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Abstract: Epithelial–mesenchymal transition (EMT) is generally observed in normal embryogenesis
and wound healing. However, this process can occur in cancer cells and lead to metastasis. The
contribution of EMT in both development and pathology has been studied widely. This transition
requires the up- and down-regulation of specific proteins, both of which are regulated by EMT-
inducing transcription factors (EMT-TFs), mainly represented by the families of Snail, Twist, and ZEB
proteins. This review highlights the roles of key EMT-TFs and their post-translational regulation in
cancer metastasis.

Keywords: metastasis; epithelial–mesenchymal transition; transcription factor; Snail; Twist; ZEB

1. Introduction

Morphological alteration in tissues is related to phenotypic changes in cells [1].
Changes in morphology and functions of cells can be caused by changes in transcrip-
tional programs and protein expression [2]. One such change is epithelial–mesenchymal
transition (EMT).

EMT is a natural trans-differentiation program of epithelial cells into mesenchymal
cells [2]. EMT is primarily related to normal embryogenesis, including gastrulation, renal
development, formation of the neural crest, and heart development [3]. It is also associated
with adult tissue regeneration, wound healing, and fibrosis in which tissue fibroblasts
originate from endothelial or epithelial cells [4]. Epithelial cells maintain strong apico–
basolateral polarity through connections between intercellular junctions, such as adherens,
tight, and gap junctions, as well as desmosomes (Figure 1) [5,6]. During EMT, the main
characteristics of epithelial cells are gradually lost and undergo partial EMT [2,7,8]. Some
of these cells within partial EMT remain cell–cell junction and show both epithelial (e.g.,
cell–cell adhesion) and mesenchymal (e.g., migration) characteristics [9]. Additionally, en-
dothelial cells have characteristics similar to epithelial cells. Thus, the process of transition
from endothelial cells to mesenchymal cells is one of the variants of traditional EMT and is
named endothelial-to-mesenchymal transition (EndoMT) [10]. EndoMT is involved in the
formation of heart valves and the generation of cancer-associated fibroblasts [11]. Similar
to epithelial cells in EMT, endothelial cells also show various intermediate phenotypes
in EndoMT [12,13]. Such hybrid cells disseminate as cell clusters [9]. For complete EMT,
these hybrid cells then have anteroposterior polarity and separate from each other and
from adjacent tissues, acquiring mesenchymal cell characteristics [11,13]. By acquiring
mesenchymal-associated phenotypes, the cells gain high migratory and invasive proper-
ties [13,14]. These mesenchymal cells enter the circulatory system and invade through
the basement membrane and extracellular matrix surrounding the cancer tissue [15]. In-
terestingly, EMT in cancer cells is transient [16]. Therefore, metastatic cells settle down
and proliferate, needing to reverse from mesenchymal to a more epithelial phenotype [17].
This conversion is named as mesenchymal–epithelial transition (MET) [18]. Some studies
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have proposed that these processes lead to the invasion–metastasis cascade. However,
recent studies have questioned the necessity of these transitions in driving metastasis [19].
Therefore, the mechanisms regulating the EMT–MET conversion process still need to be
studied.

Figure 1. Characteristics of EMT. Epithelial cells are usually attached to the basement membrane. These cells maintain
cell–cell connection such as adherens, tight and gap junctions, and desmosomes. EMT is primarily involved in normal
embryogenesis and is associated with adult tissue regeneration, wound healing, and fibrosis. As EMT of cancer cells
is transient, the mesenchymal state of cells reverts to the epithelial phenotype, which is called as MET. The process of
EMT causes epithelial markers (e.g., E-cadherin, claudin, ZO-1) to be gradually lost, while mesenchymal markers (e.g.,
N-cadherin, vimentin, and fibronectin) to be increased, which causes changes in physiology of cells. Hence, cells acquire
high motility and invasive properties. This process is regulated by EMT-TFs such as families of Snail, Twist, and ZEB. EMT,
epithelial–mesenchymal transition; EMT-TFs, EMT-inducing transcription factors; MET, mesenchymal–epithelial transition;
ZO-1, Zonula occludens-1.

In cells, signaling molecules such as hormones, growth factors, and extracellular ma-
trix components bind to specific receptors, which then initiate a physiological response [20].
The intracellular signal transduction is triggered by extracellular signal molecules binding
to membrane receptors (Figure 2). Examples of such ligands are growth factors, including
epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, trans-
forming growth factor β (TGF-β), bone morphogenetic protein, integrin, Jagged, Wnt,
and Sonic Hedgehog [21,22]. These ligands bind to tyrosine receptor kinases, TGF-β
receptors, activin receptors, matrix protein, Notch, Frizzled, and patched homolog 1/2
receptor, respectively [7,23]. Many EMT-related signals appear to be cell type- and tissue
type-specific [7,24]. Thus, cells could react to signals with different sensitivities or integrate
signals differently, depending on the microenvironment and states of cells [7].
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Figure 2. The common signaling pathways regulating EMT. The progression of EMT is controlled by several extracellular
and intracellular signaling pathways. Their coordinated interactions bind to DNA promoter regions of EMT-TFs, leading
to promotion of transcriptional activity of EMT-TFs. The expressions of EMT-TFs play a key role in regulating the
expression of their target genes related to EMT and cancer metastasis. (Left to right: matrix protein/ILK, WNT/PI3K/β-
catenin, TGF-β/PI3K/NF-κB, TGF-β/SMAD complex, growth factors or TGF-β/RAS/ERK, growth factors/TAK1/MAPK,
Jagged/NOTCH-ICD, and Sonic Hedgehog/GLI1) ILK, integrin-linked kinase; TGF-β, transforming growth factor-beta;
PI3K, phosphoinositide 3-kinase; NF-κB, nuclear factor-kappa B; ERK, extracellular signal-regulated kinase; JNK, c-Jun
N-terminal kinases; MAPK, mitogen-activated protein kinase; TAK1, transforming growth factor β-activated kinase 1; MEK,
MAPK/ERK kinase; MKK, mitogen-activated protein kinase kinase.

Due to the complexity of EMT, molecular and morphological changes in epithelial cells
are regulated by activation of specific signaling pathways [25]. Because many signaling
pathways are involved in EMT, these pathways interplay with each other and transduce sig-
nals through intracellular kinase cascade including phosphoinositide 3-kinase (PI3K)/Akt,
mitogen-activated protein kinase (MAPK), SMAD, or nuclear factor-kappa B (NF-κB) [7].
The process of EMT is executed in response to these signaling factors that induce transcrip-
tion factors (EMT-TFs) such as the families of Snail, Twist, and ZEB, which regulate the
expression of EMT-related genes (Figure 3) [26]. Interestingly, all EMT-TFs bind to the E-box
motif of the E-cadherin gene promoter region, leading to inhibition of E-cadherin gene
expression [27]. During EMT, not only is E-cadherin expression suppressed by EMT-TFs,
but they can also downregulate the transcription of other epithelial cell markers such as
claudin [27]. On the other hand, it should be noted that EMT-TFs upregulate the markers of
mesenchymal cells, including N-cadherin, vimentin, and fibronectin [28,29]. Unfortunately,
the underlying mechanisms in which each EMT-TF selectively regulates the expressions of
the main EMT-related genes, E-cadherin and N-cadherin, are less-defined. Additionally, the
expression of secreted proteases such as matrix metalloproteinases (MMPs) that degrade
the extracellular matrix (ECM) around cancer cells, is also upregulated by these EMT-
TFs [30]. The physiological roles of EMT-TFs are common in embryogenesis, organism
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development, and recurrence in cancer cells [31]. As a result, the expressions of EMT-TFs
can overlap and form networks [27]. Moreover, EMT-TFs are clinically relevant in metasta-
sis and their expressions are associated with poor outcomes in various cancer patients [32].
Additionally, extensive animal models proved that the overexpression of main EMT-TFs
promoted EMT and metastasis [33–35]. However, Zheng et al. showed that the loss of
Snail and Twist1 gene had no impact on the metastatic spread in pancreatic cancer [36].
In contrast, a recent study of Krebs et al. showed the deletion of ZEB1 gene inhibited
metastasis [37]. These studies claim the possibility of partial distribution of EMT-TFs to the
mechanisms of cancer metastasis. Therefore, further investigations need to be established
to clarify the relationship between EMT-TFs and cancer metastasis.

Figure 3. A schematic representation of structures of EMT-TFs. The Snail family (Snail, Slug, and Smuc) commonly includes
the SNAG domain in the N-terminal and the zinc finger domain in the C-terminal. Snail contains the nuclear export
sequences and serine-rich domain that control the stability of the Snail. The SNAG domain is however only present in Slug.
The latest recognized member in Snail family, Smuc does not have both serine-rich domain and SNAG domain. The Twist
family (Twist1 and Twist2) mainly consists of a bHLH domain and a Twist box in C-terminal for its transcriptional activity.
However, glycine rich domains are only present in Twist1. The bHLH domain consists of basic amino acids followed by two
alpha helices, which is separated by a loop of different length. The ZEB family (ZEB1 and ZEB2) has the largest protein
size compared to other EMT-TFs. This ZEB family contains various regulatory domains, which include clusters of zinc
fingers in N-terminal and C-terminal, homeodomain, SMAD-binding domain, and CtBP-binding site. CtBP, C-terminal
binding protein.

Even though the transcription of EMT-TFs is regulated by multiple signaling path-
ways, their protein levels are regulated by post-translational modifications (PTMs) [38].
PTMs are covalent and enzyme-dependent modifications of proteins occurring after protein
synthesis to form mature protein product [38,39]. These modifications include the altering
the functional group, such as folding or adding of another protein to one or more residues
of the target protein [38]. Because the structures of EMT-TFs are different, PTMs have
diverse effects on EMT-TFs, an important factor in diversification of protein functions
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and coordination of their signaling networks [40]. Examples of PTMs include phospho-
rylation, ubiquitination, sumoylation, acetylation, glycosylation, and methylation [38].
PTMs also function in regulating protein stability, transcriptional activity, and intracellular
localization of EMT-TFs [3]. Among these modifications, phosphorylation represents the
best-characterized modification involved in various biological activities, such as apoptosis,
metabolism, and transcription [41].

Because EMT-TFs are critical factors in regulating EMT-related markers and leading
to cancer metastasis, many researchers have studied the signaling pathways and PTMs
of EMT-TFs. Furthermore, several studies have revealed that the expression of EMT-TFs
induces drug resistance in several malignant carcinomas and leads to poor prognosis for
patients [42–44]. Therefore, gaining deeper insight into this field may help elucidate the
important steps in EMT and cancer metastasis. This review will discuss the current roles
and PTM-mediated regulation of EMT-TFs and the functional consequences of these PTMs
in cancer metastasis.

2. Regulation of the Snail Family

The Snail family consists of the transcription repressor Snail (also referred to as Snail1),
Slug (Snail2), and the less characterized Smuc (Snail3), which are located on chromosome
loci 20q13.13, 8q11.21, and 16q24.2, respectively [45–49]. This suggests that even through
Snail members are in the same family, different gene locations on chromosomes could lead
to various gene expressions and regulation. Additionally, Snail and Slug are highly labile
proteins with a half-life of about 60 min, due to rapid proteasomal degradation [50,51].
Therefore, understanding of the stabilization and degradation of Snail family proteins is
essential in relation to EMT-related gene expression regulation (Table 1).

Table 1. Regulation of the Snail family by post-translational modifications (PTMs).

Transcription
Factor Function Effects on

EMT-TFs
Regulation

Factor Role or Mechanism Reference

Snail

Phosphorylation

Stabilization

Lats2 Phosphorylation at Thr203 [52]

PTK6 Phosphorylation at Tyr342 [53]

ATM Phosphorylation at Ser100 [54]

Degradation PKD1 Phosphorylation at Ser11 [55]

Nuclear
accumulation

GROα Phosphorylation at Ser246 [56]

ERK Phosphorylation at Ser82 and Ser104 [57]

PAK1 Phosphorylation at Ser246 [58]

Ubiquitination Degradation

β-TrCP Ubiquitination at pSer96 and pSer100 [59]

FBXO11 Ubiquitination at pSer11 [60]

FBXL14 Ubiquitination at Lys98, Lys137, and
Lys146 [61]

FBXL5 Ubiquitination at Lys85, Lys146, and
Lys234 [62]

Dephosphorylation Stabilization SCP Dephosphorylation at Ser96 and Ser100 [63,64]

Acetylation
Increasing

transcriptional
activity

CBP Acetylation at Lys126 and Lys187 [65]

Glycosylation Stabilization O-GlcNAc O-GlcNAc at Ser112 [66]
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Table 1. Cont.

Transcription
Factor Function Effects on

EMT-TFs
Regulation

Factor Role or Mechanism Reference

Slug

Phosphorylation

Nuclear
translocation

ERK-vimentin
complex Phosphorylation at Ser87 [67]

Degradation
GSK3β Phosphorylation at Ser92, Ser96, Ser100,

and Ser104 [48]

CDK2 Phosphorylation at Ser54 and Ser104 [68]

Stabilization PAK4 Phosphorylation at Ser158 and Ser254 [69]

Ubiquitination
Degradation

FBXL14 Ubiquitination depends on Leu33,
Tyr34, Val58, and Trp59 [70]

β-TrCP GSK3β-mediated ubiquitination [71]

CHIP GSK3β-mediated ubiquitination [72]

p53 MDM2-mediated ubiquitination [73]

Stabilization pellino-1 Ubiquitination at Lys63 [74]

Sumoylation Stabilization p14Arf Sumoylation at Lys192 [75]

Acetylation Stabilization
Sirtuin 2 Deacetylation at Lys116 [51]

CBP Acetylation at Lys166 and Lys211 [76]

Lats2, large tumor suppressor kinase 2; PTK6, protein tyrosine kinase 6; ATM, ataxia–telangiectasia mutated kinase; PKD1, protein kinase
D1; GROα, growth-regulated protein alpha; ERK, extracellular signal-regulated kinase; PAK1, p21 activating protein kinase 1; β-TrCP,
beta-transducin repeat-containing protein; FBXO11, F-box only protein 11; FBXL14, F-Box and leucine-rich repeat protein 14; FBXL5,
F-box and leucine-rich repeat protein 5; SCP, small C-terminal domain phosphatase; CBP, CREB-binding protein; O-GlcNAc, O-linked
β-N-acetylglucosamine; GSK3β, glycogen synthase kinase 3 beta; CDK2, cyclin-dependent kinase 2; PAK4, p21 activating protein kinase 4;
CHIP, carboxy terminus of the Hsc70-interacting protein.

All members of the Snail family share domains with four to six C2H2 zinc fingers (ZnF)
at the DNA-binding C-terminal with high similarity [77,78]. The C-terminal region of Snail
family binds to the E-box motif [79]. The central region of Snail contains a nuclear export
sequence and a serine-rich domain (SRD), which regulates the stability of Snail protein
and its intracellular location [80]. Members of the Snail family contain a SNAG domain,
a transactivation domain, in the N-terminal region [81]. The SNAG domain is essential
for the binding of transcriptional co-repressors, such as histone deacetylase 1/2 (HDAC
1/2), protein arginine methyl transferase 5, repressor element-1 silencing transcription
factor corepressor 1, and polycomb repressive complex 2 [82–87]. In addition, the 1 to
9 amino acids of SNAG domain determine the functions of Slug such as the suppression
of E-cadherin and induction of EMT [83,88]. Slug also has a unique domain called SLUG,
unlike other Snail family members [81,89]. However, Smuc does not contain SRD or SLUG
domains, which are main regulatory regions of Snail family.

Snail family has different efficiency in EMT induction [90]. The most well-studied Snail
family member, Snail, was first described in Drosophila melanogaster [91,92]. Snail binds
to promoter regions of target genes with a higher affinity than Slug [93,94]. Furthermore,
Snail could be a more potent inhibitor or activator of EMT-related target genes [93,94].
Compared to Snail and Slug, the functions of Smuc in the EMT process of cancer cells
are not yet well-known. Nevertheless, recent reports have shown that Smuc is a poor
EMT-inducer but involved in cell differentiation [90,95,96].

2.1. Snail
2.1.1. Phosphorylation of Snail

The initial phosphorylation of Snail, which is also called “priming”, induces sequential
phosphorylation [97]. This priming process is catalyzed by casein kinase 1 at Ser104 and
Ser107 [97]. It triggers the following phosphorylation at Ser96 and Ser100 by glycogen
synthase kinase 3 beta (GSK3β) [59,97]. These sequential phosphorylation events rely on
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serine residues of the SRD of Snail protein [98]. When Snail is phosphorylated at Ser96 and
Ser100, a well-known E3 ligase called beta-transducin repeat-containing protein (β-TrCP)
binds to these phosphorylated sites of Snail [59]. This occurs because β-TrCP has a specific
destruction motif, DSGxxS, which is also present in Snail as DSGKSS [50,59]. The main
mechanism of regulating Snail stability is by the phosphorylation at specific sites that
mediates the E3 ligase binding [59,99].

Considering that these phosphorylated serine residues mediate the binding of E3 ligase
to Snail and subsequent ubiquitination, dephosphorylation of these residues would stabi-
lize Snail [63]. The well-known phosphatase of Snail is a small C-terminal domain phos-
phatase (SCP) family, including SCP1-4, which dephosphorylates GSK3β-phosphorylated
residues of Snail [63,64].

p21 activating protein kinase 1 plays a vital role in regulating cell morphogenesis,
motility, mitosis, survival, and angiogenesis [100,101]. The phosphorylation of Snail at
Ser246 induces nuclear translocation of Snail, which thus activates its transcriptional
activity [58]. Large tumor suppressor kinase 2 (Lats2) interacts with Snail in the nucleus
and directly phosphorylates Thr203 of Snail [52]. The phosphorylation of Thr203 retains
Snail in the nucleus and improves its stability [52]. As a result, Lats2 has a positive
effect on EMT and invasion in a Snail-dependent manner [52]. In addition, when protein
tyrosine kinase 6 is activated by autophosphorylation at Tyr342, it stabilizes Snail in
breast cancer cells [53]. Activation of the extracellular signal-regulated kinase (ERK) by
discoidin domain receptor induces phosphorylation of Ser82 and Ser104 of Snail, which
in turn causes nuclear accumulation of Snail and leads to the inhibition of E-cadherin
expression [57]. One of the central proteins in DNA damage response, ataxia–telangiectasia
mutated kinase (referred to as ATM), increases the stability of Snail by phosphorylation
at Ser100 [54]. As a result, ATM-mediated phosphorylation of Snail protein induces
tumor invasion and metastasis and is also correlated with ionizing irradiation in terms of
cellular survival [54,102]. Protein kinase D1 (PKD1) phosphorylates Ser11 of Snail, causing
cytoplasmic translocation of Snail from the nucleus through 14-3-3 binding [55]. This
process affects the maintenance of the epithelial phenotype of breast cancer cells [103].
Another factor, growth-regulated protein alpha, phosphorylates Ser246 of Snail, which
supports the accumulation of Snail in the nucleus and suppresses the expression of E-
cadherin [56]. Additionally, casein kinase 2 phosphorylates Ser92 of Snail in vivo and
in vitro, and protein kinase A (PKA) phosphorylates Ser11 in vitro [104]. Notably, these
kinases stimulate Snail-induced EMT [104].

2.1.2. Ubiquitination of Snail

F-box only protein 11 (FBXO11) is a novel E3 ligase that triggers ubiquitination and
subsequent degradation of Snail [60]. FBXO11 needs phosphorylation of Ser11 and bind-
ing [60]. With the alanine scanning for substrate recognition, Zheng et al. confirmed that
PKD1 phosphorylates Ser11 on the SNAG domain of Snail, which is required for FBXO11
binding [60]. Moreover, F-Box and leucine-rich repeat protein 14 (FBXL14) interacts with
Snail and ubiquitinates Lys98, Lys137, and Lys146, independent of GSK3β phosphoryla-
tion [61]. Moreover, this study shows that inhibition of FBXL14 via shRNA stabilizes Snail
protein [61]. F-box and leucine-rich repeat protein 5 (FBXL5), localized predominantly in
the nucleus, interacts with the C-terminal of Snail and polyubiquitinates Lys85, Lys146,
and Lys234 of Snail [62]. FBXL5 induces the suppression of Snail protein stability [62].

2.1.3. Acetylation of Snail

CREB-binding protein (CBP), also known as CREBBP, is a histone acetyltransferase
(HAT) that functions to add an acetyl group on the lysine residue of a cellular protein [105].
CBP acetylates Lys126 and Lys187 of Snail and consequently enhances Snail target gene
expression [65].
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2.1.4. Glycosylation of Snail

In the signaling cascade, the O-linked β-N-acetylglucosamine (O-GlcNAc) modifi-
cation is the addition of a monosaccharide to especially serine or threonine residues of
a target protein [106]. O-GlcNAc at Ser112 of Snail could suppress Snail degradation by
nuclear translocation and promote EMT [66]. This mode of action suggests that O-GlcNAc
might suppress phosphorylation at the same residues because phosphorylation occurs
reciprocally with O-GlcNAcylation [66].

2.2. Slug
2.2.1. Phosphorylation of Slug

In the case of Slug, the domains of SNAG and SLUG bind to co-repressors, which are
nuclear receptor corepressor and C-terminal binding protein 1 [88]. These co-repressors
subsequently stabilize Slug [88]. In particular, the phosphorylation of Slug at Ser4 within
the SNAG domain has a modulatory effect on Slug-mediated EMT induction [88]. A recent
study by Virtakoivu et al. showed that vimentin directly interacts with ERK and acts as a
scaffold to recruit Slug and ERK [67]. This complex regulates the transcriptional activity of
Slug by enhancing ERK-mediated Slug phosphorylation at Ser87 [67]. Similar to Snail, Slug
is also regulated by the phosphorylation of Ser92, Ser96, Ser100, and Ser104 by GSK3β [48].
Mutation of these residues inhibits degradation of Slug [48]. p21 activating protein kinase 4
promotes prostate cancer progression through direct phosphorylation of Slug at Ser158 and
Ser254 [69]. In addition, Slug is temporally mediated by the cyclin E and cyclin-dependent
kinase 2 (CDK2) complex during cell cycle [68]. During cell cycle progression, cyclin E
generally functions as a regulatory subunit of CDK2, which is essential for G1/S phase
progression [68]. This complex phosphorylates Ser54 and Ser104 of Slug in G1/S phase,
resulting in ubiquitination and degradation of Slug [68].

2.2.2. Ubiquitination of Slug

The interaction of Slug with FBXL14 promotes degradation of Slug [70]. When all
Leu33, Tyr34, Val58, and Trp59 of Slug are mutated to alanine, FBXL14 is unable to interact
with Slug [70]. Ubiquitin-specific-processing protease 13 counteracts this activity [107].
Pellino-1, an E3 ligase, activates NF-κB and MAPK signaling pathways in human immune
cells [108]. In lung cancer cell lines, overexpressed pellino-1 stabilizes the Slug protein
through Lys63-mediated polyubiquitination [74]. Binding β-TrCP and the carboxy ter-
minus of the Hsc70-interacting protein to Slug promotes ubiquitination and subsequent
proteasomal degradation of Slug [71,72]. The interaction between these E3 ligases and Slug
is affected by GSK3β-mediated phosphorylation [71,72]. The interaction of both p53 and
p21 with Slug induces the mouse double minute 2 homolog (MDM2)-mediated degradation
of Slug, leading to inhibition of cell invasion [73,109]. For example, in non-small cell lung
cancer (NSCLC), high expression of Slug and low expression of E-cadherin and MDM2
are correlated with mutation of p53 gene, which is associated with poor progression [73].
Wang et al. revealed that wild-type p53 not only inhibits Slug gene expression, but also
induces MDM2-mediated ubiquitination by forming a complex with MDM2 and Slug [73].
In particular, amino acid residues 21–29 and 27–66 of Slug are essential for interaction with
p53 and MDM2 [73].

2.2.3. Sumoylation of Slug

In a mouse model of prostate cancer, p19Arf, a mouse homologue of human p14Arf,
stabilizes Slug and inhibits E-cadherin expression [75]. p14Arf, accumulates mainly in the
nucleus and generally forms a stable complex with MDM2/p53 [110]. In this process,
p14Arf acts as a tumor suppressor, which inhibits p53-dependent cell cycle arrest and
apoptosis through MDM2-mediated degradation of p53 [111–113]. Interestingly, p14Arf

stabilizes Slug by inducing sumoylation at Lys192 of Slug and then inhibits proteasomal
degradation of Slug [75].
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2.2.4. Acetylation of Slug

Lastly, PTM-mediated regulation of Slug contains acetylation. A deacetylase sirtuin 2
binds directly to Slug and deacetylates Lys116 in the SLUG domain [51]. The overexpression
of sirtuin 2 stabilizes Slug by deacetylation in basal-like breast cancer cells (BLBCs) [51].
CBP, which acetylates Snail, also causes acetylation of Slug at Lys166 and Lys211 [76].
CBP-mediated acetylation contributes to the stabilization of Slug and promotes EMT and
migration of breast cancer cell lines, MCF-7 and Sum159 [76].

2.3. Smuc

Smuc is the most recently emerged member of the Snail family [49]. Many stud-
ies have suggested that Smuc has different functional characteristics compared to Snail
and Slug [114,115]. Studies on the regulation of Smuc by PTMs are lacking. Revealing
the regulation of Smuc by PTMs through continuous research can be a cornerstone for
understanding the mechanisms of the Snail family and cancer metastasis.

3. Regulation of the Twist Family

The Twist family (Twist1 and Twist2) includes tissue-restricted members that belong to
the basic-helix-loop-helix (bHLH) class B family of transcription factor, which was discov-
ered originally in Drosophila [116,117]. According to chromosome mapping, human Twist1
and Twist2 genes are mapped on chromosome loci 7p21.2 and 2q37.3, respectively [118].

The Twist family is conserved evolutionarily from Drosophila to humans mainly in two
regions, the bHLH domain and a Twist box (often called the tryptophan and arginine; WR
motif) [119,120]. Structurally, the bHLH motif of the Twist family consists of basic amino
acids followed by an amphipathic alpha-helix (first helix), a loop with different lengths, and
then another amphipathic alpha-helix (second helix) [120]. Other than the bHLH domain
and a Twist box, nuclear localization signals at the N-terminal of the Twist family is present
as a functional motif [121]. Human Twist1 and Twist2 share 68% homology and contain
almost identical amino-acid sequences in the bHLH domain and Twist box [122]. A region
of the Twist box contains amino-acid residues Leu187, Phe191, and Arg195 (LX3FX3R),
which has been characterized as both activator and repressor [116]. Even though they
share high similarity in structures, major differences exist between Twist1 and Twist2: the
size and N-terminal domains of the proteins [116]. The N-terminal of Twist1 contains two
glycine-rich regions, not found in Twist2 [116].

Both Twist1 and Twist2 function as molecular switches to activate or suppress target
genes directly or indirectly [123]. In mesenchymal cells, the roles of the Twist family in tran-
scriptional regulation of development-related processes have been characterized by genetic
studies [122]. Furthermore, the Twist family plays a critical role in inhibition of myogenic
and osteoblast maturation and the progression of cancer by facilitating EMT [116,124–126].
Many researchers have shown that the expression of Twist1 is associated with poor clinical
outcomes and distal metastasis in various solid cancer types such as prostate, cervical,
breast, gastric, and pancreatic cancers [124,127–129]. Until now, studies on Twist2 have
been controversial and thus have required further investigation. For example, the upregu-
lation of Twist2 occurs in various cancer types [130,131]. However, a study by Zhao et al.
showed that Twist2 in hepatocellular carcinoma (HCC) displays no effect in invasion and
metastasis [132]. Even though few studies have been conducted on PTMs of Twist2, the
activity of Twist1 is tightly regulated by PTMs, which offers an alternative to quickly adapt
its activity to cellular context (Table 2).
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Table 2. Regulation of the Twist family by PTMs.

Transcription
Factor Function Effects on

EMT-TFs
Regulation

Factor Role or Mechanism Reference

Twist1

Phosphorylation

Stabilization

MAPK Phosphorylation at Ser68 [133]

Akt2 Phosphorylation at Ser42 [134,135]

CK2α Phosphorylation at Ser18 and Ser20 [136]

PKCα Phosphorylation at Ser144 [137]

Aurora A Phosphorylation at Ser123, Thr148,
and Ser184 [138]

Nuclear
translocation CD44 c-Src-dependent phosphorylation at

tyrosine [139]

Degradation
Akt1 Phosphorylation at Ser42, Thr121,

and Ser123 [140]

IKKβ
Phosphorylation at Thr125 and

Ser127 [141]

Dephosphorylation Degradation SCP1 Dephosphorylation at Ser68 [142]

Ubiquitination Degradation
β-TrCP Ubiquitination at Thr121 and

Ser123 [140]

FBXL14 C-terminal Twist box-dependent
ubiquitination [143]

Acetylation

Nuclear
translocation PCAF Acetylation at Lys73, Lys76, and

Lys77 [144]

Nuclear
translocation

Tip60 Acetylation at Lys73 and Lys76 [145,146]

Methylation PRMT1 Methylation at Arg34 [147]

MAPK, mitogen-activated protein kinase; CK2α, casein kinase 2 alpha; PKCα, protein kinase C alpha; IKKβ, inhibitor of NF-κB kinase beta;
SCP1, small C-terminal domain phosphatase 1; β-TrCP, beta-transducin repeat-containing protein; FBXL14, F-Box and leucine-rich repeat
protein 14; PCAF, p300/CBP-associated factor; Tip60, tat-interacting protein of 60 kDa; PRMT1, protein arginine methyl transferase 1.

3.1. Twist1
3.1.1. Phosphorylation of Twist1

Phosphorylation regulates the activity and stability of Twist1. Phosphorylation at
Thr125 and Ser127 by PKA enhances Twist1 dimerization and DNA binding [148]. These
phosphorylation sites are suppressed by protein phosphatase 2 [148]. Phosphorylation at
Ser68 of Twist1 by MAPK has been reported to increase Twist1 stability in breast cancer
cells [133]. The Twist1 S68A mutant results in increased ubiquitination and subsequent
degradation of Twist1 [133]. Controlling EMT and invasion in breast cancer cells depends
on Twist1 stability [133]. Similar to Snail, SCP1 interacts with and dephosphorylates
Ser68 of Twist1, leading to the acceleration of Twist1 degradation and inhibition of cancer
invasion [142].

Protein kinase B, also known as Akt, has been suggested to regulate Twist1 stability
and activity [149]. A study by Li et al. reported that Akt1 and Akt2 function in a different
manner to regulate Twist1 in breast cancer [140]. Akt1 phosphorylates Twist1 at Ser42,
Thr121, and Ser123 and induces its degradation via β-TrCP-mediated ubiquitination, which
is dependent on pThr121/Ser123 of Twist1 [140]. Akt2 phosphorylates Twist1 only at Ser42,
which further results in suppression of Twist1-mediated E-cadherin expression and induces
EMT [134,135]. Akt-dependent phosphorylation at Ser42 of Twist1 suppresses p53 activity
and triggers cell survival [135]. The phosphorylation level of the Akt family is correlated
with Twist1 protein level [150]. In this study, the specificity of Ser42 phosphorylation of
Twist1 by Akt is also evaluated in the Akt1/2-deficient mouse embryonic fibroblast [150].
The functions of Twist1 regulated by Akt remain controversial, but Akt1 may play a dual
role in the regulation of Twist1 according to the tissue type.
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Twist1 expression is upregulated in head and neck squamous cell carcinoma (HN-
SCC) cell lines treated with interleukin 6 (IL-6). The treatment of IL-6 activates casein
kinase 2 alpha which interacts directly with Twist1 and phosphorylates Ser18 and Ser20 of
Twist1 [136]. As a result, the stability of Twist1 is enhanced and the motility of HNSCC
cells is improved [136]. Protein kinase C alpha (PKCα) also binds to Twist1 via the Twist
box domain. Phosphorylation at Ser144 of Twist1 by PKCα reduces ubiquitination and
increases stabilization of Twist1 [137]. Aurora A promotes activity of Twist1 by phosphory-
lating Ser123, Thr148, and Ser184, which is predicted because phosphorylation by Aurora A
acts in the direction of inhibiting the ubiquitination of Twist1 [138]. The inhibitor of NF-κB
kinase beta induces cytoplasmic translocation of Twist1 for accelerating β-TrCP-mediated
destruction by phosphorylating Thr125 and Ser127 of Twist1 [141]. In addition, CD44, a
hyaluronan receptor, not only interacts with c-Src and Twist1 in the breast cancer cell line,
MDA-MB-231, but also increases tyrosine phosphorylation of Twist1 by activating c-Src
kinase, which promotes Twist1 nuclear translocation [139].

3.1.2. Ubiquitination of Twist1

Ubiquitination has not been studied much in the regulation of Twist1 protein stability
and activity. FBXL14, previously found to reduce the stability of the Snail family in
cancer cells, also regulates the stability of Twist by ubiquitination via C-terminal Twist
box [141,143]. Lander et al. demonstrated that the deletion of Twist box leads to a loss of
interaction with FBXL14 [143]. Moreover, a depletion of endogenous FBXL14 in embryos
shows an increase in Twist1 stability [143].

3.1.3. Acetylation of Twist1

The other well-known PTM of Twist1 is acetylation [151]. Studies have revealed that
Twist1 interacts with p300 or p300/CBP-associated factor (PCAF), a well-known HAT and
promotes EMT by suppressing the expression of E-cadherin [152] and p53 [153]. PCAF
acetylates Twist1 at Lys73, Lys76, and Lys77, which promotes nuclear localization of Twist1
and increases its transcriptional activity in bladder cancer cells [144]. Additionally, another
acetyltransferase named Tat-interacting protein of 60 kDa (Tip60), also acetylates Twist1 at
Lys73 and Lys76 [145]. Diacetylation of Twist1 at these lysine residues is a prerequisite for
the interaction with bromodomain-containing protein 4 [145]. Subsequently, this deacetyla-
tion of Twist1 leads to EMT induction and metastasis in HCCs and BLBCs [145,146].

3.1.4. Methylation of Twist1

In general, methylation at arginine of protein via addition of methyl groups can modu-
late the stability and sub-cellular localization of proteins [154]. This arginine methylation is
catalyzed by protein arginine methyl transferases (PRMTs) [154]. PRMTs are upregulated
aberrantly in several cancers [155]. For example, protein arginine methyl transferase 1
methylates Arg34 of Twist1, leading to inhibition of E-cadherin expression and cell migra-
tion in NSCLC cell line A549 [147]. However, when Arg34 of Twist1 is mutated to lysine,
no impact is observed on E-cadherin expression in A549 cells and even in breast cancer
cell line MCF7 [147]. Moreover, R34K mutant of Twist1 is located predominantly in the
cytoplasm, which suggests that methylation of Twist1 at Arg34 might have a possible role
in regulating nuclear translocation of Twist1 [147]. However, the molecular mechanisms of
Twist1 translocation by methylation remain to be evaluated.

4. Regulation of the ZEB Family

The ZEB family, a family of zinc finger E-box binding homeodomain proteins, consists
of two homologous proteins named ZEB1 (also referred as σEF1) and ZEB2 (also known
as SIP1). The ZEB family is long-lived relative to other EMT-TFs [27]. The genomes of
ZEB1 and ZEB2 are mapped on chromosome loci 10q11.22 and 2q22.3, respectively [156].
According to a study by Vandewalle et al., the similarity of ZEB1 and ZEB2 is shown
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43% within humans [157]. However, these two homologs show 89% similarity in other
vertebrates [157].

The ZEB family is mainly characterized by the presence of two separated clusters
of ZnF domains at both the N- and the C-terminal and the centrally located home-
odomain [157]. Two ZnF clusters are known as the most common DNA-binding mo-
tif [157]. Interestingly, the N-terminal ZnF (NZF) contains three C2H2 and one CCHC
motifs, whereas the C-terminal ZnF (CZF) contains only three CCHC motifs [157]. When
ZEB1 and ZEB2 are compared, the sequence identity within NZF and CZF shows a simi-
larity of 88% and 93%, respectively [158,159]. These two clusters of ZEB1 and ZEB2 bind
to bipartite E-box-like elements (CACCT) located in many gene promoters, which sug-
gests that both ZEB proteins have similar DNA-binding specificity [157,159]. However,
the molecular mechanisms underlying the option between activation and repression of
target genes by ZEB1 and ZEB2 are undisclosed. The homeodomain in ZEB1 and ZEB2
protein structure consists of helix-loop-helix motif [157]. The homeodomain does not bind
DNA, but mainly participates in protein-protein interaction [160]. Other domains such as a
SMAD-binding domain (SBD) and C-terminal binding protein (CtBP)-binding domain are
included in the ZEB family [158]. These protein-binding domains are essential in control of
transcriptional activity of the ZEB family [161]. Intriguingly, SBD of human ZEB1 and ZEB2
shows noticeably low similarity in structure [159]. This difference may explain why ZEB1
and ZEB2 have different functions and signaling pathways [159]. ZEB1 and ZEB2 often
display mirrored expression and effects in tissue homeostasis, tissue differentiation, and
development [161]. For instance, a study of melanocyte differentiation showed that ZEB2
is overexpressed in melanoma patients, whereas ZEB1 is not [162]. In addition, osteoblast
differentiation is induced by ZEB1, but ZEB2 shows the reverse effects [27].

Similar to other EMT-TFs, several reports have revealed that ZEB1 and ZEB2 are im-
portant factors in various malignant cancer types [163–165]. Most studies on the regulation
of the ZEB family discuss miRNAs, especially the miR-200 family, and cross-regulation
of other EMT-TFs [166,167]. However, the PTM-mediated regulation of the ZEB family in
EMT is not studied extensively (Table 3).

Table 3. Regulation of the ZEB family by PTMs.

Transcription
Factor Function Effects on

EMT-TFs
Regulation

Factor Role or Mechanism Reference

ZEB1

Phosphorylation

Stabilization ATM Phosphorylation at Ser585 [168,169]

Inhibition of
transcriptional

activity

PKC Phosphorylation at Thr851, Ser852,
and Ser853 [170]

ERK Phosphorylation at Thr867 [170]

Deubiquitination Stabilization
USP51 Binding to N-terminal of ZEB1 [171]

CSN5 Binding to ZEB1 [172]

Sumoylation
Inhibition of

transcriptional
activity

Pc2 Sumoylation at Lys347 and Lys774 [173]

Acetylation
Inhibition of

transcriptional
activity

p300 and PCAF Acetylation at Lys741, Lys774, and
Lys775 [174]

Tip60 Binding to N-terminal of ZEB1 [175]

Deacetylation
Increasing

transcriptional
activity

HDAC1/2 Binding to ZEB1 [176,177]
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Table 3. Cont.

Transcription
Factor Function Effects on

EMT-TFs
Regulation

Factor Role or Mechanism Reference

ZEB2

Phosphorylation Degradation GSK3β Phosphorylation at Ser705 and
Tyr802 [178]

Ubiquitination Degradation

FBXL14 Binding to ZEB2 [143]

FBXO45 Ubiquitination at Lys48 [179]

FBXW7 GSK3β-mediated ubiquitination [178]

Sumoylation
Inhibition of

transcriptional
activity

Pc2 Sumoylation at Lys391 and Lys866 [173]

ATM, ataxia–telangiectasia mutated kinase; PKC, protein kinase C; ERK, extracellular signal-regulated kinase; USP51, ubiquitin-specific
peptidase 51; CSN5, COP9 signalosome subunit 5; Pc2, polycomb protein 2; PCAF, p300/CBP-associated factor; TIP60, tat-interacting
protein of 60 kDa; HDAC1/2, histone deacetylase 1/2; GSK3β, glycogen synthase kinase 3 beta; FBXL14, F-Box and leucine-rich repeat
protein 14; FBXO45, F-box only protein 45; FBXW7, F-box/WD repeat-containing protein 7.

4.1. ZEB1 and ZEB2
4.1.1. Phosphorylation of ZEB1 and ZEB2

Phosphorylation mainly modifies the ability of ZEB1 to interact with several coactiva-
tors or corepressors for regulating its transcriptional activity [180]. Binding of insulin-like
growth factor-1 (IGF-1) to its receptor causes activation of tyrosine kinase, which activates
multiple signaling pathways including downstream MAPK [181]. Treatment of IGF-1 not
only reduces transcriptional activity of ZEB1 through phosphorylation of Thr851, Ser852,
and Ser853 by protein kinase C (PKC), but also activates ERK, resulting in phosphory-
lation of Thr867 in ZEB1 [170]. Phosphorylation of ZEB1 through PKC-mediated ERK
activation prevents nuclear accumulation of ZEB1, thereby reducing its transcriptional
activity [170]. According to Jhang et al., ATM phosphorylates ZEB1 at Ser585 and stabilizes
ZEB1, which subsequently interacts with ubiquitin-specific-processing protease 7, inducing
radiation resistance [168,169]. The phosphorylation-mediated mechanism of ZEB2 is poorly
known, but a recent study has shown that the residues between Ser705 and Tyr802 are
phosphorylated by GSK3β, reducing the stability of ZEB2 [178].

4.1.2. Ubiquitination of ZEB1 and ZEB2

One of the well-known F-box proteins associated with EMT-TFs, FBXL14 interacts
with ZEB2 and leads to ubiquitination-mediated degradation [143]. However, the detailed
mechanism is not known [143]. F-box only protein 45 (FBXO45), as a substrate-recognition
subunit of E3 ubiquitin ligase, forms a complex with S-phase kinase-associated protein
1 and myc-binding protein 2 [179]. The F-box domain of FBXO45 interacts with Lys48 of
ZEB2, which promotes its degradation [179]. Intriguingly, the F-box/WD repeat-containing
protein 7 (FBXW7) causes ubiquitination of ZEB2 in a GSK3β-dependent phosphorylation
manner. Subsequently, FBXW7 mediates proteasomal degradation of ZEB2 [178]. Because
ubiquitination is a reversible process, ubiquitin chains are removed by deubiquitinating
enzymes (DUBs) [182]. Among DUBs, ubiquitin specific peptidase 51 (USP51) binds to the
N-terminal of ZEB1 and increases ZEB1 protein stability in breast cancer cell lines [171].
Consequently, USP51 upregulates the mesenchymal markers including N-cadherin and
vimentin [171]. Furthermore, another DUB, COP9 signalosome subunit 5 (CSN5), is
found in various cancers such as colorectal cancer [183]. CSN5 deubiquitinates ZEB1 by
interacting with it directly, which increases ZEB1 stability [172,183].

4.1.3. Sumoylation of ZEB1 and ZEB2

Sumoylation of ZEB1 and ZEB2 induces EMT by inhibiting E-cadherin expression [173].
Polycomb protein 2, named Pc2, acts as a small ubiquitin-related modifier E3 ligase, and
causes sumoylation by binding to ZEB1 and ZEB2 [173]. Pc2 sumoylates Lys347 and
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Lys774 of ZEB1 and Lys391 and Lys866 of ZEB2 [173]. According to a study by Long et al.,
the sumoylation at Lys866 of ZEB2 interferes with the interaction with CtBP, leading to
up-regulation of E-cadherin expression [173].

4.1.4. Acetylation of ZEB1 and ZEB2

When p300 and PCAF are bound to the N-terminal domain of ZEB1, Lys741, Lys774,
and Lys775 of ZEB1 are acetylated [174]. Acetylated ZEB1 reduces the binding affinity to
CtBP, thereby increasing its transcription activity [184]. Tip60 interacts with the N-terminal
of ZEB1, which represses the activity of ZEB1 protein [175]. The repressive mechanisms
of ZEB1 by Tip60 is an ongoing investigation. Nucleosome remodeling and deacetylation
(NuRD) complexes contains HDAC1/2 and chromodomain helicase DNA-binding pro-
teins [185]. The NuRD complex binds to both ZEB1 and ZEB2 [186]. This complex binds to
the NuRD-interacting motif that is close to the N-terminal of ZEB2 [186]. The domains of
ZEB1 that interact with the NuRD complex are not known [187]. Interestingly, HDAC1/2
interacts with ZEB1 and ZEB2 [176,177,188]. The HDAC1/2 and ZEB1 complex induces
the suppression of E-cadherin expression [176,177,188]. Even though the research of Wu
et al. has shown that HDAC1/2 interacts with ZEB2 through binding to Arg22, this interac-
tion reportedly affects only the differentiation of Schwann cells during myelination [188].
Therefore, studies on EMT induction by the interaction of HDAC1/2 and ZEB2 still need
to be investigated [188].

Recently, a number of studies on structure and mechanisms of the ZEB family have
been reported. Within this research, the PTM-mediated regulation of ZEB stability and
activity has been studied actively, but not as deeply as the PTM-mediated regulation
of the Snail and Twist families. The ZEB family of EMT-TFs not only plays a role in
inducing cancer metastasis, but also promotes cancer stem cell-like properties in various
cancers [161,189].

5. Concluding Remarks

The different expressions of the core EMT-TFs, namely the Snail, Twist, and ZEB
families are observed in development, tissue homeostasis, and carcinogenesis and are
modulated by several intracellular signaling pathways. These EMT-TFs are also associated
with cancer drug resistance through various molecular mechanisms. Recently, studies
on PTM-mediated regulation of EMT-TFs in various cancers have been investigated and
developed more deeply. This review highlights the mechanisms of PTMs associated
with EMT-TFs. Critical regulators of PTMs on EMT-TFs have been studied, but more
investigations on the mechanisms are needed. Additionally, a better understanding of the
mechanisms underlying the relationship between drug resistance and PTMs is necessary.
Ultimately, a thorough understanding of EMT-TFs from the perspective of PTMs will pave
the way for overcoming cancer metastasis by developing therapeutic approaches that can
modulate PTMs of EMT-TFs.
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ATM Ataxia–telangiectasia mutated kinase
BLBCs Basal-like breast cancer cells
β-TrCP Beta-transducin repeat-containing protein
CBP CREB-binding protein
CDK2 Cyclin-dependent kinase 2
CSN5 COP9 signalosome subunit 5
CtBP C-terminal binding protein
CZF C-terminal zinc finger
DUBs Deubiquitinating enzymes
ECM Extracellular matrix
EMT Epithelial–mesenchymal transition
EMT-TFs EMT-transcription factors
EndoMT Endothelial-to-mesenchymal transition
ERK Extracellular signal-regulated kinases
FBXL14 F-Box and leucine-rich repeat protein 14
FBXL5 F-box and leucine-rich repeat protein 5
FBXO11 F-box only protein 11
FBXO45 F-box only protein 45
FBXW7 F-box/WD repeat-containing protein 7
GSK3β Glycogen synthase kinase 3
HAT Histone acetyltransferase
HCC Hepatocellular carcinoma
HDAC1/2 Histone deacetylase 1/2
HNSCC Head and neck squamous cell carcinoma
IGF-1 Insulin-like growth factor-1
IL-6 Interleukin 6
Lats2 Large tumor suppressor kinase 2
MAPK Mitogen-activated protein kinase
MDM2 Mouse double minute 2 homolog
MET Mesenchymal–epithelial transition
MMPs Matrix metalloproteinases
NF-κB Nuclear factor-kappa B
NSCLC Non-small cell lung cancer
NuRD Nucleosome remodeling and deacetylation
NZF N-terminal zinc finger
O-GlcNAc O-linked β-N-acetylglucosamine
Pc2 Polycomb protein 2
PCAF p300/CBP-associated factor
PI3K Phosphoinositide 3-kinase
PKA Protein kinase A
PKC Protein kinase C
PKCα Protein kinase C alpha
PKD1 Protein kinase D1
PRMTs Protein arginine methyl transferases
PTM Post-translational modification
SBD SMAD-binding domain
SCP Small C-terminal domain phosphatase
SRD Serine-rich domain
TGF-β Transforming growth factor beta
Tip60 Tat-interacting protein of 60 kDa
USP51 Ubiquitin specific peptidase 51
ZnF Zinc finger
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