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Simple Summary: Metachronous metastases are the main factors affecting survival in rectal cancer,
and 15-25% of patients will develop them at a 5-year follow-up. Early identification of patients
with higher risk of developing distant metachronous metastases would help to improve therapeutic
protocols and could allow for a more accurate, personalized management. Apparent diffusion coeffi-
cient (ADC) represents an MRI quantitative biomarker, which can assess the diffusion characteristics
of tissues, depending on the microscopic mobility of water, showing information related to tissue
cellularity. First-order histogram-based features statistics describe the frequency distribution of
intensity values within a region of interest, revealing microstructural alterations. In our study, we
demonstrated that whole-tumor ADC first-order features may provide useful information for the
assessment of rectal cancer prognosis, regarding the occurrence of metachronous metastases.

Abstract: This study aims the ability of first-order histogram-based features, derived from ADC maps,
to predict the occurrence of metachronous metastases (MM) in rectal cancer. A total of 52 patients
with pathologically confirmed rectal adenocarcinoma were retrospectively enrolled and divided
into two groups: patients who developed metachronous metastases (n = 15) and patients without
metachronous metastases (n = 37). We extracted 17 first-order (FO) histogram-based features from
the pretreatment ADC maps. Student’s t-test and Mann-Whitney U test were used for the association
between each FO feature and presence of MM. Statistically significant features were combined into a
model, using the binary regression logistic method. The receiver operating curve analysis was used
to determine the diagnostic performance of the individual parameters and combined model. There
were significant differences in ADC 90th percentile, interquartile range, entropy, uniformity, variance,
mean absolute deviation, and robust mean absolute deviation in patients with MM, as compared
to those without MM (p values between 0.002-0.01). The best diagnostic was achieved by the 90th
percentile and uniformity, yielding an AUC of 0.74 [95% CI: 0.60-0.8]). The combined model reached
an AUC of 0.8 [95% CI: 0.66—0.90]. Our observations point out that ADC first-order features may be
useful for predicting metachronous metastases in rectal cancer.
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1. Introduction

Colorectal cancer is one of the most frequent cancers worldwide, occupying the
third position, in terms of incidence and the second place, in terms of mortality [1,2].
Approximately 30-35% of all colorectal tumors are represented by rectal cancers (RC) [2,3].
The current standard treatment for locally advanced rectal cancer (LARC) is neoadjuvant
chemoradiotherapy (nCRT), followed by surgery with total mesorectal excision (TME) [4,5].
However, studies report that nCRT has no effect on overall survival [6,7]. Recurrence,
in the form of distant metastases, is the main factor affecting the overall survival rate,
with 15-25% of patients diagnosed with rectal cancer having developed distant metastases
(DM) by the 5-year follow-up [8-10]. Therefore, identification of patients with a high
risk of developing distant metachronous metastases is a major concern, especially since
there is still controversy around the use of adjuvant chemotherapy to improve disease-free
survival [11-16].

Recent papers have focused on rectal cancer prognosis, investigating both clinico-
pathological and medical imaging factors as possible predictors of different outcomes.
TNM staging, histological grade, extramural vascular invasion (EMVI), neural invasion,
circumferential margin (CRM) involvement, pretreatment serum level of carcinoembryonic
antigen (CEA), and pathological responses to nCRT have been identified as powerful prog-
nostic factors [17-20]. Increased intratumoral heterogeneity may also represent a potential
prognostic factor [21,22], which can be quantified using different imaging parameters,
including several derived from magnetic resonance imaging (MRI) [23].

Diffusion weighted imaging (DWI) is a functional MRI technique, based on the Brow-
nian movement of water molecules in tissues, which can be quantified using apparent
diffusion coefficient (ADC). ADC values, expressed in units of mm? /s, are displayed as a
parametric map (ADC map) that reflects the degree of diffusion of water molecules through
different tissues. Studies demonstrated a negative correlation between ADC and tissue
characteristics, such as cellularity or proliferation activity [24,25], turning it into a promising
biomarker of tumor aggressiveness. As for rectal cancer, many papers have investigated the
role of ADC mean values to predict histopathological features and response to nCRT [26].
However, according to a recent meta-analysis, their conclusions are inconsistent [26].

First-order statistical parameters are quantitative features derived from the gray-level
intensity histograms, which describe the distribution of signal intensity values within a
region or volume of interest (VOI). Voxel-based histogram analysis of a VOI can assess
the whole tumor volume and offer an objective overview of tumor heterogeneity [23,27].
Recent studies have used histogram analysis in different areas of cancer research, including
rectal cancer [28-32].

The aim of the present study was to investigate the value of first-order histogram-based
features derived from pre-treatment ADC maps for the prediction of distant metachronous
metastases of rectal tumors.

2. Materials and Methods
2.1. Study Population

The local institutional ethics committee approved this study and informed consent was
waived, due to the retrospective nature of the study. A retrospective analysis was conducted
in our electronic medical database for patients diagnosed with rectal cancer who underwent
an MR examination for initial tumor staging between January 2017 and May 2019. The
inclusion criteria were: patients with pathologically confirmed rectal adenocarcinoma,
no evidence of metastatic disease at the baseline computed tomography (CT) scan, and
oncologic follow-up with CT scan of chest, abdomen, and pelvis, within at least 1 year after
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the initial tumor staging. The exclusion criteria were as follows: MR examinations with
severe artifacts and insufficient quality for proper analysis (15 patients), pathologically
confirmed mucinous adenocarcinoma (10 patients), pathologically confirmed anal cancer
(3 patients), lack of baseline CT (7 patients), synchronous metastases (16 patients), and
incomplete oncologic follow-up data (49 patients). Our final study population consisted
of 52 eligible patients. All subjects underwent curative surgery, most of them receiving
neoadjuvant chemoradiotherapy before the intervention (48 patients). The clinical follow-
up examinations were performed every three months in the first two years and every six
months in the following two years and included physical examination, carcinoembryonic
antigen testing, and imaging with CT or MRI/PET, when recommended. The study
population was divided into two groups: patients who developed metachronous metastases
(15 patients) and patients without metachronous metastases (37 patients). Metachronous
metastases (MM) were considered any distant metastases, which were diagnosed at a
follow-up CT examination, performed after the baseline CT for initial staging.

2.2. Image Acquisition

All MRI rectal examinations were performed in a single institution, using a 1.5 Tesla
MRI scanner (Magnetom Essenza, Siemens AG, Erlangen, Germany), with an eight-channel
phased array body coil. The protocol included three T2 weighted turbo spin-echo (TSE)
sequences in the sagittal, oblique-axial high-resolution, and oblique coronal high-resolution
planes. DWI images were obtained in axial planes using EPI sequences at three b-values
(b50, b400, and b800 s/mm?). Apparent diffusion coefficient (ADC) maps were automati-
cally generated by the scanner software, using all three b values (Figure 1). ADC values are
expressed in 107® mm?/s.

DWI

Figure 1. Example of ADC map generated from DWI images with three b values (50, 400, and 800).

The parameters of the MRI sequences are provided in Table 1. No bowel preparation
was received prior to the MRI examination.
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Table 1. MRI parameters.

TSE T2-Weighted Image

MRI Parameter DWI
Sagittal HR Coronal Oblique HR Axial Oblique
TR (ms) 3500 3500 4000 5800
TE (ms) 91 91 80 96
Slice no 28 25 25 30
Bandwidth (Hz/pixel) 391 391 391 1132
FOV (mm) 220 220 200 250
Slice thickness (mm) 3 4 3 4
Matrix 256 x 256 256 x 256 256 x 256 136 x 160
Acquisition time (min) 4 55 6 4.5

2.3. Tumor Segmentation and Feature Extraction

Two radiologists (one radiology resident and one senior radiologist with over 10 years
of experience in gastrointestinal MRI), blinded to the clinical information and patients’
outcome, independently reviewed the MR images, and delineated the rectal tumors. They
manually drew regions of interest (ROls) along the border of the tumor on each consecutive
slice of the ADC maps, covering the whole lesion, resulting in a VOI. Cystic, necrotic, or
hemorrhagic areas and artifacts were carefully excluded by referring to T2-weighted and
diffusion-weighted images as a guide. The segmentation of the tumors was performed
using a designated, open source software 3D Slicer, version 4.10.2 (available at: https:
/ /www.slicer.org/, last accessed on 15 December 2021).

Thereafter, ADC first-order features were automatically extracted from each VOI
using the pyRadiomics package, implemented as a plugin into the 3D Slicer software. The
following ADC first-order features were extracted from the whole-tumor VOIs: minimum,
maximum, mean, median, 10th percentile, 90th percentile, skewness, kurtosis, interquartile
range, entropy, energy, uniformity, variance, mean absolute deviation, robust mean absolute
deviation, root mean square, and range. A bin width of 25 (standard value in 3D Slicer) was
applied before feature extraction. No other preprocessing of the ADC maps was performed.
Table 2 provides a brief description for each extracted first-order feature.

Table 2. Description of ADC first-order histogram-based features.

ADC First-Order Histogram Feature

Description

Minimum The minimum ADC value within the VOI.
Maximum The maximum ADC value within the VOI.
Mean The average ADC value within the VOIL.
Median The ADC value below 50% of all ADC voxel values lie.
10th percentile The ADC value below 10% of all ADC voxel values lie.
90th percentile The ADC value below 90% of all ADC voxel values lie.
Skewness Measures the asymmetry of the distribution of ADC values around the mean value.
Kurtosis Measures the ‘peakedness’ of the distribution of ADC values within the VOL

Interquartile range

Measures the spread of the distribution of ADC values, defined as the difference
between 75th and 25th percentile.

Entropy Measures the inherent randomness in the ADC values within the VOL

Energy Measures the squared magnitude of ADC values within the VOI.
Uniformity Measures the homogeneity in the ADC values within the VOI.

Variance Measures squared distances of each ADC value of a histogram from the mean.
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Table 2. Cont.

ADC First-Order Histogram Feature

Description
Mean absolute deviation Mean distance of all ADC values from the mean value of the image array.
Robust mean Mean distance of all ADC values from the mean value calculated on the subset of
absolute deviation image array with ADC in between, or equal to the 10th and 90th percentile.
Range Measures difference between the highest and lowest ADC values.
RootMeanSquared Square root of the mean of all the squared ADC values of the histogram. This feature

is another measure of the magnitude of a histogram.

The histogram plots of ADC values were generated using a python code, provided in
Supplementary File S1. Figures 2 and 3 show two examples of tumor segmentation and
histogram plots, representative for each subgroup of patients.

200

100

Numiber of voxels

0 500 1000 1500 2000 25
ADC value {(mm)/s2)

{ —— R: 29.1754mm

Figure 2. Example of rectal tumor VOI segmentation on ADC map and histogram plot of the ADC
values from a patient without metachronous metastases.
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Figure 3. Example of rectal tumor VOI segmentation on ADC map and histogram plot of the ADC
values from a patient with metachronous metastases.

2.4. Statistical Analysis

Statistical analysis was performed using commercially available software: MedCalc for
Windows, V.14.8 (MedCalc Software, Ostend, Belgium), and SPSS Statistics for Windows,
version 18.0 (SPSS Inc., Chicago, IL, USA). Categorical variables are expressed as counts
and compared using chi test. Continuous variables are represented as means + standard
deviation. Normality was tested using the Kolmogorov-Smirnov test.

The inter-reader agreement was evaluated using the intraclass coefficient (ICC) be-
tween the features extracted from the radiology resident’s segmentation and senior radiolo-
gist’s segmentation. Only features with an ICC > 0.75 were selected for further analysis,
and they were averaged between the two observers.

The differences in ADC histogram metrics between the two groups (non-metastatic
vs. metastatic) were evaluated using independent Student’s t-test or non-parametric
Mann-Whitney U test, in case of non-normally distributed data.

Receiver operating characteristic (ROC) curve analysis was conducted and area under
the curve (AUC), sensitivity (Se), specificity (Sp), positive predictive value (PPV), and
negative predictive value (NPV) were calculated to evaluate the diagnostic performance
of the individual ADC first-order features for the prediction of metachronous metastases.
The optimal cut-off value was chosen according to the Youden index. Using binary logistic
regression (enter method), the authors created a combined model, which was also evaluated
using ROC curve analysis. ROC curves were compared using the method developed by
DeLong et al. A p-value of <0.05 was considered statistically significant.

3. Results

Among all 52 enrolled patients with rectal cancer, 15 developed distant metachronous
metastases. The mean time interval of follow-up was 24 months. The most common site of
metastases was the liver (14 patients). Five subjects developed simultaneous liver and lung
metastases and one patient was diagnosed with peritoneal carcinomatosis.
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A summary of the clinical and histopathological characteristics of the study population
is shown in Table 3. No statistically significant differences of any clinical or histopathologi-
cal variable were observed between the two groups of patients.

Table 3. Clinical and histopathological characteristics of the study population.

Non Metastases (MM-)

Metachronous Metastases

Variable Group (n =37) (MM-+) Group (n =15) p Value
Age (years) * 59.27 + 11.11 61.87 +9.85 0.43
Gender 0.29
Male 27 8
Female 10 7
Tumor length (mm) * 58.22 +19.74 53.93 + 18.57 0.47
Tumor differentiation grade 0.41
G1-G2 36 13
G3 1 2
Clinical tumor stage (cT)
T2 9 3 0.98
T3-T4 28 12
Clinical nodal stage (cN) 0.93
N1 17 6
N2 20 9
Mesorectal fascia (MRF) involvement 0.80
Positive 29 12
Negative 8 3
Extramural vascular invasion (EMVI) 0.95
Positive 4 1
Negative 33 14
Pathological tumor stage (pT) 0.15
pT0-pT2 17 3
pT3 20 12
Pathological nodal stage (pN) 0.30
pNO 27 8
pN1-N2 10 7

* Results are presented as mean =+ standard deviation or number.

The ADC histogram first-order features of the two groups are provided in Table 4. The
90th percentile, interquartile range, entropy, variance, mean absolute deviation, and robust
mean absolute deviation were significantly higher among patients with metachronous
metastases, compared with the ones without metastases (p values ranging between 0.002—
0.01). Uniformity was lower in subjects with distant tumor spread. However, there were no
significant differences between the two subgroups, regarding the other first-order features.

Table 4. Association of ADC first-order features and the presence of metachronous metastases.

ADC First-Order Feature MM- MM+ p Value
Minimum ~ 310.84 £193.73 243.87 £ 210.26 0.28
Maximum ~ 1972.22 + 284.54 2047.13 £ 294.47 0.40

Mean - 927.20 + 100.45 974.48 + 93.91 0.12

Median - 901.96 + 98.87 949.07 + 104.04 0.13

10th percentile - 679.14 +101.11 694.65 = 91.58 0.61
90th percentile ~ 1210.20 £ 112.90 1293.60 & 103.65 0.02 *

Skewness 0.72+0.41 0.60 +0.29 0.32

Kurtosis 452+ 1.11 3.90 £0.74 0.05
Interquartile Range 269.62 & 33.63 308.42 &= 51.64 0.002 *
Entropy 5.04 £0.15 520+ 0.22 0.005 *

Energy 1,465,303,600.05 + 1,764,343,232.40 1,814,657,493.13 £ 1,913,810,213.47 0.53
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Table 4. Cont.

ADC First-Order Feature MM- MM+ p Value

Uniformity 0.037 £ 0.004 0.032 £ 0.005 0.004 *
Variance 48,432.81 + 11,167.16 59,287.71 £ 18,590.48 0.01*

Mean absolute deviation 168.38 £19.22 188.70 £ 29.88 0.005 *

Robust mean "
Absolute deviation 112.90 £ 13.60 129.40 + 21.38 0.002
Range 1661.38 £ 340.22 1803.27 & 467.76 0.23
RootMeanSquared 953.14 + 98.66 1004.59 + 92.28 0.08

* Statistically significant p < 0.05. " The unit of values is 107® mm?/s.

Table 5 demonstrates the results of the ROC analysis of ADC parameters for the detec-
tion of patients who developed metachronous metastases. The 90th percentile and unifor-
mity showed the best diagnostic performance for predicting the occurrence of metachronous
metastases, yielding an AUC of 0.74 [95% CI: 0.60-0.85]. Variance achieved the lowest AUC
of 0.65 [95% CI: 0.51-0.78]. The highest sensitivity (80.0%) was achieved by 90th percentile
for the cut-off value of 1236.2. Variance reached the highest specificity (86.49%) for the
cut-off value of 57046. When comparing the diagnostic performance between individual
ADC features, we found a statistically significant difference only between uniformity and
variance (p = 0.03). Using logistic regression (entry method), we incorporated these seven
first-order features into a combined model, which achieved a higher AUC of 0.80 [95%
CI: 0.66-0.90]. However, this was only significantly different from the AUC of variance
(p =0.04).

Table 5. Diagnostic performance of ADC first-order features for predicting metachronous metastases.

ADC First-Order Cut-Off Val AUC Se Sp PPV NPV
Feature v alue [95% CI] [95% CI] [95% CI] [95% CI] [95% CI]
. . 0.74 80.0 64.86 48.0 88.9
90th percentile >1236.2 [060-0.85]  [51.9-957]  [47.5-798]  [27.8-687]  [70.8-97.6]
. 0.72 73.33 75.68 52.6 84.8
Interquartile range >287.25 [0.58-0.83] [38.4-88.2] [58.8-88.2] [28.9-75.6] [68.1-94.9]
Entro 5.125 0.7 60.00 83.78 60.00 83.8
24 ' [0.56-0.82]  [323-83.7]  [68.0-93.8]  [323-837]  [68.0-93.8]
. 0.74 73.33 78.38 57.9 87.9
<0.
Uniformity <0.0344 [0.60-0.85] [44.9-92.2] [61.8-90.2] 33.5-79.7] [71.8-96.6]
. 0.65 53.33 86.49 615 82.1
Variance >57046 [0.51-0.78] [26.6-78.7] [71.2-95.5] [31.6-86.1] [66.5-92.5]
- 0.70 66.67 78.38 5.6 85.3
Mean absolute deviation >175.89 [0.55-0.82]  [384-882]  [61.8-902]  [30.8-785]  [68.9-95.0]
Robust mean 1192689 0.73 73.33 78.38 57.9 87.9
absolute deviation ’ [0.59-0.84] [44.9-92.2] [61.8-90.2] [33.5-79.7] [71.8-96.6]

* The unit of values is 10~® mm?/s.

4. Discussion

Our study evaluated the potential of histogram metrics, derived from pretreatment
ADC maps, to predict the occurrence of metachronous metastases in patients diagnosed
with rectal cancer. In the past years, there has been an increased interest in the field of
medical imaging texture analysis for lesion characterization, therapy guidance, and tumor
prognosis.

Regarding rectal cancer outcome, the majority of papers focused on predicting tumor
response to nCRT, using a single MRI sequence (T2-weighted images or ADC maps) or mul-
tiparametric approach [33-35]. Only a few studies chose the occurrence of metachronous
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metastases as the endpoint of their research, most of them obtaining predicting models,
based on radiomics features extracted from T2 weighted images [36-38].

For the current research, we chose to not include all the radiomics features extracted
from the tumor, but only first-order features derived from histogram. In spite of the possible
advantage of higher-order statistics to better reflect intratumoral heterogeneity, previous
studies have demonstrated that, with respect to rectal cancer, first-order texture parameters
proved to be more stable and sufficiently robust, being less sensitive to interobserver
variability and image processing [39,40].

The association between whole-rectal tumor ADC histogram parameters and different
clinical pathologic prognostic factors has been the main subject of many papers, however,
with conflicting factors [31,32,41-48]. Regarding pT stage, a well-recognized powerful
prognostic factor, there are several studies that demonstrate significantly lower values of
ADC histogram metrics in tumors with pT1-T2 stages [32,41,49]. Conversely, other inves-
tigations found no significant differences in ADC histogram percentiles among different
pT stages [50]. Additionally, inconsistent results are reported for the role of pretreatment
ADC histogram metrics in predicting treatment response to nCRT. The investigations of
Liang et al. [51] and Palmisano et al. [52] obtained AUCs between 0.82 and 0.89 for his-
togram parameters, such as mean, median, and 75th percentile, to distinguish between
pCR and nonPCR, while the studies of Choi et al. [48] and Nougaret et al. [53] found
no benefit in any of the ADC histogram metrics for pretreatment prediction of response.
The recent meta-analysis of Surov et al. concluded that the mean ADC cannot predict
histopathological features and response to nCRT in rectal cancer [26]. Additionally, the
results of van Heeswijk et al. [47] and Chidambaram et al. [46] revealed that ADC histogram
analyses of rectal cancer were not beneficial to obtaining prognostic information. In our
study, we did not find any significant difference in mean ADC between metastatic vs.
nonmetastatic tumors. Therefore, our observations support the conclusions of these latter
studies, suggesting that ADC mean value has no additional prognostic value.

However, in this current research, ADC 90th percentile showed the best diagnostic
performance in predicting metachronous metastases. Contrary to our expectations, patients
who developed MM had significantly higher values of ADC in the 90th percentile. One
possible explanation for this finding might be that more aggressive cancers may contain
many invisible areas of cystic and necrotic components, which cannot be completely
excluded using manual segmentation. Similar results, with higher ADC percentiles, in
more aggressive lesions, have also been reported in other oncological investigations [54,55].

All the studies mentioned above included in their analysis only ADC mean, histogram
percentiles &+ skewness, and kurtosis. In addition, we also assessed the role of other first
order histogram-based features, such as entropy, uniformity, variance, mean absolute
deviation, etc., for the differentiation of tumors, which developed metachronous metastases
versus the ones without distant spread. Our results suggest that evaluating all the first-
order texture features may bring additional information and improve the prognostic ability
of ADC maps. Entropy specifies the randomness in the image values, and it measures the
average amount of information required to encode the image values [56]. Uniformity is a
measure of the sum of the squares of each intensity value, and it indicates the homogeneity
of the image array [56]. A lower value of uniformity, as well as a high value of entropy,
indicate greater heterogeneity of the lesion [57]. According to our results, prognostically
unfavorable tumors have significantly lower uniformity and higher entropy values and are,
therefore, more heterogeneous. Similar findings have been reported in previous studies.
Regarding entropy, several authors revealed rectal tumors with higher pT stages showing
significantly higher values of ADC entropy, reporting AUCs between 0.67-0.74 [31,42,57,58].
As for uniformity, the results of Meng et al. showed significantly lower ADC uniformity
values in rectal tumors, without a complete response to nCRT, obtaining an AUC of 0.69 [59].
Additionally, Lu et al. reported lower uniformity in pT3-T4 rectal cancers, compared to
pT1-T2 lesions, with an AUC of 0.63 [57]. In our study, each statistically significant first-
order feature achieved an individual AUC between 0.65-0.74 for differentiating MM+
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from MM-tumors, while the combined model increased the prognostic efficacy, yielding a
moderate AUC of 0.8.

To the best of our knowledge, this is the first study to investigate the association of all
first-order texture features, derived from ADC maps, with the occurrence of metachronous
metastases. The research of Yu et al. evaluated the correlation between ADC histogram
parameters and distant metastases (DM) from rectal cancer; however, they considered
DM as both synchronous and metachronous metastases, and they did not include in their
analysis all the first-order histogram features [60]. Conversely to our results, they found sig-
nificantly higher kurtosis values of tumors with DM. Another paper of Chidambaram et al.
reported a significant correlation between skewness and disease progression; however, in
their investigation, kurtosis did not differ significantly between the different subgroups [46].
This discrepancy between studies might have resulted from the small number of patients
included.

The current study has some limitations. First of all, its retrospective nature might
have led to unintended selection bias. Secondly, many patients did not undergo a proper
oncological follow-up, reducing our study population. The MRI examinations were selected
from a single center, lacking multicenter validation. Additionally, we included only first-
order features, derived from ADC maps, and the role of other imaging sequences may be
investigated in future research.

5. Conclusions

Our study suggests that first-order histograms that derive features extracted from pre-
treatment ADC maps might represent a potential imaging biomarker to predict metachronous
metastases of rectal cancer. However, these results were obtained using a small population
and need to be externally validated in larger, multicentric, prospective studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/biology11030452/s1, Supplementary File S1: Python code for
generation of histogram plot.
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