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Abstract: Ultrasound imaging is essential in emergency medicine and combat casualty care, often-
times used as a critical triage tool. However, identifying injuries, such as shrapnel embedded in
tissue or a pneumothorax, can be challenging without extensive ultrasonography training, which may
not be available in prolonged field care or emergency medicine scenarios. Artificial intelligence can
simplify this by automating image interpretation but only if it can be deployed for use in real time.
We previously developed a deep learning neural network model specifically designed to identify
shrapnel in ultrasound images, termed ShrapML. Here, we expand on that work to further optimize
the model and compare its performance to that of conventional models trained on the ImageNet
database, such as ResNet50. Through Bayesian optimization, the model’s parameters were further
refined, resulting in an F1 score of 0.98. We compared the proposed model to four conventional
models: DarkNet-19, GoogleNet, MobileNetv2, and SqueezeNet which were down-selected based on
speed and testing accuracy. Although MobileNetv2 achieved a higher accuracy than ShrapML, there
was a tradeoff between accuracy and speed, with ShrapML being 10× faster than MobileNetv2. In
conclusion, real-time deployment of algorithms such as ShrapML can reduce the cognitive load for
medical providers in high-stress emergency or miliary medicine scenarios.

Keywords: deep learning; ultrasound imaging; image interpretation; artificial intelligence; shrapnel;
military medicine; emergency medicine

1. Introduction

Ultrasound (US) imaging is commonly used in medicine for its nondestructive testing
capabilities and real-time assessment value. One such example is the detection of foreign
bodies during emergency medicine assessments due to its high accuracy, instrument
portability, and modest power requirements [1–3]. Higher-resolution imaging modalities
(CT, MRI, etc.) are preferred for diagnosis in hospital settings, but this is typically not
possible in remote settings, such as combat casualty care. In addition, acquisition and
interpretation of US images can only be effective if the end user is trained in sonography
and anatomy. This can be a technically challenging process, requiring hours of training.

Algorithms for ultrasound imaging diagnostics were developed for a range of use
cases, such as detecting tumors [4], thyroid nodules [5], and lung pathologies in COVID-19
patients [6]. These types of algorithms primarily rely on supervised deep learning convolu-
tional neural networks (CNNs) to identify trends in image sets. More advanced algorithms
can utilize object detection or segmentation approaches to highlight precise regions in
the US image field as abnormal [7] or be used in real time [8–10]. The use of artificial-
intelligence-guided diagnostics would enable faster, higher accuracy assessments, which
could be critical in resource- and personnel-limited, high-stress environments, such as
battlefield trauma scenarios.

We previously developed [11,12] and tested a deep learning model (ShrapML) for
the automated detection of shrapnel. ShrapML is an image classification model trained
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on ultrasound images of both gelatin tissue phantoms and porcine tissue. When tested
with ultrasound images for external validation, ShrapML makes binary predictions as to
whether shrapnel is present in the image, with an overall accuracy of 95%, an F1 score of
0.95, and an area under the receiver operating characteristic (ROC) curve of 0.95.

Other existing algorithms have conventionally been trained with the ImageNet dataset [13]
to determine thousands of category types. These algorithms can be computationally
intensive and require millions of images for training. Such algorithms include VGG16 [14],
EfficientNet [15], and InceptionNet [16–18], among others. Although the ImageNet dataset
is extensive, it is focused on everyday objects that are not relevant to medical imaging.
Through transfer learning, these models can be used on new medical imaging datasets
and compared for accuracy. As high accuracy with lower computational power needs will
be ideal for incorporating image analysis algorithms into existing ultrasound hardware,
here, we enhance the ShrapML classifier using Bayesian optimization and then compare its
performance to that of conventional, well-established image classifier algorithms using an
expanded US shrapnel dataset.

2. Materials and Methods

CNN models can achieve human-like accuracies in image classification problems due
to their self-learning and superior classification abilities. A CNN network is typically
comprised of a chain of organized components: convolution layers (Conv) with activation
functions, max pooling layers (Pool), and batch normalization operations. The hierarchical
network structure provides high-level feature maps, reduced computational complexity,
and improved generalization ability.

2.1. ShrapML Architecture

Previous work from the laboratory outlines the full architecture of the ShrapML
classifier algorithm [11]. In short, the algorithm was built using TensorFlow/Keras libraries
and Jupyter Notebook in Python. Red-green-blue (RGB) ultrasound images were used as
an input for this algorithm and resized. Images were augmented by random flip, rotation,
zoom, and contrast processes, and this dataset was used to train the model. The model
consisted of a series of 5 repeated successions of Conv with ReLu activators and Pool layers
with increasing filter size. This was followed by a dropout layer, a flatten layer, and, finally,
a dense layer with sigmoid activation. This model was trained over 100 epochs using
RMSprop optimizer to minimize validation loss. When testing this model with externally
validated images, the model predicted whether an image was positive or negative for
shrapnel and gave a confidence value of its prediction.

2.2. Bayesian Optimzation Setup

For optimization of the hyperparameters in ShrapML, beyond the initial iterative
approach, we used Bayesian optimization. This is a widely used approach to remove
human bias from the model optimization aspect and evaluate hyperparameters with a
probabilistic approach [19–22]. ShrapML was set up to optimize 5 hyperparameters of
the model (Table 1). The CNN size and layers were set up such that the size of the next
layer was a product of the CNN size and layer number for each additional layer (4, 8, 12,
or 16 filters for a 4-layer model, for instance). The phantom image sets used to originally
develop ShrapML were used as training and validation datasets during optimization.
A total of 10 epochs were performed for each iteration, with the goal of optimizing the
problem set to minimize validation loss. Bayesian optimization was set up using the
experiment manager application in MATLAB R2021b (Mathworks, Natick, MA, USA) and
was concluded after 250 trials were evaluated. Optimization was performed on an HP
workstation (Hewlett-Packard, Palo Alto, CA, USA) running Windows 10 Pro (Microsoft,
Redmond, WA, USA) and an Intel Xeon W-2123 (3.6 GHz, 4 core, Santa Clara, CA, USA)
processor with 64 GB RAM. The top five models were compared for training, validation
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accuracy, and loss, as well as the total training time through the 10 epochs, to select the
optimized algorithm architecture.

Table 1. Summary of Bayesian-optimized hyperparameters for ShrapML.

Hyperparameter Range of Values Type

Number of CNN layers 1–6 Integer only

CNN filters 4–32 Integer only

Dropout rate 25–75% Real number

Fully connected layer filters 8–256 Integer only

Solver type RMSprop, ADAM, SGDM Categorical

2.3. Ultrasound Phantom Development

A previously published gelatin tissue phantom [12] was modified for use in this
work. In short, a 3D-printed mold was designed with human adult male thigh dimensions,
including three major components: a 3D-printed bone, a muscle layer, and a fat layer.
For the construction of the muscle and fat layers, a 10% (w/v) gelatin (Thermo-Fisher,
Waltham, MA, USA) solution was prepared using a 2:1 solution of water and evaporated
milk (Kirkland, Seattle, WA, USA). The fat-layer gelatin solution was supplemented with
0.1% flour (HEB, San Antonio, TX, USA) for increased hyperechoicity. The muscle-layer
gelatin solution was supplemented with 0.25% flour and roughly chopped pieces of 2%
agarose (Sigma-Millipore, St. Louis, MO, USA) for added heterogenicity. The mold was
assembled first for the inner layer (muscle layer). The inner layer solution was poured and
inverted repeatedly to keep the agarose pieces distributed as the phantom solidified. After
approximately 30 min, the inner layer stiffened and was placed in the outer-layer mold.
The second layer (outer fat layer) was poured around the inner layer and chilled at 4 ◦C.
After solidification, the completed tissue phantom was removed from the mold and used
for US imaging applications.

2.4. Ultrasound Image Collection and Processing

After the tissue phantom was created, ultrasound images were collected using a
Sonosite Edge (Fujifilm Sonosite, Bothell, WA, USA) and HFL50 ultrasound transducer
(Fujifilm Sonosite, Bothell, WA, USA). To avoid air interference, all phantom imaging was
performed underwater. Baseline data were collected prior to shrapnel insertion of the
entire phantom using 10 s B-mode clips. For shrapnel, we previously determined that
ShrapML performed similarly with different material types, so a single material type of
varying length was used for this study [11]. A 2.5 mm diameter brass rod was cut to 2, 4,
6, 8, or 10 mm length fragments to provide a range of shrapnel sizes (Figure 1). The brass
pieces were then inserted to varying depths within the phantom in the four quadrants
using surgical forceps, and shrapnel-positive data were collected with 10 s B-mode clips.

Ultrasound video clips were transferred from the imaging device, and frames were
extracted from the clips using the ffmpeg-Ruby tool (version 4.4). Duplicate frames were
removed from the dataset, as the US clips had a high frames-per-second rate, resulting in
four duplicates for every new frame. Individual images where then sorted into ground
truth groups: shrapnel (positive) and baseline (negative). Any image for which it was
uncertain as to which group it belonged to was discarded and not used in the training
dataset. Next, images were cropped and standardized to remove the settings, file name,
and miscellaneous US information included in the exported frames, followed by conversion
to 16 bit and resizing to 512 × 512. All image processing operations were performed using
the batch image processing toolkit in MATLAB R2021b. In total, three different phantoms
were imaged, resulting in approximately 6600 baseline and 6700 shrapnel images.
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Figure 1. Representative ultrasound images for preprocessed baseline (A) and shrapnel of varying
sizes—2 mm (B), 4 mm (C), 6 mm (D), 8 mm (E), and 10 mm (F)—acquired in the gelatin phantom.

2.5. Model Training Overview

Model training was performed for three separate experiments detailed below. Specific
differences for each experiment are detailed in each subsection. First, shrapnel and baseline
images were subsplit into three groups: 60% training, 20% validation, and 20% testing.
Training images were augmented in an attempt to prevent overfitting by applying up to
±20% zoom to each image, ± 360 degrees of rotation, and mirroring across the x or y axis.
This was done randomly for each image prior to training. Validation images used during
training runs were not augmented, nor were testing images. During training, 100 epochs
were used unless otherwise specified, with a learning rate of 0.001. All training was
performed using MATLAB R2021b with the deep learning and machine learning toolboxes.

2.5.1. Bayesian-Optimized ShrapML Model Evaluation

Training was performed after Bayesian optimization with the new phantom images.
All training was performed on an HP workstation (Hewlett-Packard, Palo Alto, CA, USA)
running Windows 10 Pro (Microsoft, Redmond, WA, USA) and an Intel Xeon W-2123
(3.6 GHz, 4 core, Santa Clara, CA, USA) processor with 64 GB RAM using an NVIDIA
Quatro p1000 (4GB VRAM, Santa Clara, CA, USA) GPU with an image batch size of
32 images.

2.5.2. Comparison to Conventional Image Classification Models

In order to compare the performance of the Bayesian-optimized ShrapML to that of
additional classifiers, a literature review was conducted, considering studies published
in the last ten years, to identify 11 classifiers that had previous uses either with ultra-
sound image datasets or in real-time applications. These classifiers are shown in Table 2,
which highlights the differences between the complexities in the algorithms by identifying
architectural details and the number of parameters.
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Table 2. Summary of image classifier model architecture for shrapnel identification in ultrasound
image datasets. The algorithm architecture details identify the layer counts as layers with weights:
Conv layers and fully connected (FC) or dense layers. This column also contains information about
various modules in use (Fire, MBConv, Bottleneck, etc.).

Classifier Algorithm Architecture Details Source of Training
Images

Parameters
(in Millions)

Year First
Published

ShrapML 8 layers—6 Conv, 2 FC Ultrasound datasets 0.43 2022 [11]

AlexNet 8 layers—5 Conv, 3 FC ImageNet 62.3 2012 [23]

DarkNet19 19 layers—19 Conv ImageNet 20.8 2016 [24]

DarkNet53 53 layers—52 Conv, 1 FC ImageNet 41.6 2018 [25]

EfficientNetB0 82 layers—1 Conv, 16 MBConv modules ImageNet 5.3 2020 [26]

GoogleNet 22 layers—22 Conv ImageNet 7 2014 [27]

InceptionNetv3 101 layers—99 Conv, 2 FC ImageNet 23.9 2015 [28]

MobileNetv2 53 layers—3 Conv, 7 Bottleneck modules ImageNet 3.5 2019 [29]

ResNet50 50 layers—50 Conv ImageNet 25.6 2015 [30]

ResNet101 101 layers—101 Conv ImageNet 44.6 2015 [30]

SqueezeNet 18 layers—2 Conv, 8 Fire modules ImageNet 1.24 2016 [31]

VGG16 16 layers—13 Conv, 3 FC ImageNet 138 2014 [32]

These additional 11 classifier algorithms were imported into the MATLAB R2021b
deep learning toolbox. Input and output layers were adjusted to meet the 512 × 512 image
input size and the 2 class types (baseline and shrapnel), respectively. The processed datasets
(see Section 2.4) were used for transfer learning with these pretrained models. To identify
the highest-accuracy candidates from this original group of 12 models (ShrapML plus 11
conventional classifiers), the models were trained in short runs using 5 epochs, a training
image subset of 200 images, and a batch size of 10. Training was performed using CPU
on an HP workstation (Hewlett-Packard, Palo Alto, CA, USA) running Windows 10 Pro
(Microsoft, Redmond, WA, USA) and an Intel Xeon W-2123 (3.6 GHz, 4 core, Santa Clara,
CA, USA) processor with 64 GB RAM. After transfer learning occurred on these new models,
an isolated dataset was used to test the model and quantify the performance metrics.

2.5.3. Robust Model Evaluation

After initial model evaluation, the performance metrics were gauged for highest
accuracy and lowest training time, which generated a ranking for each model. The top
5 models were selected for robust training. All subsequent training was performed on
an HP workstation (Hewlett-Packard, Palo Alto, CA, USA) running Windows 10 Pro
(Microsoft, Redmond, WA, USA) and an AMD Ryzen 5 3600X (3.8 GHz, 6 core, Santa
Clara, CA, USA) processor with 32 GB RAM using a NVIDIA GeForce RTX 2060 Super
(8 GB VRAM, Santa Clara, CA, USA) GPU with an image batch size of 16 images. The
same datasets as those used in the initial evaluation were used again for transfer learning
and testing.

2.6. Performance Metrics

Test-set predictions were performed for each trained model using 20% of the full
dataset, which was reserved prior to training. A table of ground truth labels, class pre-
dictions, and confidences was generated with all the predictions, which was used for
backend analysis of the model’s performance. Confusion matrices were constructed to
distinguish true-positive, false-positive, true-negative, and false-negative results. Accuracy,
precision, recall, specificity, and F1 score were calculated for each model. ROC curves and
the area under the ROC curve (AUC) were also generated. Analyses were performed using
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MATLAB R2021b, and confusion matrix graphics were created using GraphPad Prism 9
(San Diego, CA, USA). For comparison to other classifier models, the training and testing
time was measured for each model to assess relative speeds.

3. Results
3.1. Bayesian Optimization of ShrapML

We iteratively and selectively developed ShrapML for use in ultrasound image clas-
sification in previous studies; however, it was not thoroughly optimized. To this end,
250 Bayesian optimization iterations were performed across six key hyperparameters
shown in Table 1. The three top-performing models from this exercise, along with other
representative models, are shown in Table 3. For comparison, the selected performance
and hyperparameters are also shown from the original ShrapML model. Overall, Bayesian
optimization was able to identify higher-performing models than the original ShrapML.

Table 3. Summary of results of the Bayesian optimization of ShrapML. Iterations 33, 83, and 71
were the three highest-performing iterations, based on validation loss. Iterations 231 and 74 were
representative medium- and poor-performing iterations. The last column was results for 10 epochs
of training from the original ShrapML model. The single-color heat map indicates best-performing
models in green, with the worst being uncolored for each performance metric row.

Model
Feature Iteration 33 Iteration 83 Iteration 71 Iteration 231 Iteration 74 Original

ShrapML

FC Nodes 252 214 250 57 8 256

CNN Nodes 32 5 5 23 32 16

Dropout
Rate 31.2% 36.4% 25.6% 72.8% 59.8% 55.0%

Solver ADAM RMSprop RMSprop SGDM ADAM RMSprop

# Layers 6 6 6 4 3 5

Time to 10
Epochs 40:52 09:21 09:20 28:53 38:45 24:36

Validation
Accuracy 93.7% 93.4% 93.7% 77.8% 54.4% 87.7%

Validation
Loss 0.1753 0.2056 0.2296 0.4815 0.6898 0.3448

Performance was evaluated in three ways: validation accuracy, validation loss, and
training time. Training time was considered a factor of computational burden of the model
for potential real-time or near-real-time deployment in real-world applications. In general,
a larger fully connected layer at the end of the model and more CNN layers resulted
in better performance. The highest-performing model reached 50% lower loss than the
original ShrapML, although that performance improvement was paired with four times
the training time compared to iterations 83 and 71. As a result, iteration 83 was selected as
the optimal version, as it achieved similar validation performance with a much quicker
operation vs. iteration 33. The exact architecture of the optimized hyperparameters within
ShrapML is shown in Figure 2.

Next, the optimized network was trained with the entire dataset, which included more
than 13,000 images and 100 training epochs, in order to refine the model weights. The false-
positive rate was slightly higher than the false-negative rate, but both rates remained low
(Figure 3A). The ROC curve for the optimized model is shown in Figure 3B. Backend testing
resulted in 97% accuracy, with an F1 score and AUC of 0.9765 and 0.9985, respectively
(Table 4). Compared to the original ShrapML results [11], accuracy, F1, and AUC were
95%, 0.95, and 0.95, respectively. These represent only slight improvements, although the
optimized model was trained on a much larger phantom image set with 10× the number
of images when compared to the original ShrapML model results.
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2D Max pooling Layer 
2D Convolution Layer 
2D Max pooling Layer 
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25, 3×3 filters; ReLu activation 
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••MSH:1-@@• [Baseline, Shrapnel] 
Figure 2. Network architecture for the optimized ShrapML model.
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Table 4. Summary of performance metrics for ShrapML.

Accuracy Area Under ROC F1 Score Precision Recall Specificity

0.9761 0.9985 0.9765 0.9645 0.9889 0.9631
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3.2. Comparison to Others Models

Next, we evaluated how ShrapML compared to conventional image classifiers that
have been extensively evaluated using ImageNet. Initially, 11 models were selected, which
were, along with ShrapML, trained for five epochs with a reduced dataset of 200 images as
an initial streamlined comparison (Table 5). The models were evaluated based on two key
performance metrics: test prediction accuracy and training time. The best-performing mod-
els based on prediction accuracy were ResNet101 and VGG16, which reached 0.83 accuracy.
Others, including ShrapML, surpassed 0.75 in five epochs. Although VGG16 achieved the
highest accuracy, it took over an hour to complete training, whereas other models, such
as SqueezeNet and ShrapML, took less than 5 min. For this reason, both test accuracy
and training time were used to down select, with five models retained for further training:
DarkNet19, GoogleNet, MobileNetv2, ShrapML, and SqueezeNet.

Table 5. Performance values of accuracy obtained during testing and time needed to train the
12 models from initial experimental training using five epochs. The five selected models are indicated
in bold.

Model Test Accuracy Training Time (min)

AlexNet 0.50 10.6

DarkNet19 0.79 15.6

DarkNet53 0.68 36.4

EfficientNetB0 0.81 29.5

GoogleNet 0.73 12.2

InceptionNetV3 0.58 22.0

MobileNetV2 0.76 20.8

ResNet50 0.75 26.6

ResNet101 0.83 41.1

ShrapML 0.77 1.3

SqueezeNet 0.50 4.6

VGG 16 0.83 67.1

Performance comparison of the five down-selected models consisted of more robust
training using 100 epochs and the full image dataset (13.3k images). Confusion matrices
were compared, and all models showed high true-positive and true-negative rates, with
MobileNetv2 having the lowest overall false-positive and false-negative rates of the five
models (Figure 4A–E). MobileNetv2 was the best-performing model based on the traditional
performance metrics, such as accuracy and F1 score, whereas SqueezeNet had the worst
performance (Table 6). However, the difference between Mobile and ShrapML for accuracy
and F1 score was 0.032 (Mobile, 0.998 vs. ShrapML, 0.966) and 0.031 (Mobile 0.999 vs.
ShrapML 0.967), respectively. This is a minor difference in contrast to inference time, where
ShrapML processed testing images in 10.2 milliseconds (ms), whereas Mobile required
104 ms—a 10× difference. In conclusion, ShrapML strikes a balance between standard
performance metrics and performance speed, which may be optimal in certain real-time
imaging applications.
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Table 6. Summary of performance metrics for each of five models trained using 100 epochs. The
single-color heat map indicates the best-performing models in green, with worst being uncolored for
each performance metric row.

Metric DarkNet-19 GoogleNet Mobile Netv2 ShrapML SqueezeNet

Accuracy 0.973 0.971 0.998 0.966 0.955

AUC 0.998 0.997 1.000 0.996 0.993

F1 0.973 0.972 0.998 0.967 0.956

Precision 0.999 0.953 0.999 0.958 0.943

Recall 0.947 0.992 0.998 0.976 0.969

Specificity 0.999 0.950 0.998 0.956 0.941

Testing Image
Inference Time (ms) 121.40 68.80 104.00 10.20 21.90

4. Discussion

Ultrasound imaging has a growing value in medical diagnostics, especially when a
quick, accurate assessment is needed. Scenarios such as this often happen in emergency
medicine and combat casualty care. Trained personnel are required for image interpretation
and are commonly not readily available in remote environments. By lowering the cognitive
burden and developing automated detection of shrapnel, medical imaging becomes acces-
sible in these extreme environments. Here, we describe the Bayesian optimization of the
existing ShrapML classifier algorithm and its comparison to other conventional classifiers
trained using the ImageNet archive.

Identification of an algorithm with high accuracy and lower computational power
needs will enable integration into various US hardware units for use in such austere
environments. As US instrument size shrinks, in some cases to the size of a cellular
phone, it becomes ever more critical that this minimal computational power threshold
is maintained.

Bayesian optimization of ShrapML improved accuracy to 97%. Conventional classifier
algorithms were used to evaluate the performance of transfer learning with ultrasound im-



J. Imaging 2022, 8, 140 10 of 12

age sets. These conventional algorithms had millions more parameters and were expected
to outperform the smaller ShrapML in terms of accuracy in detecting features because
of their additional complexity and size. This was not the case. ShrapML’s accuracy was
proven to rival that of the other models, completing training and testing in a fraction of the
time compared to conventional algorithms. However, MobileNetv2 and other models with
millions of trainable parameters can result in better performance if the highest possible
accuracy and F1 score are essential. For triage applications, such as those required in
emergency medicine, the tradeoff between speed and accuracy may tip further in the speed
direction when compared to AI-focused assistance with a surgical operation [33,34] or
identification of a tumor’s precise tissue boundary [35].

There are some limitations of the current work and scope. First, more diversity in
the phantom design may be needed to further reduce the possibility of overfitting. This
problem can be addressed with future testing or with more robust data augmentation,
such as mixup [36–38]. Second, the phantom is limited in its complexity when compared
to real tissue. Although it may be complex in terms of ultrasound properties, it lacks
tissue or-organ-level organization, as well as vessels with pulsatile flow. Next steps should
consider transfer learning of the optimal models with animal datasets to improve the
training complexity with a more relevant dataset. Third, only shrapnel detection was
evaluated in the present study. This was selected as a simple initial use case with a high
triage need in military applications; however, more widely used is the extended Focus
Assessment with Sonography for Trauma (eFAST) examination procedure for detection of
pneumothorax or abdominal hemorrhage. With the identification of an optimal classifier
model, shrapnel detection algorithms can eventually be used in eFAST applications, as the
same models and principles showcased here can apply.

Next steps for this work will involve transitioning this work into real-time use cases
paired with ultrasound imaging. Streamed ultrasound video footage will need to be
evaluated to determine whether the compression requirements for video streaming impact
model performance. Integration of AI models with tablets or small microcontrollers will
also be essential when moving to real time to eliminate the need for a large computer
in military or remote medicine situations. Further next steps will look at modifications
of this model for use in object detection to precisely locate the foreign body placement
instead of only classification. These next steps, along with models optimized for speed and
ultrasound imaging, will help to reduce the cognitive load of image interpretation during
high-stress, emergency medicine situations.

5. Conclusions

In conclusion, artificial intelligence has the potential to improve medical imaging
with an appropriate model for a given application. For ultrasound imaging in military
and austere environments where resources are limited and high-level triage is the primary
goal, simple deep learning models with rapid inference times may be ideal for real-time
deployment. The ShrapML algorithm, which we further optimized in this work, is suited
for the specific task of rapidly identifying shrapnel much faster than conventional deep
learning models. This model will be integrated for use in real time going forward and
transitioned to additional ultrasound imaging applications to further highlight the utility
that AI can offer for medical imaging applications.
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