic primed humans MSCs
  Multi-potency of MSCs by normoxic and hypoxic pri-
ming was compared by the examination of the surface ex-
pression of multi-potent MSC antigenic markers. Positive 
markers included CD44, CD73, CD90, and CD105. 
Negative markers included CD34, CD45, CD11b, and/or 
CD19 (Fig. 3A and 3B). Unexpectedly, early and middle 
passage MSCs (passages 4 and 7, respectively) grown un-
der normoxic or hypoxic condition showed very similar 
levels of surface CD marker profiles; cells were con-
sistently positive for CD44, CD73, CD90, and CD105, and 
negative for CD34, CD45, CD11b, and/or CD19 (Fig. 3B 
and 3C), indicating that hypoxic priming does not aug-
ment the differentiation capacity of MSCs at early and in-
termediate passages. However, although hypoxic con-
ditioning drastically extended the cell cycle lifespan and 
delayed senescence in late passaged MSCs, comparison of 
the multi-potency by measuring the same number of cells 
revealed that normoxic primed late passaged MSCs still 
retained the significant capacity of multi-potency com-

pared to hypoxic conditioning. These results raise the im-
portant notion that hypoxic priming is an efficient tool 
for expanding the actively proliferating pool of MSCs, but 
not for augmentation of their multi-potency. The mul-
ti-potency of MSCs may be able to be determined by 
measuring their proliferating potential and/or strength of 
cell cycle lifespan, but not by the expressions of pre-exist-
ing MSC markers.
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