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Shear-induced microstructures and 
dynamics processes of phospholipid 
cylinders in solutions
Yue Shan1, Xiaowei Qiang1, Jianzhu Ye1, Xianghong Wang2, Linli He1 & Shiben Li1*

Shear-induced microstructures and their corresponding dynamic processes are investigated for 
phospholipid cylinders in aqueous solution by dissipative particle dynamic simulation. Various 
phospholipid cylinders with cross-sections, which are formed under shear-free flow, are selected to 
examine the effects of shear flow on their structures and dynamic processes. Shear flow induces the 
transition from cylinders into vesicles at weak rate and the transition into vesicle–lamella mixtures 
with increased shear rate and lamella structures at the strong shear rate. then, the average radius 
of gyration and shape factors of the polymer chains in the dynamic processes are discussed in detail. 
Results show that shear flow causes the structure of the polymer chains to be elongated along the 
shear direction, and the configuration of the polymer chain can be rapidly transformed into an ellipsoid 
structure under strong shear.

Phospholipid molecule is an important category of biomolecules in biological organisations. Given that phos-
pholipid molecules commonly contain one hydrophilic functional group and two hydrophobic fatty acid groups, 
which are amphiphilic in water environments, the phospholipid molecules can spontaneously self-organise into 
a rich variety of microstructures with various symmetries, such as lamellae, cylinders, spheres and other complex 
network structures1. These lipid-based liquid crystals can serve as carriers of antimicrobial peptides in a con-
trolled manner to match efficient treatments, such as cubic and hexagonal structures2–4. Microstructures, such as 
lamellar structures, play a basic role in the vital functions of cells and organisms. For example, membranes with 
bilayered lamella structures in prokaryotic and eukaryotic cells do not only encapsulate and protect the interior 
of cells but also provide the molecular organisation of vital cellular processes5. We are also aware that a series of 
bicontinuous cubic phases can be formed for monoelaidin (ME), monovaccenin (MV), monoolein (MO) and 
monolinolein (ML) in water environments1,6,7. For example, cubic phases with Ia3d, Pn3m and Im3m symmetries 
have been reported in complex structures, such as in ME–water systems6, and the phase transition between cubic 
diamond and primitive phases was also investigated in MO–water systems7. However, ME, MV, MO and ML, as 
the other types of lipid categories, have one hydrophilic group and one hydrophobic group, which differs from 
phospholipids with two hydrophobic groups.

Several factors, such as concentrations, chain lengths and interactions of phospholipids, determine the 
self-assembly structures of phospholipid molecules in aqueous solutions. For example, X-ray and terahertz spec-
troscopy revealed that water content determines the phase transition between lamellae and inverted hexagonal 
phases in phospholipid–water mixtures8. Molecular dynamic (MD) simulations have predicted that water oper-
ates cooperatively with structural changes for the phospholipid membrane9. Lamellar structures have also been 
investigated in aqueous solutions by MD, in which detailed features were captured in membranes with molecular 
resolutions10,11. Dissipative particle dynamic (DPD) simulation suggests that vesicle structures can be observed 
in the simple model of phospholipid–water mixtures when chain lengths and amphiphilicity are suitable12. 
Recently, we carried out a DPD simulation of the self-assembly of phospholipid molecules in aqueous solutions 
and found that the phospholipid polymer chains can self-assemble into different structures in aqueous solutions 
when phospholipid chain lengths and concentrations are changed13. DPD simulations can predict a series of 
microstructures, including bilayer membranes, perforated bilayer membranes, micelles and vesicles. Under such 
shear-free conditions, structural shapes are dependent on several factors, including head-to-tail ratio of chain 
lengths and phospholipid concentrations13. When the phospholipid concentration is increased to a suitable value, 
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the cylindrical network structure can be observed (Fig. S1 in the Supplementary Materials), and this condition is 
independent of chain lengths in the concentrated solutions14.

Applying shear flow provides an external force that can induce the phase transitions of phospholipid polymers 
in solutions instead of varying the inner polymer parameters, such as chain lengths; as a result, corresponding 
dynamic processes are introduced into the microstructures15,16. Phospholipid membranes, a basic bio-structure 
in cells exposed to hydrodynamic fluid flows, under shear flows have been increasingly investigated, such as 
hemoglobin flowing in the blood. Shear flows not only redistribute the molecular locations in membranes but also 
induce the structural changes of membranes and the corresponding dynamic processes caused by hydrodynamic 
forces17–22. For example, external liquid flows result in hydrodynamic forces on molecules on the phospholipid 
bilayer that causes them to move in the direction of the shear flow and leads to the local concentration of mol-
ecules change. Quantitative studies on the magnitude of shear forces have been carried out21. MD simulation 
predicted that shear force leads to the rotation and re-alignment of molecules in phospholipid membranes; these 
phenomena result in structural undulations that propagate in the perpendicular direction when the shear rate 
exceeds a critical value19. However, layer sliding can occur instead of undulation in phospholipid bilayers under 
shear flow, and the intermonolayer slip depends on the velocity profile20. Dynamic processes, such as changes 
in system energy and changes in the radius gyration of structures, have also been investigated. For example, the 
system energy and radius of gyration have been calculated by MD simulation for phospholipid membranes; the 
results showed that system energy tends to be stable, and gyration radius increases when the shear increases14. 
Shear flows also induce various microstructures, not just lamellar structures, for block copolymers in solutions23. 
In particular, shear flows can induce structural changes in phospholipid vesicles whose shapes are similar to 
red blood cells, which become exposed to hydrodynamic fluids and cause structural changes24–33. Additionally, 
shear flows can induce shape changes in entire phospholipid vesicles along with domain diffusions and round 
domains24; the deformation of phospholipid vesicles into steady ellipsoidal shapes in constant orientations under 
simple linear shear flow has been observed by phase contrast microscopy28.

Many experiments and simulations have been performed to determine the effects of shears on phospholipid 
membranes and vesicles. However, the shear effects on phospholipid cylinders still need to be explored. In the 
current study, we investigate the shear-induced microstructures and the dynamic processes of phospholipid 
cylinders in solutions by using the DPD and CG model, which is useful in simulating complex fluids and soft 
matters34–37. We focus on the influence of shear flow on phospholipid cylinders with various cross-sections in 
different concentrations. By using a variety of initial state inputs, the energy of the formed equilibrium structure 
can be compared, and the simulation method of the stable structure can be selected. Different shear rates are 
considered to examine the effects on the microstructures and their corresponding dynamic processes. The rest of 
the paper is structured as follows. Section II describes the model and the method. Section III presents the results 
and discussion. Section IV presents the summary.

Model and Method
phospholipid model. We coarse-grain a small group of atoms into a single bead in the current phospholipid 
model. The phospholipid molecule is modelled with two-tail linear chains and one head linear chain, which has 
been extensively used in the previous studies, as shown in Fig. 1a 38. In the phospholipid model, the hydrophilic 
heads (H) and hydrophobic tails (T) are represented by red and yellow beads, respectively. In order to connect 
two consecutive beads, we used an additional elastic harmonic force in the model. And this elastic harmonic force 
can be expressed as follows:

Figure 1. Schematic view of the computational model. (a) Coarse-grained lipid model consisting of the 
hydrophilic beads (red: the upper three particles), and the hydrophobic beads (yellow: the bottom double tail 
particles). (b) Illustration of phospholipid pores under the shear flow.
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where the ith and jth beads are two consecutive beads, and ks represents the spring constant and rs is the equilib-
rium bond length between the two beads, whereas rij denotes the distance between ith and jth beads, with the unit 
vector r̂ij. We take ks = 100.0 and rs = 0.7 rc, which are similar to those in the previous studies39,40. Here, we set rc is 
the cutoff radius in the DPD simulations. An additional force caused by the harmonic constraint is applied onto 
two the consecutive bonds to achieve the bending resistance of the chains and is given as follows:

kF [ ( ) ] (2)0
2θ θ= −∇ −θ

θ

where kθ, θ and θ0 are the bending constant, inclination angle and equilibrium angle, respectively. We take θ0 = π 
for three consecutive T beads and θ0 = 2/3π for the three consecutive beads at the connective point between the T 
and H, as shown in Fig. 1a, which are similar to those of the model used in our previous works13,41. In this study, 
we fix NHB = 3 and NTB = 4 for H and T, respectively. The model phospholipids are integrated into the aqueous 
solution, in which the water molecules are also coarse-grained. Then, we define the phospholipid concentration 
as follows:
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In the current simulations, we focus on the phospholipid concentrations of φP = 0.35, 0.40, 0.45, 0.50. The 
phospholipid molecules assemble into cylinders with porous cross-sections under the shear-free condition.

Shear flow. In linear response theory, a flux relates to a thermodynamic force or field. In the isotropic fluid, 
the flux has a linear relationship with the corresponding field with a transport coefficient. In non-equilibrium 
MD, the field is applied, whilst the flux is measured42,43. By contrast, in reverse non-equilibrium MD, the momen-
tum flux is introduced, whilst the force or field is measured18,44,45. We have successfully applied this reverse 
non-equilibrium approach in the DPD simulations14. Here, we only briefly discuss this approach as follows. The 
momentum flux is introduced into the system in an unphysical way. Specifically, the periodic simulation box 
with box length Lz is divided into several slabs in the z-direction. The beads inside the slabs at z = 0 and z = Lz are 
propelled in two opposite x-directions, respectively, as shown in Fig. 1b. The particles can then obtain the largest 
momentum in the opposite directions in the two slabs. In proving that such shearing is reasonable, the velocity 
<vx> distribution in this method under the three shear rates is used to roughly satisfy the linear relationship, as 
shown in Fig. 2 44. Then, the momentum component px is exchanged by executing the flip algorithm at regular 
time intervals. Thus, the momentum flux jz(px) can be calculated by

=j p
p

tL L
( )

2 (4)
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where t is the time length of the two swaps, and factor 2 arises because of the periodicity of the simulation box 
with Lx and Ly in the x- and y-directions, respectively. During simulation, we perform the velocity swap every W 
time steps to satisfy t = WΔt. We can adjust the time lapse WΔt between the two velocity swaps to control the 
momentum flux jz(px). In this study, we apply the steady shear flows, in which the velocity distributes linearly in 

Figure 2. Illustration for the reverse non-equilibrium shearing. An example of velocity profile at three shear 
rates in the simulation box with a selected set of parameter φP = 0.35, NHB = 3 and NTB = 4.
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the z-direction. In the steady state, the rate of momentum transferred by the momentum swaps is equal to the 
momentum flowing back through the fluid by friction. In this manner, the unphysical momentum swap conserves 
the linear momentum and the kinetic energy of the system as a whole because bead positions are unchanged. 
Moreover, shear rate can be calculated from 


γ = ∂ ∂v z/x  with the collinear momentum flux in this method. On 

this basis, we can obtain the shear rates 

/ 1γ τ−  = 0.02, 0.04, 0.06 by setting W at 5, 2 and 1, respectively.

DpD method. In order to simulate the hydrodynamic behaviour of complex fluids and soft matters, we often 
use the DPD method. In DPD simulations, several pairs of forces are introduced to utilise beads that are 
coarse-grained from a small group of atoms. The main formulations about the DPD simulation are similar to 
those used in complex fluids and soft matters35,39,46–48. During DPD simulation there are three forces acting on the 
ith bead: a conservation force (Fij

C) from a potential, a dissipative force (Fij
D) that attempts to reduce radial velocity 

differences between the particles and a random force (Fij
R) that represents stochastic impulse. We can expressed 

the total forces on the ith bead as follow:
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where aij is the maximum repulsive force between the ith and jth beads, and rij is the distance between the ith and 
jth beads and vij denote the relative velocity between the ith and jth beads, with the unit vector (rijˆ ). We take 
aij = 200 for the hydrophilic type of beads and aij = 50 for the hydrophobic types. The validity of fluctuation–dis-
sipation theorem requires two parameters, namely, 


γ  and σ, to be linked by 


σ γ= k T22

B , where kB is the 
Boltzmann constant and T is the system temperature49. We used σ = 3.0 in simulation which is usually the stand-
ard valued before39. ζij represents a Gaussian distribution of zero mean and unit variance, and the weight function 
w (rij) can be expressed as
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where rc is the cutoff radius.

Simulation parameters. The length, time and energy in DPD simulation can be normalised by several 
parameters. In particular, energy can be normalised by kBT, whilst length is normalised by the cutoff radius rc in 
accordance with rc = (ρVb)1/3, where Vb is the volume of one DPD bead, and ρ is the bead density. Here, we set 
ρ = 3 in the simulation, and the DPD bead usually has an assumed volume of Vb = 0.03 nm3, which leads to a 
value of rc = 1.0 nm50,51. Time unit τ is defined as τ = r m k T/c B , where m is the bead mass. The time unit can be 
deduced by considering the in-plane diffusion constant of the lipid in the experiment52,53. The movement of the 
DPD beads is driven by DPD forces based on Newton equations, which are integrated by a modified version of the 
velocity Verlet algorithm with the time step of Δt = 0.01τ47,54. All simulations are performed on an NVT ensem-
ble by using LAMMPS. The simulation is performed in a box set to V = L × L × L, we set all three directions with 
periodic boundary conditions34. Additional simulations are carried out by varying the box sizes to avoid the finite 
size effect, and the box sizes are optimised to L = 30rc 55. After inputting different initial states, the self-assembly is 
performed, the energy value in the equilibrium state is compared and the structure with the smaller energy value 
is selected as the final stable structure. According to the comparison of simulated energy, the final stable state can 
be achieved after 200000 DPD time steps, which is similar to those in the previous works56,57.

Results and Discussion
We mainly focused on the microstructures of phospholipid porous cylinders with chain lengths of NHB = 3 and 
NTB = 4 under shear flows and focus on the various concentrations of φP = 0.35, 0.40, 0.45, 0.50 with the shear 
rates of / 1γ τ−


 = 0.02, 0.04, 0.06. We discussed the equilibrium microstructures and the corresponding structural 

evolutions in Subsection 3.1. The obtained microstructures are shown in Figs 3–6, in which the head and tail 
beads are represented in red and yellow, respectively. The system energies in the dynamic processes are shown in 
Fig. 7, whilst the average radius of gyration and the shape factor with various time evolutions under different 
shear rates are presented in Figs 8–10. The structural evolutions are determined by analysing the average radius 
of the gyration and the shape factor in Subsection 3.2.

Shear-induced microstructures. In this section, we studied the phospholipid porous cylinders with the 
various concentrations of φP = 0.35, 0.40, 0.45, 0.50 under the shear-free condition, as shown in Figs 3–6. Varying 
concentrations lead to a series of porous microstructures. In particular, several small cylinders are packed inside 
a large cylinder with distinct shapes of cross-sections and axes along the z-direction.

We observe porous cylinder structures with three small cylinders in a triangular arrangement at φP = 0.35, 
with four small cylinders in a quadrangular arrangement at φP = 0.40, with five small cylinders in pentagonal 
arrangement at φP = 0.45 and with six small cylinders in hexagonal arrangement at φP = 0.50, as shown in Fig. 3. 
In other words, the phospholipid concentration causes the small cylinders to be packed inside the large cylinder. 
This porous cylinder differs from the cylinder observed in the previous experiment and simulation, in which the 
cylinders are single or hexagonally arranged without porous cross-sections in the solutions3,8. Here, we observe 
phase transitions between the porous cylinders caused by the phospholipid concentrations.

The microstructures have weak shear rates of 0.02, as shown in Fig. 4. Considering that shear flow is applied 
perpendicularly onto the axes of the porous cylinder, structural transitions occur even under weak shear flows. In 
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particular, the porous cylinders transit into several hollow vesicles at φP = 0.35, the mixtures of hollow vesicle and 
cylinders transit at φP = 0.40, 0.45 and distorted cylinders transit at φP = 0.50. Under weak shear flows, the shear 
force is insufficiently strong, but porous cylinders can still be broken up by the shear flow. The broken cylinders 
transit into the hollow vesicles at low concentrations. However, as the phospholipid concentration increases, the 
number of water molecules participating in the shear flow decreases. This condition leads to the weakening of the 
shear forces in the cylinders, whilst some cylinders maintain their original shapes, as shown in Fig. 4.

As shear flow increases to moderate strength, such as 


γ τ−/ 1 = 0.04, the phospholipid cylinders transit into the 
broken lamellae mixed with the vesicles at the low φP values of 0.35 and 0.40, as shown in Fig. 5. At the high φP 
values of 0.45 and 0.50, the vesicles disappear, and the mixed structure is converted into irregular lamellae. This 
phenomenon is similar to the shear effects on the other system in which the micelles are elongated along the shear 
direction42,58. These irregular or broken lamellae have bilayered structures due to the amphiphilicity of the phos-
pholipid molecules in the aqueous solutions59. The previous experiment has developed an array device to form the 
multilayer lipid cylinders under shear stress60, which differs from the presently reported mixed structures or 
lamellae but with similar bilayered structures.

For a strong γ τ−/ 1


 of 0.06, the vesicles develop into lamellae that connect the other parts and then form irreg-
ular lamellae in the entire system at the low φP values of 0.35 and 0.40, as shown in Fig. 6. At the high φP values of 
0.45 and 0.50, a large number of phospholipid molecules participate in the assembly, and the irregular lamellae 
become planar structures, as shown in Fig. 6. These planar bilayer structures have various spatial separations 
because the phospholipid concentrations vary in the systems. The bilayer structures possess a large number of flat 
surfaces when φP increases. The shear-induced effects observed here are similar to the transition sequences in a 
lipid monolayer under shear flow by increasing shear rates61. However, shear flow does not affect the phospholipid 
cylinders by transiting into other structures but only sharpens their shapes along the pore directions regardless of 
shear rates (Fig. S2 in the Supplementary Materials). It is similar to those in applying a thin layer of plane shear, 
where the distance between the layers is more compact23.

Dynamic processes. In this subsection, we focus on the dynamic process of the phospholipid microstruc-
tures. We also investigate the average radius of gyration and velocity of the phospholipid molecules with various 
concentrations and shear rates in these dynamic processes.

We initially concentrate on the dynamic processes of the formation of the hollow vesicle, broken lamella–ves-
icle mixture and irregular lamella at 


γ τ−/ 1 = 0.02, 0.04, 0.06 for φP = 0.35, respectively. Then, we plot the system 

energies as functions of time step, as shown in Fig. 7. In the shear flow of / 1γ τ−


 = 0.02 (Fig. 7a), the system spends 
approximately 2200 τ to equilibrate the state, and three stages are observed. The data show that 〈ETot/kBT〉 = 7.602 

Figure 3. Microstructures of phospholipid pores with NHB = 3 and NTB = 4. The shear flows are applied 
perpendicular to the axes of pores, i.e., the z directions. The microstructures are arranged as functions of 
phospholipid concentrations φP = 0.35, 0.40, 0.45, 0.50 and shear rate γ τ−/ 1


 = 0, and two types of views are 

shown for various conditions.
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exists in stable stages. In the first stage, the porous cylinder shape is distorted and pulled by shear forces, and the 
interactions between the phospholipid and water molecules play a basic role in gathering lipid molecules. The 
shape distortion stage is maintained at approximately 1050 τ, and the system evolves into a shape adjustment 
stage, in which the distorted PC-I is deformed. The adjustment stage is maintained approximately 1150 τ, as 
shown in Fig. 7a. The third stage is the vesicle formation stage, in which vesicles are formed, and the system enters 
an equilibrium state with stable energy. The dynamic processes in the system are similar to those observed in 
copolymer systems13,58,62. The previous experiments and simulations have reported the dynamic path of spherical 
vesicles for triblock copolymers in solutions by adding solvent rates63. Here, we report a distinct dynamic path 
from porous cylinders to hollow vesicles for phospholipid polymers in solutions by applying shear flows. 
Figure 7b,c show the formation processes of the broken lamella–vesicle mixture and the irregular lamella at 

/ 1


γ τ−  = 0.04, 0.06 for φP = 0.35, respectively. The dynamic processes are similar to those observed at / 1


γ τ−  = 0.02 
for φP = 0.35, in which the porous cylinder undergoes three stages in the entire process. However, the distortion 
stage is shortened as the shear rate is increased, and the system spends less time to converge into the formation 
stages with stable energy, as shown in Fig. 7b,c. This finding indicates that the shear effects on the dynamic pro-
cesses can be achieved by shortening the convergence time.

We know that the radius of gyration tensor can more accurately characterize the structure and the square 
radius of gyration tensor Rg

2  which is defined as follows64:

R R R

R R R

R R R
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2  can be written as
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i c i cg
2

, , , ,∑= − −αβ α α β β

with x y z, { , , }α β ∈ , N and ri,x are the number of chains and x-coordinate of ith bead, respectively, whilst rc is the 
mass centre. Based on the radius of gyration tensor, we first discussed the average radius of gyration 〈Rg〉 for the 
structure, which is defined as follow:

Figure 4. Microstructures of phospholipid pores with NHB = 3 and NTB = 4. The shear flows are applied 
perpendicular to the axes of pores, i.e., the z directions. The microstructures are arranged as functions of 
phospholipid concentrations φP = 0.35, 0.40, 0.45, 0.50 and shear rate / 1γ τ−


 = 0.02, and two types of views are 

shown for various conditions.

https://doi.org/10.1038/s41598-019-51933-z


7Scientific RepoRtS |         (2019) 9:15393  | https://doi.org/10.1038/s41598-019-51933-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑= −
=

R
N

r r1 ( )
(9)g

i

N

i c
2

1

2

so that we investigate the average radius of gyration and velocity for the phospholipid molecules with various 
concentrations and shear rates in dynamic processes, as shown in Figs 8 and 9. We plot the average radius of 
gyration 〈Rg〉 for φP = 0.35 at various shear flows, as shown in Fig. 8a. The shear rate 


γ τ−/ 1 = 0.0 is also shown in 

Fig. S3 in the Supplementary Materials. In general, 〈Rg〉 strongly fluctuates in the dynamic processes at 
γ τ−/ 1


 = 0.02, 0.04, 0.06. This condition is probably due to the instability of the microstructure in the shear flows 
because of the movement of cylinders driven by the shear forces; this phenomenon is the same as the behaviour 
observed in the phospholipid vesicle under shear flows28,32. Indeed, the porous cylinder structures transit into the 
hollow vesicle at γ τ−


/ 1 = 0.02, in which the shear flows strongly affect their shapes. Porous cylinder transits into 

the broken lamella–vesicle mixture at γ τ−

/ 1 = 0.04 and into irregular lamella at / 1γ τ−


 = 0.06, in which the lamel-

lar structure has relative stability under shear flows. As a result, fluctuations cannot be easily observed in the 
strong shear flows. However, the differences between the average radius of gyration 〈Rg〉 over the entire process 
are evident due to strong shear effects. Particularly, 〈Rg〉 = 2.94 rc, 3.19 rc, 3.38 rc, as obtained by the linear fittings, 
which indicate the occurrence of shear effects under strong shear flows. In demonstrating the shear effect clearly, 
we plot the average radius of the gyration diagonal components in the dynamic processes for φP = 0.35 and 

/ 1γ τ−


 = 0.06, as shown in Fig. 8b. Three components, namely, 〈Rgxx〉, 〈Rgyy〉 and 〈Rgzz〉, fluctuate strongly; however, 
〈Rgzz〉 is larger than 〈Rgxx〉 and 〈Rgyy〉, and 〈Rgxx〉 is nearly equal to 〈Rgyy〉. This result indicates nearly isotropic 
conformation distributions in the x–y plane in the irregular lamellae. However, the shear force elongates the 
chains along the z-direction. As a result, 〈Rgzz〉 is considerably larger than 〈Rgxx〉 and 〈Rgyy〉. Therefore, we plot 〈νx〉 
as a function of time at φP = 0.35 under / 1γ τ−


 = 0.02, 0.04, 0.06, as shown in Fig. 8c. 〈νx〉 increases with time firstly 

and then elevates into the saturated values of 0.244, 0.605 and 0.973 at 


γ τ−/ 1 = 0.02, 0.04, 0.06. Evidently, a large 
shear flow results in a large saturated velocity.

In comparing the effects of phospholipid molecular concentration and shear rate on self-assembled structures, 
we also plot the average radius of gyration 〈Rg〉 for φP = 0.50 at various shear flows, as shown in Fig. 9a. The shear 
rate / 1


γ τ−  = 0.0 is also shown in Fig. S4 in the Supplementary Materials. In general, 〈Rg〉 strongly fluctuates in the 

dynamic processes at γ τ−/ 1


 = 0.02, 0.04, 0.06, which is consistent with our previous analysis. 〈Rg〉 = 2.95 rc, 3.25 
rc, 3.55 rc are also obtained by the linear fittings, which obviously exhibit shear effects under strong shear flows. 
Compared with the concentration of 0.35, the average radius of gyration 〈Rg〉 has significantly increased because 

Figure 5. Microstructures of phospholipid pores with NHB = 3 and NTB = 4. The shear flows are applied 
perpendicular to the axes of pores, i.e., the z directions. The microstructures are arranged as functions of 
phospholipid concentrations φP = 0.35, 0.40, 0.45, 0.50 and shear rate γ τ−/ 1


 = 0.04, and two types of views are 

shown for various conditions.
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the concentration of the phospholipids is higher, more phospholipid molecules participate in the self-assembly 
and the average radius of gyration increases with concentration. We also studied the three components of the 
average radius of gyration in the dynamic process with γ τ−


/ 1 = 0.06, as shown in Fig. 9b. 〈Rgzz〉 is larger than 

〈Rgxx〉 and 〈Rgyy〉, and 〈Rgxx〉 is nearly equal to 〈Rgyy〉. Thus, we can know from the above results that strong shear 
flows can induce the crystallisation of phospholipid polymers; this phenomenon is consistent with what we 
observed for other polymers in shear flows in the literature62. Finally, we plot 〈νx〉 as a function of time at φP = 0.50 
under 


γ τ−/ 1 = 0.02, 0.04, 0.06, as shown in Fig. 9c. The trend of the velocity distribution at the concentration of 

0.5 is the same as the trend at the concentration of 0.35. 〈νx〉 increases with time firstly and then elevates into the 
saturated values of 0.155, 0.27 and 0.74 at γ τ−/ 1


 = 0.02, 0.04, 0.06. However, the value at 0.5 concentration is sig-

nificantly less than the value at 0.35, considering that shear flow is applied into the water molecules, and a high 
concentration leads to a small number of water molecules, thus resulting in low saturated velocities.

The self-assembled structural changes in the applied flow field can be derived from Figs 8 and 9. In compre-
hensively describing the information of the polymer chains constituting the structure, we calculate the shape 
factor derived from the square radius of gyration tensor Rg

2 , which can be expressed as follows65,66:
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where L1
2, L2

2 and L3
2 are the three eigenvalues of the square radius of the gyration tensor Rg

2 . For convenience, we 
sort them by ≤ ≤L L L1

2
2
2

3
2. We plot the shape factor 〈δ〉 as functions of head bead numbers NHB = 3, NTB = 4 

under various shear rates at the phospholipid concentration of φP = 0.35, as shown in Fig. 10.
The graph in Fig. 10 shows the relationship of the shape factor with simulation time at different shear rates. 

Shape factor 〈δ〉 decreases firstly and then increases as simulation time increases. According to the previous liter-
ature, when the shape factor 〈δ〉 is equal to 1 in 3D space, the structure tends to have a rod-like structure. When 
the shape factor 〈δ〉 is equal to 0, the polymer chain appears as a spherical structure; when the shape factor 〈δ〉 is 
equal to 0.5, it appears as a circular structure67. As shown in Fig. 10a, at the lowest point of shape factor 〈δ〉, the 
polymer chain of the system forms a state of cluster, which is close to the change of the ellipsoidal structure. This 
finding can be attributed to the tail end of the polymer chain, which has a certain flexibility. With the extension of 
simulation time, the polymer chain slowly expands under the action of shearing and finally tends to reach the 
stable state. The shape is changed to a circular shape given 〈δ〉 = 0.465. Moreover, in the case of weak shear at 
γ τ−/ 1


 = 0.02, a hollow vesicle structure is finally formed. Figure 10b shows that the same polymer chain remains 
to be agglomerated together in the case of moderate shear / 1γ τ−


 = 0.04. The value of the shape factor 〈δ〉 increases 

Figure 6. Microstructures of phospholipid pores with NHB = 3 and NTB = 4. The shear flows are applied 
perpendicular to the axes of pores, i.e., the z directions. The microstructures are arranged as functions of 
phospholipid concentrations φP = 0.35, 0.40, 0.45, 0.50 and shear rate / 1γ τ−


 = 0.06, and two types of views are 

shown for various conditions.
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gently with the increase of simulation time and finally becomes steady at the shape factor 〈δ〉 = 0.52. This finding 
indicates that in the medium shear state, in addition to the easy formation of a circular structure, the increase of 
shear force allows the structure of the polymer chain to expand more. Furthermore, the shape is likely an ellipse, 
which can be explained by / 1


γ τ−  = 0.04, in which the structure is a mixed structure of hollow vesicles and broken 

Figure 7. An example for obtaining the stable state with head bead numbers NHB = 3, NTB = 4 in the dynamic 
process under various shear rates at phospholipid concentration φP = 0.35.The total energy ETot/kBT as function 
of the iteration step Ns. The insets represent the microstructures of the system at the iteration steps of 0, 100000, 
150000, and 300000, respectively. (a–c) for the total energy ETot/kBT under shear rates 


γ τ−/ 1 = 0.02, 0.04, and 

0.06, respectively.
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lamellas. As shown Fig. 10c, the trend of the shape factor also decreases firstly and then increases and tends to be 
gentle. However, in the case of 


γ τ−/ 1 = 0.06, the shape factor 〈δ〉 = 0.54 indicates that the polymer is under a 

strong shear rate. The structure of the chain tends to become more elliptical, which facilitates the formation of an 
irregular lamella.

By studying the shape factor 〈δ〉 under three shear strengths for the concentration of φP = 0.35, we can clearly 
see that as the shear strength increases, the shape factor 〈δ〉 gradually becomes larger, and the structure of the pol-
ymer chain is changed from the previous ellipse. Moreover, as the shear rate increases, the shape factor becomes 
gradually larger at the lowest point. This finding can be attributed to the shear factor that causes the shape factor 
to operate similar to a circular transition. The spherical shape develops towards the ellipse, and the increase of the 
shear rate also leads to the change in the rate of the polymer structure. In the strong shear state, the polymer chain 
can rapidly change from an ellipsoid state to an elliptical state. This finding indicates that the applied shear rate 
can accelerate the change in shape of the polymer chain.

Figure 8. The average radius of gyration 〈Rg〉 as functions of head bead numbers NHB = 3, NTB = 4 under 
various shear rates at phospholipid concentration φP = 0.35. (a) Different shear rates γ


. (b) The average radius of 

gyration in three direction. (c) An example of velocity profile in the simulation box with a selected set of 
parameter NHB = 3, NTB = 4 under different shear rates.
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conclusions
We investigated the shear-induced assembly of phospholipid microstructures, by using DPD simulation based on 
the CG model in water solutions. We selected the shear-free phospholipid cylinders with various cross-sectional 
shapes and subsequently observed their shear-induced microstructures and the corresponding dynamic processes 
at various concentrations by changing γ τ−/ 1


. We observed the vesicles, lamellae and their mixtures in the water 

solutions at various φP and shear rates. The results show that phospholipid molecules form a lamellar structure under 
strong shear flows, whereas a mixture of vesicle and lamellae can be observed under moderate shear flows. However, 
weak shear flows easily form phospholipid vesicles in the solutions. Even if the shear rate is enhanced, only the phos-
pholipid porous cylinders can be observed to become a lamellar structure more quickly, and it is necessary to 
observe the new structure by changing the model. Extending the simulation time does not change the results.

Figure 9. The average radius of gyration 〈Rg〉 as functions of head bead numbers NHB = 3, NTB = 4 under 
various shear rates at phospholipid concentration φP = 0.50. (a) Different shear rates γ


. (b) The three parts of the 

average radius of gyration. (c) An example of velocity profile in the simulation box with a selected set of 
parameter NHB = 3, NTB = 4 under different shear rates.
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The dynamic processes indicate that porous cylinders undergo three stages, namely, distortion, adjustment 
and formation, in the entire dynamic process. Strong shear flows can shorten the distortion and adjustment 
stages, thereby resulting in the rapid progress into the formation stage. The average radius of gyration and velocity 
in the dynamic processes indicates that shear rate plays an important role in pulling phospholipid molecules into 
the solutions under various concentrations. In obtaining more information about the polymer, we also studied 
the shape factor 〈δ〉 of the polymer chain. The results show that the shape factor 〈δ〉 increases with the increase 
of simulation time and finally becomes flat. Under different shear rates, the shape factor 〈δ〉 also increases with 
the increase of shear strength. According to the trend of the shape factor 〈δ〉 under the action of strong shears, 
the polymer structure can quickly change its initial structure to an ellipsoidal structure, and when the shear 
force increases, the shape factor 〈δ〉 of the polymer chain is also increased. This work offers insights into the 
shear-induced microstructures and the dynamic processes of phospholipid cylinders.

Figure 10. An example for obtaining the shape factor with head bead numbers NHB = 3, NTB = 4 in the dynamic 
process under various shear rates at phospholipid concentration φP = 0.35. The shape factor 〈δ〉 as function of 
the time τ. (a–c) for the shape factor 〈δ〉 under shear rates / 1


γ τ−  = 0.02, 0.04, and 0.06, respectively.
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