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Abstract

Background: Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It
involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large
number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome
sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large
numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent
cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and
execution plans (schemas) are required to take full advantage of the increased computing power while overcoming
bottlenecks to achieve high performance. Findings: In this study, we custom-design optimized schemas for three Apache
big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These
schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of
subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the
performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are
benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)–based
high-performance computing (HPC) implementation, and the popular VCFTools. Conclusions: Our experiments suggest all
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2 Sorted Merging using Distributed Systems

three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities
over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and
genomics data using these Apache distributed systems.

Keywords: sorted merging; whole-genome sequencing; MapReduce; Hadoop; HBase; Spark

Introduction

With the rapid development of high-throughput biotechnolo-
gies, genetic studies have entered the Big Data era. Studies like
genome-wide association studies (GWASs), whole-genome se-
quencing (WGS), and whole-exome sequencing studies have
produced massive amounts of data. The ability to efficiently
manage and process such massive amounts of data becomes
increasingly important for successful large-scale genetics stud-
ies [1–3]. Single-machine based methods are inefficient when
processing such large amounts of data due to the prohibitive
computation time, Input/Output bottleneck, as well as central
processing unit (CPU) and memory limitations. Traditional high-
performance computing (HPC) techniques based on message
passing interface (MPI)/OpenMP also suffer from limitations
such as not allowing addition of computing nodes at runtime,
shortage of a fault-tolerant and high available file system, and
inflexibility of customizing the computing environment without
administrator permission of a cluster [3, 4]. It becomes increas-
ingly attractive for investigators to take advantage of more pow-
erful distributed computing resources or the cloud to perform
data processing and analyses [3, 5]. The Apache Foundation has
been a leading force in this endeavor and has developed multiple
platforms and systems including Hadoop [6, 7], HBase [8], and
Spark [9]. All these three Apache platforms have gained substan-
tial popularity in recent years and have been endorsed and sup-
ported by major vendors such as Amazon Web Services (AWS).

In bioinformatics, researchers have already started to em-
brace Apache distributed systems to manage and process large
amounts of high throughput “-omics” data. For example, the
Cancer Genome Atlas project makes use of the Hadoop frame-
work to split genome data into chunks distributed over the clus-
ter for parallel processing [3, 10]. The CloudBurst [11], Seal [12],
Hadoop-BAM [13], and Crossbow software [14] take advantage of
the Hadoop framework to accelerate sequencing read mapping,
aligning, and manipulations as well as single-nucleotide poly-
morphism (SNP) calling. The Collaborative Genomic Data Model
[15] adopts HBase to boost the querying speed for the main
classes of queries on genomic databases. MetaSpark [16] uti-
lizes Spark’s distributed dataset to recruit large scales of metage-
nomics reads to reference genomes and achieves better scala-
bility and sensitivity than single-machine based programs [17].
Industry cloud computing vendors such as Amazon [18] and
Google [19] are also beginning to provide specialized environ-
ments to ease genomics data processing in the cloud.

Although numerous Apache cluster-based applications have
already been developed for processing and analyzing large-scale
genomics data including ADAM [1], VariantSpark [20], SparkSeq
[21], Halvade [22], and SeqHBase [23], among others, we believe
there are still many opportunities in biomedical data analyses
to take advantage of distributed systems as the scale and scope
of data become larger and more complex. A particular example
is sorted merging, which is a ubiquitous operation in processing
genetics and genomics data. As an example, in WGS, variants
identified from individuals are often called and stored in sep-
arate variant call format (VCF) files. Eventually these VCF files

need to be merged (into a VCF or TPED file) as required by down-
stream analysis tools such as PLINK [24] and BlueSNP [25, 26].
Either a VCF or TPED file requires the data to be sorted by their
genomic locations, thus these tasks are equivalent to the well-
known sorted full-outer-joining problem [27]. Currently, they are
handled by software such as VCFTools [28] and PLINK, which
become considerably inefficient even in the face of a moderate
number of VCF files. The main reason is that these tools adopt
the multiway-merge-like method [29] with a priority queue as
the underlying data structure to ensure the correct output or-
der. Although such a method only requires one round of read
through of the input files, a key deficiency is that it can only
have one consumer access items from the data queue, which
makes it sequential upon writing. This problem cannot be elim-
inated even if the multiway-merging is implemented as paral-
lel processes due to I/O saturation, workload imbalance among
computing units, and memory limits. Therefore, these single-
machine based tools are inefficient and time-consuming when
handling large datasets.

In this study, we use the case of sorted-merging multiple VCF
files to demonstrate the benefits of using Apache distributed
platforms. However, simply running sorted merging on such dis-
tributed systems runs into problems of bottlenecks, hot spots,
and unordered results commonly seen in parallel computations.
Rather, we believe working schemas custom designed for each
specific distributed platform are required to unleash their full
potential. To overcome the limitations of single-machine, tradi-
tional parallel/distributed, and simple Apache distributed sys-
tem based methods, we propose and implement three schemas
running on Hadoop, Spark, and HBase, respectively. We chose
these three platforms because they represent cloud distributed
systems providing data partitioning based parallelism with dis-
tributed storage, data partitioning based parallelism with in-
memory based processing, and high dimensional tables like dis-
tributed storage, respectively. Hadoop [6] is the open source
implementation of MapReduce [7] based on the parallel key-
value processing technique and has the advantage of trans-
parency and simplicity. HBase [8] is a data warehousing plat-
form that adopts Google’s BigTable data storing structure [30]
to achieve high efficiency in storing and reading/writing large
scales of sparse data. Spark [9] introduces the concept of re-
silient distributed dataset (RDD) and directed acyclic graph ex-
ecution to parallel key-value processing, thus enabling fast, ro-
bust, and repetitive in-memory data manipulations. Specifically,
our schemas involve dividing the job into multiple phases corre-
sponding to tasks of loading, mapping, filtering, sampling, parti-
tioning, shuffling, merging, and outputting. Within each phase,
data and tasks are evenly distributed across the cluster, enabling
processing large amounts of data in a parallel and scalable man-
ner, which in turn improves both speed and scalability.

Methods
Overview

The benefits of using these three Apache distributed platforms
to perform sorted merging are four-fold when compared to using
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the multiway-merge method [29], a relational database based
approach, or an HPC framework. First, with genomic locations
as keys and genotypes as values, it is readily transformed into
the key-value model in which all three platforms offer a rich
set of parallel operations. Second, data in VCF files are semi-
structured. This type of data is an ideal fit for the three platforms
that allow defining the schema during data loading, avoiding
the preprocessing of raw data into a rigid schema as in a rela-
tional database. Third, all of these platforms provide built-in ef-
ficient task coordination, high fault tolerance, data availability,
and locality, which are absent in the traditional HPC framework.
Fourth, the merged results are directly saved onto a distributed
file system such as Hadoop distributed file systems (HDFS) or
Amazon S3, which can be directly used for subsequent cluster-
based GWAS or WGS analytical tools such as BlueSNP.

Despite these advantages, simply performing sorted merg-
ing on these Apache distributed systems will not deliver the
expected results for the following reasons. First, it can lead to
globally unsorted results. Hash-based shuffling of input data is
the default mechanism for distributing data to parallel work-
ing units in the system. However, shuffling will lead to globally
unsorted results. Second, bottlenecks and hot spots can hap-
pen during the processing in the cluster. Bypassing the hash-
ing based shuffling can lead to unbalanced workloads across
the cluster and result in straggling computing units that become
bottlenecks for response time. In addition, for parallel loading of
presorted data into HBase, data being loaded from all the loading
tasks access the same node simultaneously, while other nodes
may be idling, creating an I/O hot spot. Third, sampling costs
could become prohibitive. Although Hadoop provides a built-in
utility named total-order-merging [27] to achieve both workload
balance and global order, it involves transferring to and sam-
pling all the data on a single node. The communication costs
over the network and disk I/O can be prohibitive when data size
becomes very large. In the following sections, we will illustrate
how our custom designed schemas are able to overcome these
limitations in detail.

Data formats and operations

In a typical WGS experiment, data analysis often starts from in-
dividual genotype files in the VCF format [31]. A VCF file con-
tains data arranged into a table consisting of eight mandatory
fields including chromosome (CHROM), the genomic coordinate
of the start of the variant (POS), the reference allele (REF), and
a comma separated list of alternate alleles (ALT), among others.
In our experiments, we use a dataset consisting of the VCF files
of 186 individuals [32] generated from Illumina’s BaseSpace soft-
ware (left tables in Fig. 1). Each VCF file has around 4–5 million
rows, each row contains information on one of the individual’s
genomic variants. Each VCF file is about 300 MB in size. In an
attempt to protect privacy of study subjects, we apply the fol-
lowing strategy to conceal their real genetic variant information
contained in the VCF files: we first transform each original ge-
nomic location by multiplying it with an undisclosed constant
real number, taking the floor integer of the result, and then add
another undisclosed constant integer number.

It is common that multiple VCF files need to be merged into
a single TPED file for analysis tools such as PLINK. A TPED file re-
sembles a big table, aggregating genotypes of all individuals un-
der investigation by genomic locations (right table in Fig. 1). The
merging follows several rules. First, each record is associated
with a data quality value in the FILTER column, which records
the status of this genomic position passing all filters. Usually

only qualified records with a “PASS” filter value are retained.
Second, genotypes in VCF files are stored in the form of allele
values, where 0 stands for the reference allele, 1 stands for the
first mutant allele, 2 stands for the second mutant allele, and so
on. Allele values must be translated into corresponding types of
nucleotides in the TPED file. Third, all individuals need to have
a genotype for genomic locations appearing in at least one VCF
file. The default genotype for a missing value is a pair of ho-
mozygous reference alleles. The merging of multiple VCF files
into a single VCF file follows the rules as follows: first, the ALT
and INFO columns of a genomic location in the merged file are
set as the concatenated values of the corresponding columns on
that location from all input files with duplicated values removed.
Second, the QUAL column of a genomic location in the merged
file is set as a weight-averaged quality value of all individuals
on that location. Third, a genomic location is kept only when it
appears in at least one input file and has a FILTER column value
of “PASS.” Fourth, if an individual does not have allele values on
a genomic location in the input file, their missing allele values
are designated as “.” in the merged file.

For our Apache cluster-based schemas, the merging of mul-
tiple VCF files into a single TPED file and the merging of multiple
VCF files into a single VCF file differ only in the value contents
of the key-value pairs, so they should have the same scalabil-
ity property. Although we implement the applications of both
merging types using our Apache cluster-based schemas, which
are available on our project website, we focused our experiments
on the merging of multiple VCF files into a single TPED file and
only evaluate the execution speed of the merging of multiple
VCF files into a single VCF file with VCFTools as the benchmark.

MapReduce (Hadoop) schema

This schema is built on Hadoop’s underlying model MapReduce
and running on Hadoop clusters. MapReduce [7] is a parallel
computing model based on a split-apply-combine strategy for data
analysis, in which data are mapped to key-values for splitting
(mapping), shuffling, and combining (reducing) for final results.
We use Apache Hadoop-2.7 as the system for our implementa-
tion. Our optimized schema consists of two MapReduce phases,
as shown in Fig. 2 (the pseudocodes are shown in Supplemen-
tary Fig. S1).

First MapReduce phase
Raw data are loaded from HDFS into parallel mappers to per-
form the following tasks. First, unqualified data are filtered out
and qualified data are mapped to key-value pairs. The mapper
output key is the genomic location and the output value is the
genotype and individual ID. Second, key-value pairs are grouped
together by chromosomes and temporarily saved as compressed
Hadoop sequence files [33] for faster I/O in the second MapRe-
duce phase. With this grouping, if SNPs of interest are located in
a few selected chromosomes only, we can choose to just merge
records from these selected chromosomes rather than from all
chromosomes. Meanwhile, these records are sampled to explore
their distribution profile of keys along chromosomes to deter-
mine boundaries. The boundaries are determined so there is an
approximately equal number of records within each segment.
Because all records falling in the same segment will be assigned
to the same reducer in a later phase, boundaries calculated in
this way ensure the workload of each reducer is balanced. There
are two rounds of samplings. The first one happens in each map-
per with a pre-specified sampling rate, which in our case is set to
be 0.0001. Sampled records are then separated and distributed to
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Figure 1: Merging multiple VCF files into a single TPED file. Left tables represent input VCF files. The table on the right represents the merged TPED file. Records are

filtered out if their Filter value is not equal to “PASS” (Pos 10 147). Individual genotypes from multiple VCF files with the same genomic location are aggregated together
in one row. The resulting TPED file thus has an inclusive set of sorted genomic locations of all variants found in the input VCF files.

Figure 2: The workflow chart of the MapReduce schema. The workflow is divided into two phases. In the first phase, variants are filtered, grouped by chromosomes

into bins, and mapped into key-value records. Two sampling steps are implemented to generate partition lists of all chromosomes. In the second phase, parallel jobs
of specified chromosomes are launched. Within each job, records from corresponding bins are loaded, partitioned, sorted, and merged by genomic locations before
being saved into a TPED file.

different reducers in this phase by chromosomes, where they are
sampled again with a rate equal to the reciprocal of the number
of input files. This second sampling effectively limits the num-
ber of final sampled records even in the face of a very large num-
ber of input files. Because the number of reducers instantiated
in the second phase equals the number of boundaries, which
in turn is decided by the number of sampled records, we can
therefore avoid launching unnecessary reducers, thus minimiz-
ing task overheads.

Second MapReduce phase
In this phase, multiple parallel MapReduce jobs are created, one
for each chromosome, to handle all the records in sequence files
generated from the first phase. Within each job, a partitioner
redirects records to the appropriate reducer by referring to the
splitting boundaries from the previous phase, so records falling
in between the same pair of boundaries are aggregated together.
Finally, each reducer sorts and merges aggregated records by ge-

nomic locations before saving them to a TPED file. In this way,
globally sorted merging can be fulfilled.

HBase schema

HBase [8] is a column-oriented database where data are grouped
into column families and split horizontally into regions spread-
ing across the cluster. This data storing structure supports effi-
cient sequential reading and writing of large-scale data as well
as fast random data accessing. Also, HBase is storage efficient
because it can remember null values without saving them on
disk. These features make HBase an ideal platform for manag-
ing large, sparse data with relatively low latency, which naturally
fits the sorted merging case. We use HBase-1.3 as the system for
our implementation. As shown in Fig. 3, our optimized HBase
schema is divided into three phases as discussed next (refer to
Supplementary Fig. S2 for pseudocodes).
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Figure 3: The workflow chart of the HBase schema. The workflow is divided into three phases. The first is a sampling, filtering, and mapping phase. A MapReduce job
samples out variants whose genomic positions are used as region boundaries when creating the HBase table. Only qualified records are mapped as key-values and
saved as Hadoop sequence files. The second is the HBase bulk loading phase in which a MapReduce job loads and writes records generated from the previous phase,
aggregating them into corresponding regional HFiles in the form of HBase’s row key and column families. Finished HFiles are moved into HBase data storage folders on

region servers. In the third phase, parallel scans were launched over regions of the whole table to retrieve desired records that are subsequently merged and exported
to the TPED file.

Sampling phase
The main challenge of HBase is to avoid computational hot spots
in the cluster, which can happen when it starts loading a table
from a single region hosted by a single node. Therefore, we need
to presplit the table into regions of approximately equal size be-
fore loading. The sampling phase is introduced to determine
reasonable presplitting regional boundaries. The total number
of regions is set to half of the number of input files so the size
of each region is approximately 1 GB. Meanwhile, mappers of
this phase also save qualified records as compressed Hadoop se-
quence files on HDFS that are used as inputs in the next phase.
In addition, filtering and key-value mapping also take place in
this phase.

Bulk loading phase
Even when the table has been presplit evenly, the hot spot prob-
lem of loading sorted inputs can still emerge because sorted
records are loaded sequentially and, at any instant, they still
access the same region and server. During the bulk loading,
the key and value of each record produced from the previous
phase is converted into HBase’s binary row-key and column-
value, respectively, and saved into an HFile, HBase’s native stor-
age format. The row-key here is in the form of chromosome-
genomic location, and column-value refers to reference allele,
individual ID, and genotype. The bulk loading populates each
HFile with records falling in the same pair of presplit regional
boundaries. Because HFiles are written simultaneously by par-
allel mappers/reducers, all working nodes are actively involved,
and the regional hotspot is thus circumvented. Upon finishing
writing, the HBase can readily load HFiles in parallel into the
table by simply moving them into local HBase storage folders.
This procedure is therefore at least an order of magnitude faster
than the normal loading in which data are loaded sequentially

via HBase servers’ I/O routines. The order of records in the ta-
ble is guaranteed because they are internally sorted by writing
reducers and HBase’s Log-Structured Merge-tree [34]. It is worth
mentioning that VCF records are always sparse, thus HBase is
very storage efficient.

Exporting phase
A scan of a specified genomic window is performed on the table.
It involves launching parallel mappers each receiving records
from a single HBase region, filling in missing genotypes, con-
catenating records with the same row-key, and outputting final
results into TPED files.

Spark schema

Spark [9] is a distributed engine built upon the ideas of MapRe-
duce and RDD. It can save intermediate results in the form of
RDD in memory and perform computations on them. Also, its
computations are lazily evaluated, which means the execution
plan can be optimized to include as many computational steps
as possible. As a result, it is ideal for iterative computations
such as sorted merging. We implement our optimized Spark
schema on Spark-2.1. It has three stages, which we describe be-
low and present in Fig. 4 (refer to Supplementary Fig. S3 for pseu-
docodes).

RDD preprocessing stage
This stage involves loading raw data as RDDs, filtering, and map-
ping RDDs to paired-RDDs with keys (chromosome and genomic
position) and values (reference allele, sample ID, and genotype).
This stage ends with a sorting-by-key action that extends to the
next stage.
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Figure 4: The workflow chart of the Spark schema. The workflow is divided into three stages. In the first stage, VCF records are loaded, filtered, and mapped to pairRDDs
with keys of genomic position and values of genotype. The sort-by-key shuffling spans across the first two stages, sorting and grouping together records by keys. Then,
grouped records with the same key are locally merged into one record in TPED format. Finally, merged records are exported to the TPED file.

Sorting and merging stage
The sort-by-key shuffling operation repartitions and sorts Pair-
RDD records so records with the same key are aggregated to-
gether, which are then merged into the TPED format and con-
verted back to RDD records for outputting. However, Spark’s na-
tive family of group-by-key functions for merging should not
be used here because their default partitioner is hash based
and different from the range-based partitioner used by previous
sort-by-key function. Consequently, the merged results would
be reshuffled into an unsorted status. We therefore optimize the
merging to bypass these functions so merging can be performed
locally without data reshuffling to ensure both order and high
speed.

Exporting stage
In this stage, merged RDD records are saved as TPED files on
HDFS.

Execution parallelism has an important impact on the perfor-
mance. To maximize performance, the number of parallel tasks
is set to be the number of input files. In this way, data local-
ity is maximized, and each task is assigned a proper amount of
work. In addition, unlike using MapReduce or HBase, when per-
forming sorting by keys, no explicit sampling is needed because
Spark keeps track of the number of records before determining
repartition boundaries.

Parallel multiway-merge and MPI-based HPC
implementations

For most bioinformatics researchers, their daily working en-
vironment is still traditional in-house HPC clusters or stand-
alone powerful servers (with cores ≥16 and memory ≥200 GB)
rather than heterogeneous cloud-based clusters. Therefore, we
also implement a parallel multiway-merge program running on
a single machine and an MPI-based (mpi4py v3.0) “single pro-
gram, multiple data” program running on an HPC cluster as
benchmarks. The source codes are available at our GitHub web-
site [35] (CloudMerge; RRID:SCR 016051). We chose to implement

multiway-merge because many existing bioinformatics tools, in-
cluding VCFTools and PLINK, adopt it as the underlying algo-
rithm for sorted merging. Multiway-merge is highly efficient on
a single machine as it requires only one scan of sorted input files,
so it can theoretically run at the speed of disk I/O.

Generally, there are two types of parallelism—data paral-
lelism and task parallelism. The former splits data horizontally
into blocks of roughly equal sizes (the size of genomic intervals
in our case) before assigning them to all available processes; the
latter assigns a roughly equal number of input files to each pro-
cess. For parallel multiway-merge, we chose data parallelism
because the implementation of task parallelism would be the
same as the HPC-based implementation running on a single
node. Perhaps the most difficult part of data parallelism is un-
certainty about the data distribution across all input files, which
usually leads to the problem of workload imbalance among pro-
cesses. If we pre-sample all the input files to estimate the record
distribution, then a full scan of the input files is required that
will almost certainly take more time than the single-process
multiway-merge method. As a compromise, we assume the dis-
tributions of SNP locations in all VCF files are uniform and the
input files can be split into regions of approximately equal sizes.
The total number of regions is set to be the number of concur-
rent processes, so that each region is specifically handled by a
process. To avoid seeking of a process’s file reader to its starting
offset from the beginning of the file, we take advantage of the
Tabix indexer [36], which builds indices on data blocks of the in-
put file and place the reader’s pointer directly onto the desired
offset. One important aspect of the Tabix indexer is that it re-
quires the input file to be compressed in bgzip format, which
is not supported by Hadoop, HBase, or Spark. The compression
and decompression of a file in bgzip format can be much faster
than in the bz2 format used in our cluster-based schemas, sin-
gle multiway-merge, and HPC-based implementations, so par-
allel multiway-merge can run much faster than other meth-
ods/schemas when input data size is small.

For the HPC-based implementation, we adopt the task paral-
lelism (Fig. 5) to avoid sampling and workload imbalance. Oth-

https://scicrunch.org/resolver/RRID:SCR_016051
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Figure 5: The execution plan of the HPC-based implementation. The execution plan resembles a branched tree. In the first round, each process is assigned an approx-
imately equal number of files to merge locally. In the second round, the even-numbered process retrieves the merged file of its right adjacent process to merge with
its local merged file. In the third round, processes with ID numbers that can be fully divided by 4 retrieve the merged file of its right adjacent process in the second
round and do the merging. This process continues recursively until all files are merged into a single TPED file (round four).

erwise, the workflow of HPC-based implementation is the same
as that of the MapReduce-based schema with the same oper-
ations and the same order: sampling in parallel, dividing the
dataset into splits of equal sizes, and assigning the splits to pro-
cesses to perform the merging. However, this implementation is
without data locality offered by HDFS and task coordination of-
fered by YARN and thus has a performance no better than the
MapReduce-based schema. Specifically, input files are shared
across all nodes in the cluster via a network file system (NFS).
In the first round, each core/process fetches roughly the same
number of files from the NFS and performs multiway-merging
locally. In the following rounds, we adopted a tree-structured
execution strategy. In the second round, processes with even ID
numbers (process ID starts from 0) retrieve the merged file from
its adjacent process to the right, which is then merged with its
local merged file. Processes with odd ID numbers are terminated.
In the third round, processes with ID numbers divisible by 4 re-
trieve the merged file from its adjacent process to the right in
the second round to merge with its local merged file. This pro-
cess continues until all the files are merged into a single file for
a total of log(n) rounds, where n is the number of the input files.

Strong and weak scalabilities

In this study, we quantify scalability by measuring computing
efficiency in tests of strong and weak scalabilities. We define ef-
ficiency as the average time cost of processing a file per core:

Efficiency = (Tb∗Cb/Nb) / (Ti∗Ci/Ni)

where Tb is the baseline running time, Cb is the baseline num-
ber of cores, Nb is the baseline number of input files, Ti is the
current running time, Ci is the current number of cores, Ni is
the current number of input files. We also incorporated the par-
allel multiway-merge and MPI-based HPC implementations as
benchmarks in the tests.

For the strong scalability test, we fix the number of input
files at 93 and increase the computing resources up to 16-fold
from the baseline. The baseline is a single node (four cores) for
all methods/schemas except for the parallel multiway-merge in
which only a single core is used because it can only run on a
single machine. For the weak scalability test, we increase both
computing resources and input data size at the same pace. The
ratio is 10 file/core for parallel multiway-merge and 10 file/node
for all others.

Results

We conducted experiments of Apache cluster-based schemas
using Amazon’s Elastic MapReduce service and experiments
of the HPC-based implementation using MIT’s StarClusterTM

toolkit, which launches an AWS openMP virtual private cluster.
Within both infrastructures, we choose EC2 working nodes of
m3.xlarge type, which has four high-frequency Intel Xeon E5-
2670 v2 (Ivy Bridge) processors and 15 GB ofmemory. We con-
ducted experiments of parallel multiway-merge on a single EC2
r4.8xlarge instance with 32 high-frequency Intel Xeon E5–2686
v4 (Broadwell) processors and 244 GB memory. We used a dataset
consisting of 186 VCF files [32] generated from Illumina’s BaseS-
pace software.

Overall performance analysis of cluster-based schemas

Our primary goal is to explore the scalabilities of the three
schemas on input data size and available computing resources,
namely, CPUs. To achieve this, in this experiment we adjusted
the number of input files from 10 to 186, with an approximate
total uncompressed size from 2.5 GB to 40 GB, and used a varying
number of working nodes from 3 to 18, namely, 12 to 72 cores.

As Fig. 6 shows, for all three schemas and given a fixed num-
ber of cores, the execution time increases at a slower pace than
that of the input data size. On the one hand, the increase of exe-
cution time is more obvious with fewer cores because each core
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(a)

(c)

(b)

Figure 6: The scalability of Apache cluster-based schemas on input data size. As the number of input files increases from 10 to 186, the time costs of all three schemas
with 12, 24, or 72 cores increase at a slower pace than that of the input data size, especially when the number of cores is relatively large. The HBase schema with 12
cores has the largest increase (from 375 to 5479 seconds, ∼14.6 fold).

is fully utilized. As the number of input files increases, so does
the number of parallel tasks assigned to each core. For example,
given 12 cores, as the number of input files increases from 10
to 186 (18.6 fold), the execution time increases from 739 to 4366
seconds (∼5.9 fold) for the MapReduce schema, from 375 to 5479
seconds (∼14.6 fold) for the HBase schema, and from 361 to 1699
seconds (∼4.7 fold) for the Spark schema. On the other hand,
with relatively more cores such as 72, this linear increasing trend
is less pronounced because there are more cores than tasks so
that all cores are assigned at most one task. We also notice when
input data size is small or moderate, the Spark schema does not
always show a consistent improvement in terms of execution
time with more cores. This is reflected, e.g., in the intersection
of curves that occurred between 24 and 72 cores in Fig. 6c. This
phenomenon is attributed to the limitation of Spark’s internal
task assignment policy, which gives rise to the possibility that
some nodes are assigned more than one tasks while others re-
main idle.

Comparing strong and weak scalabilities between
Apache cluster-based schemas and traditional parallel
methods

Figure 7 shows the results of the strong scalability. In accor-
dance with Amdahl’s law [37], all schemas/methods show de-
graded efficiency with increasing computing nodes/cores. Par-
allel multiway-merge has the steepest degradation because the
more parallel processes, the higher likelihood of workload im-
balances among them. In addition, disk I/O reaches saturation as
more processes write simultaneously. Furthermore, to achieve
data parallelism and improve execution speed, we used Tabix

indexer to index data blocks of input files. While reading, each
process needs to maintain a full copy of file descriptors, in-
dices, and uncompressed current data blocks of all input files
in memory. When both the number of processes and input files
are large, great pressure is placed on memory management. For
instance, a test with 93 files and 16 processes requires more
than 100 GB of memory, which results in a very long memory
swap and garbage collection time. In contrast, the MapReduce-
based schema has the best efficiency. Surprisingly, its efficiency
even improves when the number of cores doubles from the base-
line. This is because it has many parallel tasks in its second
MapReduce phase; when the core allowance is low, the over-
heads of repetitive task launching and terminating on a sin-
gle core become non-negligible. Consequently, as the number
of cores starts to increase, the actual proportion of overheads
in the total running time decreases, leading to an improved ef-
ficiency. Nonetheless, as the number of cores further increases,
the unparalleled parts of the schema gradually dominate the to-
tal running time, leading to a reduced efficiency eventually.

For the weak scalability test (Fig. 8), following Gustafson’s law
[38], all methods/schemas show a much better efficiency than
in the strong scalability test. Meanwhile, for the same reasons
as the strong scalability, the MapReduce-based schema enjoys
the best efficiency while the HPC-based implementation has the
worst. This is because for the HPC-based implementation, as
the number of input files increases, the total number of merg-
ing rounds also increases, leading to a significantly reduced effi-
ciency. Finally, all three Apache cluster-based schemas demon-
strate significantly better weak scalability than the two tradi-
tional parallel methods.
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Figure 7: Comparing the strong scalability between traditional parallel/distributed methods and Apache cluster-based schemas. We fix the number of files at 93
and increase the number of nodes/cores. The baseline for the parallel multiway-merge is one single core, while for the others it is one single node (four cores). All

methods/schemas show a degraded efficiency as computing resources increase 16 fold from the baseline. Specifically, the efficiency of MapReduce-, HBase-, and
Spark-based schemas drops to 0.83, 0.63, and 0.61, respectively, while the efficiency of parallel multiway-merge and HPC-based implementations drops to 0.06 and
0.53, respectively.

Figure 8: Comparing the weak scalability between traditional parallel/distributed methods and Apache cluster-based schemas. We simultaneously increase the num-
ber of cores and input data sizes while fixing the ratio of file/core (parallel multiway-merge) or file/node (all others) at 10. The baseline is the same as in the test of
strong scalability. All but the MapReduce-based schema have degraded efficiency, among which the HPC-based implementation has the steepest degradation. Specif-
ically, when computing resource increases 16 fold from the baseline, the efficiency of MapReduce-, HBase-, and Spark-based schemas changes to 3.1, 0.87, and 0.75,

respectively, and for parallel multiway-merge and HPC-based implementations, the efficiency reduces to 0.42 and 0.35, respectively.
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(a)

(c)

(b)

Figure 9: The performance anatomy of cluster-based schemas on increasing input data size. The number of cores in these experiments is fixed at 48. Time costs of all
phases of the three schemas have a linear or sublinear correlation with the input data size. (a) MapReduce schema: The two MapReduce phases have a comparable
time cost, increasing 6.3- and 3.1-fold, respectively, as the number of input files increases from 10 to 186. (b) HBase schema: The time spent in each phase increases

4.2-, 5.6-,and 5.0-fold, respectively, as the number of input files increases from 10 to 186. The bulk loading and exporting phases together take up more than 80% of
total time expense. (c) Spark schema: The time cost increases 5.8-, 6.0-,and 6.0-fold, respectively, for the three stages as the number of input files increases from 10 to
186 files. Like the HBase schema, the first two stages of the Spark schema together account for more than 80% of the total time cost.

Anatomic performance analysis of Apache
cluster-based schemas

Another important goal of our study is to identify potential per-
formance bottlenecks, so we evaluate the execution time of each
phase/stage of all three schemas. Figure 9 shows the trends of
the anatomic computing time spent on merging an increasing
number of VCF files (from 10 to 186) using 48 cores. For the
MapReduce schema (Fig. 9a), its two phases account for a com-
parable proportion of total time and both show a linear or sub-
linear scalability. The reason that the time cost of the first phase
between 40 and 93 input files remains flat is because both runs
use two rounds of mappers. As the number of files doubles to
186, four rounds of mappers are required, which results in about
a 2-fold increase in the time cost as expected. For the three
phases of the HBase schema (Fig. 9b), they are scalable with in-
put data size. Meanwhile, the second phase becomes more dom-
inant with more input files owing to the larger amount of shuf-
fled data during the writing of HFiles. However, we do not con-
sider it as a bottleneck since all tasks of this phase are paral-
lelized with no workload or computational hot spot. Also, we do
not observe a super-linear (relative to input data size) increment
pattern from the figure. Finally, Fig. 9c shows the time costs of
the three stages of the Spark schema. They show a uniform in-
creasing trend with the number of input files. Among them, the
second stage takes up a considerable proportion of the total exe-
cution time as it has a relatively expensive sort-by-key shuffling
operation. Although no data are shuffled in the first stage, its
time lapse is close to the second stage. This is because at the end

of the first stage, data are sampled to determine the boundaries
used by sort-by-key’s range partitioner. This operation demands
a considerable execution time because it scans all the data and
balances them if necessary.

Given that no super-linear increasing trend is observed in
running time for all phases/stages of the three schemas, and
they generally scale well with the input data size, we conclude
that although the performances of these schemas might de-
grade to some extent when dealing with even larger input data
due to overheads such as data transmission over network, we
would not expect any significant bottleneck.

Comparing execution speed between Apache
cluster-based schemas and traditional methods

Another intriguing question is: how does the speed of the
Apache cluster-based schemas compare to single-machine
based and traditional parallel/distributed methods/applications
on merging multiple VCF files into a single VCF or TPED file?
To answer this question, we choose the widely used VCFTools
(v4.2) and a single-process multiway-merge implementation
as single-process benchmarks and parallel multiway-merge
and HPC-based implementations as parallel/distributed bench-
marks, which are the same ones used in the experiments of
strong and weak scalabilities described above.

In the first experiment, we merged 40 VCF files into 1 VCF
file using VCFTools as the benchmark. As shown in Table 1,
VCFTools takes 30,189 seconds, while the fastest Apache cluster-
based schema among the three, MapReduce based, takes only
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Table 1: Performance comparisons between VCTools and Apache cluster-based schemas

VCFTools MapReduce HBase Spark

Time cost (seconds) 30,189 484 577 596
Fold (faster) - 62.4 52.3 50.7

Table 2: Pros and cons of MapReduce, HBase, and Spark schemas

Schema Pros Cons

MapReduce • Good for large input data size and sufficient
computing resources

• Merging is not incremental

• Simple architecture and least overheads given
sufficient computing resources

• Large overhead when computing resources are
limited

• Best parallelism
• Good for one-time merging
• Performance is stable

HBase • Good for intermediate input data size (≥ 20 and
≤ 100 VCF files)

• Users must determine region number in
advance

• Supports incremental merging • Has most local I/O
• Supports on-line analytical processing • Complex performance tuning
• Best storage efficiency

Spark • Good for large input data size (>100 VCF files)
and relative limited computing resources

• Possibly weakened data locality during loading

• Keeps intermediate results in memory and
least local I/O

• Slight unstable performance when computing
resources exceeds needs of input data size

• Good for subsequent statistical analysis on
merged results

• Actual execution plan is not transparent

• Complex performance tuning

Figure 10: Execution speed comparison among Apache cluster-based schemas and traditional methods. First, we compare the speeds of the three Apache schemas
with that of three traditional methods, which are single-process multiway-merge, parallel multiway-merge, and HPC-based implementations. As the number of input
files increases from 10 to 186, the speeds of Apache cluster-based schemas improve much more significantly than that of traditional methods. The numbers in the
figures indicate the ratio of the time cost of each traditional method to that of the fastest Apache cluster-based schema. Second, we compare the processing speed

among the three Apache cluster-based schemas, which are comparable to each other regardless of the input data size. The MapReduce schema performs the best in
merging 10 and 186 files; the HBase schema performs the best in merging 20, 40, and 60 files; and the Spark schema performs the best in merging 93 files.
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484 seconds using 72 cores, being about 62-fold faster. In the
second experiment (Fig. 10), we tested the time costs of merging
of multiple VCF files into a single TPED file using single/parallel
multiway-merge and HPC-based implementations as bench-
marks. The single multiway-merger is run on a node with the
hardware configuration (four cores and 15 GB ofmemory) iden-
tical to the nodes on which the Apache cluster-based schemas
are run. The parallel multiway merger is run on a node with a
maximum of 18 simultaneously running processes. The HPC-
based implementation is run on an 18-node cluster with the
same hardware configuration as the cluster where the Apache
cluster-based schemas are run. Initially, with 10 input files, the
parallel multiway-merge (∼30 seconds) is much faster than all
the other methods; it is about 7.3-fold faster than the fastest
Apache cluster-based schema (MapReduce, 221 seconds). On the
other hand, the slowest method is the single-process multiway-
merger, which takes 620 seconds to finish (about 2.8-fold slower
than the MapReduce-based schema). It is worth mentioning that
in this test, the parallel multiway-merge is essentially the same
as the single-process multiway-merge and that the speed dif-
ference (∼378 seconds) between them is the result of a different
compression format (bz2 vs bgzip) of the input files as explained
above. As we gradually increase the number of input files to
186, the difference in speed between the fastest overall method
(parallel multiway merger, 602 seconds) and the fastest Apache
cluster-based schema (MapReduce, 809 seconds) decreases to
about 1.3-fold, while the difference between the slowest over-
all method (single multiway-merger, 13,219 seconds) and the
MapReduce-based schema increases to 16.3-fold. In addition, all
three Apache schemas significantly outperform the HPC-based
implementation. As explained in the strong and weak scalabili-
ties section above, we expect that the larger the input data size,
the faster the Apache cluster-based schemas would run com-
pared to the other traditional methods.

We also compare the time cost among the three schemas
(Fig. 10). They have a comparable speed. More specifically, the
MapReduce schema performs best if enough cores are available
and the input data size is large; the HBase schema performs best
with moderate input data size; the Spark schema performs best
if only a limited number of cores are available and the input data
size is large. The rationale behind this observation is that when
the number of cores is sufficient, the MapReduce-based schema
can make the most use of the available computing resources be-
cause it runs a constant 25 parallel jobs (one for each of chromo-
somes 1–22, X, Y, and M [mitochondria]) in its second phase. In
contrast, the Spark-based schema has fewer tasks whose num-
bers equal the number of input files to achieve maximum data-
task locality. When the input data size is moderate, the HBase-
schema triumphs because of its internal sorting and relatively
compact storage format of intermediate data. When the input
data size is large and computing resources are relatively limited,
the Spark-based schema outperforms the other two owing to its
small number of data shuffling (only one), execution plan opti-
mization, and ability to cache intermediate results in memory.
We caution, however, that the computing time may fluctuate de-
pending on the distribution of genomic locations in the input
files as well as the data loading balance of the HDFS.

Discussion

In this report, we describe three cluster-based schemas run-
ning on the Apache Hadoop (MapReduce), HBase, and Spark
platforms for performing sorted merging of variants identi-

fied from WGS. We show that all three schemas are scalable
on both input data size and computing resources, suggesting
large-scale “-omics” data can be merged efficiently given the
computing resources readily available in the cloud. Further-
more, the three schemas show better strong and weak scalabil-
ities than traditional single machine-based parallel multiway-
merge and cluster-based HPC methods owing to the absence
of I/O bottleneck, better workload balance among nodes, and
less pressure on memory, as well as data locality and efficient
task coordination mechanisms provided by HDFS and YARN.
We also show that even with a moderate-sized cluster and in-
put data, all three schemas significantly outperform the broadly
used, single-machine based VCFTools, single-process multiway-
merge, and HPC-based implementations. Although initially the
parallel multiway-merge implementation is much faster than
the Apache schemas owing to its advantage of local I/O and light
compression of input files, its poor scalability diminishes its ini-
tial advantage as the number of concurrent processes and in-
put files increases. Consequently, we expect the Apache cluster-
based schemas to eventually outperform the parallel multiway-
merge when merging a much larger scale of data using a larger
number of cores.

Unlike normal merging, efficient sorted merging of many
large tables has always been a difficult problem in the field of
data management. Multiway-merge is the most efficient single-
machine based method for sorted merging, but its performance
is limited by the disk I/O [39]. Sorted merging also places chal-
lenges to distributed system-based solutions because neither
the efficient hash-based merging nor caching the intermediate
table in shared memory is feasible [40]. Although a utility named
total-order-joining is provided by the Hadoop for addressing this
problem, it suffers from both network communication and local
disk I/O bottlenecks, and thus is not scalable [27, 41]. In contrast,
our schemas divide this problem into different phases/stages of
tasks, each conquered in parallel to bypass these bottlenecks
and achieve maximum parallelism. Furthermore, in addition to
merging sequencing variant data, these schemas can be gener-
alized for other key-based, sorted merging problems that are fre-
quently encountered in genetics and genomics data processing.
As an example, they can be slightly modified to merge multi-
ple BED format files such as ChIP-seq peak lists [42] and other
genomic regions of interest. Other potentially useful features
include the following: unlike traditional sorted merging algo-
rithms that usually require presorted inputs for a better perfor-
mance, our schemas are free of such a requirement; and our im-
plementations automatically take care of multi-allelic positions,
which are frequent in large-scale VCF flies, by retaining the in-
formation of all alleles until the merging actually occurs.

Finally, in light of these different features and specialties of
these three platforms, each of the three schemas we developed
has its own advantages and disadvantages under different ap-
plication scenarios, as summarized in Table 2. For example, the
MapReduce schema is good for a static one-time, nonincremen-
tal merging on large-size data provided sufficient cores are avail-
able since it has the most parallel jobs, the least overheads, and
the most transparent workflow. The HBase schema, supported
by data warehousing technologies, fits for an incremental merg-
ing since it does not need to re-merge existing results with new
ones from scratch only if the incremental merging is performed
on the same chromosomes. Also, it provides highly efficient stor-
age and on-line analytical processing on merged results. The
Spark schema is ideal for merging large-scale data with rela-
tively limited computing resources because it has the least data
shuffling and keeps intermediate results in memory. A bonus
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brought by Spark is that subsequent statistical analyses can be
carried out directly on the merged results using its rich set of
parallel statistical utilities.

Availability and requirements

Project name: CloudMerge
Project home page: https://github.com/xsun28/CloudMerge
Operating system(s): Linux
Programming language: Java, Python
Other requirements: Java 1.7 or higher, Python 2.7 or 3.6,
Hadoop-2.7, HBase-1.3, Spark-2.1, StarCluster 0.95, MPI for
Python 3.0.0
License: Apache License 2.0

Availability of supporting data

The source codes for the project are available in GitHub. The 186
individual VCF files used in our experiments are modified from
the original VCF files obtained from WGS conducted by the Con-
sortium on Asthma among the African-Ancestry Population in
the Americas (CAAPA) [32]. To conceal the potential individual
identifiable genotype information from the public, we encrypt
the authentic genomic location of the original 93 VCF files to
generate a new batch of encrypted VCF files for test purposes.
Please refer to the Data formats and operations section for de-
tails. These supporting data and a snapshot of project codes are
available at the GigaScience database, GigaDB [43]. Via GigaDB,
we also provide sample results of merging 93VCF files into ei-
ther one VCF or one TPED file using our Apache cluster-based
schemas.

Additional file

Figure S1. Pseudocodes of the MapReduce schema.
Figure S2. Pseudocodes of the HBase schema.
Figure S3. Pseudocodes of the Spark schema.
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