
1Lin T, et al. General Psychiatry 2023;36:e100977. doi:10.1136/gpsych-2022-100977

Open access 

On modelling relative risks for 
longitudinal binomial responses: 
implications from two 
dueling paradigms

Tuo Lin    ,1 Rongzhe Zhao,1 Shengjia Tu,2 Hao Wu,3 Hui Zhang,4 Xin M Tu1

To cite: Lin T, Zhao R, Tu S, et al.  
On modelling relative risks for 
longitudinal binomial responses: 
implications from two dueling 
paradigms. General Psychiatry 
2023;36:e100977. doi:10.1136/
gpsych-2022-100977

 ► Additional supplemental 
material is published online only. 
To view, please visit the journal 
online (http:// dx. doi. org/ 10. 1136/ 
gpsych- 2022- 100977).

Received 01 December 2022
Accepted 10 February 2023

1Division of Biostatistics 
and Bioinformatics, Herbert 
Wertheim School of Public 
Health and Human Longevity 
Science, UC San Diego, La Jolla, 
California, USA
2College of Environmental 
Science and Engineering, Tongji 
University, Shanghai, China
3Department of Mathematics 
and Statistics, Georgia State 
University, Atlanta, Georgia, USA
4Division of Biostatistics, 
Department of Preventive 
Medicine, Northwestern 
University Feinberg School of 
Medicine, Chicago, Illinois, USA

Correspondence to
Mr Tuo Lin;  
 tulin@ health. ucsd. edu

Biostatistical methods in psychiatry

© Author(s) (or their 
employer(s)) 2023. Re- use 
permitted under CC BY- NC. No 
commercial re- use. See rights 
and permissions. Published by 
BMJ.

AbsTrACT
Although logistic regression is the most popular for 
modelling regression relationships with binary responses, 
many find relative risk (RR), or risk ratio, easier to interpret 
and prefer to use this measure of risk in regression 
analysis. Indeed, since Zou published his modified 
Poisson regression approach for modelling RR for cross- 
sectional data, his paper has been cited over 7 000 times, 
demonstrating the popularity of this alternative measure of 
risk in regression analysis involving binary responses. As 
longitudinal studies have become increasingly popular in 
clinical trials and observational studies, it is imperative to 
extend Zou’s approach for longitudinal data.
The two most popular approaches for longitudinal 
data analysis are the generalised linear mixed- effects 
model (GLMM) and generalised estimating equations 
(GEE). However, the parametric GLMM cannot be used 
for the extension within the current context, because 
Zou’s approach treats the binary response as a Poisson 
variable, which is at odds with the Bernoulli distribution 
for the binary response. On the other hand, as it imposes 
no mathematical model on data distributions, the 
semiparametric GEE is coherent with Zou’s modified 
Poisson regression. In this paper, we develop a GEE- 
based longitudinal model for binary responses to provide 
inference about RR.

InTroduCTIon
Logistic regression is widely used to model 
binary responses. However, many find rela-
tive risk (RR), or risk ratio easier to interpret 
and prefer to model regression relationships 
with inference about RR, rather than odds 
ratio (OR) as in logistic regression. Indeed, 
since Zou1 published his modified Poisson 
regression approach for inference about RR, 
his paper has been cited 7 128 times, demon-
strating the popularity of using RR in model-
ling binary responses. However, his approach 
isn’t applied to longitudinal data. Moreover, 
there is no one- to- one relationship between 
RR and OR for regression analysis.2 As longi-
tudinal studies have become increasingly the 
standard in clinical trials and observational 
studies, it is imperative to develop statistical 

models for longitudinal binary responses with 
inference based on RR to fill the critical gap.

The two most popular paradigms to extend 
models for cross- sectional data to longitu-
dinal data are the generalised linear mixed- 
effects model (GLMM) and generalised 
estimating equations (GEE). The parametric 
GLMM explicitly models the within- subject 
correlation using random effects, while the 
semiparametric, or distribution- free GEE 
implicitly accounts for such correlations using 
sandwich variance estimates.3 Since Zou’s 
approach treats binary responses as count 
variables and derives estimators of RR under 
the Poisson distribution, GLMM cannot 
be used to extend his approach to longitu-
dinal data within the current context. As his 
approach is essentially a semiparametric log- 
linear model, a simplified version of GEE for 
cross- sectional data, GEE provides a coherent 
paradigm to develop to extend his approach 
to longitudinal data.

In the Models for Relative Risks for Longi-
tudinal Binary Responses section, we first 
review semiparametric regression models 
for cross- sectional and longitudinal binary 
responses under the logit and log link for 
inference about the respective log of OR 
and log of RR. We then discuss a GEE- based 
approach for longitudinal binary responses 
for inference about RR by leveraging semi-
parametric log- linear models. In the Applica-
tion section, we use real and simulated data 
to illustrate the proposed approach. In the 
Discussion section, we give our concluding 
remarks.

Models for relATIve rIsks for longITudInAl 
bInAry responses
We start with a brief review of Zou’s approach 
for inference about RR when modelling 
binary responses in cross- sectional data.
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Cross-sectional data
Consider a study with  n  subjects indexed by  

(
1 ≤ i ≤ n

)
.  

Let  yi   denote a binary response of interest and let 

 xi =
(
xi0, xi1, . . . , xip

)
  with  xi0 ≡ 1  denote a  

(
p + 1

)
× 1  

vector of explanatory, or independent, variables from the 
 i  th subject  

(
1 ≤ i ≤ n

)
 . The popular logistic regression 

model is defined by a generalised linear model (GLM) 
with the logit link as Tang et al3:

 

yi|xi
i.d.∼ Bernoulli

(
µi
)

, µi = µ
(
xi
)

= E
(
yi|xi

)
,

logit
(
µi
)

= x⊤i γ = γ0 + γ1xi1 + . . . + γpxip, 1 ≤ i ≤ n, 
 (1)

where  i.d.  denotes independently distributed, Bernoulli 

 
(
µi
)
  denotes the Bernoulli distribution with mean  µi  , logit 

denotes the logit link function and  γ  is the vector of 
model parameters or coefficients. Under logistic regres-
sion, each regression coefficient  γk  has the log OR inter-
pretation per unit change in  xik  for  k = 1, ..., p. 

3 Inference 
about  γ  is generalised based on maximum likelihood.3

For  γk  to have the RR interpretation, we need to change 
the logit link to the log link function to express (1) as:

 

yi|xi
i.d.∼ Bernoulli

(
µi
)

, µi = E
(
yi|xi

)
,

log
(
µi
)

= x⊤i β = β0 + β1xi1 + . . . + βpxip, 1 ≤ i ≤ n.  
(2)

For differentiating log OR from log RR, we use a 
different symbol  β  in (2) to denote the model coef-
ficients. Under (2), each coefficient  βk  has the log RR 
interpretation. For example, consider one unit increase 
in  xik  from  xik  to  xik + 1 . Denote the change in the mean 
of  yi   in response to the change in  xik  by:

 

µ1k = µ
(
xi0, xi1, . . . ,

(
xik + 1

)
, . . . , xip

)
,

µ0k = µ
(
xi0, xi1, . . . , xik, . . . , xip

)
 . 

Then, it follows from (2) that the log of RR,  RRk , for 
the unit change in  xik  from  xik  to  xik + 1  is:

 

log
(
RRk

)
= log

(
µ1k
µ0k

)

= log
(
µ1k

)
− log

(
µ0k

)

= βk
(
xik + 1

)
− βkxik

= βk .   

The two GLMs in (1) and (2) are quite similar except 
for the different link functions. Under logit link in (1), 
the conditional mean  µi   is constrained between 0 and 
1, while under the log link in (2),  µi   is confined only to 
positive values. Since  µi   may exceed 1, the upper bound 
for a probability quantity, estimates based on maximising 
the Bernoulli likelihood may not converge under the 
log link.4 5 To alleviate this problem, we may switch the 
Bernoulli distribution in (2) to the Poisson, that is,

 

yi|xi
i.d.∼ Poisson

(
µi
)

, µi = E
(
yi|xi

)
,

log
(
µi
)

= x⊤i β = β0 + β1xi1 + . . . + βpxip, 1 ≤ i ≤ n,  
(3)

Since the logic restriction of positive values on  µi   
is consistent with the mean of the Poisson, fitting the 
model (3) to observed data will not be an issue. For rare 

diseases,  µi   will be close to  0  and  yi   may be viewed as a 
count, frequency, or response with mean  µi  , in which 
case the Poisson- based (3) is a reasonable approximation. 
In general, with increased  µi  , (3) may not provide valid 
inference, since the binary  yi   will not have a Poisson distri-
bution in this case. Zou discussed the use of the sandwich 
variance estimator as an alternative to estimate the vari-
ance of the estimator of  β . This approach is essentially a 
semiparametric regression, or restricted moment model, 
in which only the model for the conditional mean of  yi   
given  xi   in (3) is assumed:

 µi = E
(
yi|xi

)
, log

(
µi
)

= x⊤
i β = β0 + β1xi1 + . . . + βpxip, 1 ≤ i ≤ n .

 (4)

Thus, unlike (3), the semiparametric log- linear model 
above does not assume Poisson or any other parametric 
distribution for  yi  . Different from a parametric model, 
a semiparametric model leverages estimating equations 
to play the role of the likelihood to provide inference.3 
Unlike maximum likelihood estimation, inference based 
on estimating equations is consistent regardless of the 
distribution of  yi  , so long as the assumed conditional 
mean in (4) is correct.3 Thus, even if  yi   does not have 
a Poisson distribution, inference about  β  in (4) is still 
correct when based on the estimating equations.

Within the current context, the estimating equations 
for inference about  β  have the form:

 

wn
(
β
)

=
n∑

i=1
wni

(
β
)

= 0, wni
(
β
)

= DiV
−1
i Si,

Si = yi − µi, Di = ∂µi
∂β = µixi   

(5)

where  Vi = Var
(
yi|xi

)
  is the conditional variance of 

 yi   given  xi  . Under (4),  Si   and  Di   are readily evalu-
ated. However,  Vi   is not determined by the semipara-
metric log- linear model in (4), since it only specifies 
the conditional mean  µi  . Within the current context, 
 yi   follows the Bernoulli  

(
µi
)
 , in which case we have 

 Vi = Var
(
yi|xi

)
= µi

(
1 − µi

)
 . We obtain the estimate  ̂β  of 

 β  by solving (5) for  β . Unlike linear regression,  ̂β  cannot 
be evaluated in closed form but is readily computed 
numerically.3

The estimator  ̂β  has an asymptotically normal distribu-
tion with mean  β  and variance  Σβ :

 
 
Σβ = B−1ΣUB−1, ΣU = E

(
DiV

−2
i S2

i D⊤
i

)
, B = E

(
DiV

−1
i D⊤

i

)
 

 (6)

where B−1  denotes the inverse of B  . We can estimate  Σβ  
by the following sandwich variance estimator  Σ̂β :

 

Σ̂β =
(

1
n

n∑
i=1

µ̂ixix⊤i

)−1 (
1
n

n∑
i=1

(
yi − µ̂i

)2 xix⊤i

)

(
1
n

n∑
i=1

µ̂ixix⊤i

)−1

  

(7)
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Note that unlike likelihood- based inference for para-
metric models, inference based on the estimating equa-
tions in (5) for semiparametric models is always valid, 
regardless of the distribution of  yi  . In particular, instead 
of  Vi = µi

(
1 − µi

)
 , we may also set  Vi   to any function of 

 xi   such as  Vi = µi   (by treating  yi   as a Poisson with mean  
 µi  ) for valid inference about  β . This is why we can model 
a binary  yi   using a semiparametric log- linear model for a 
count response.

longitudinal data
We now consider extending the semiparametric log- linear 
model above to longitudinal data.

Suppose that the subjects are assessed repeatedly over 
 T   time points  t

(
1 ≤ t ≤ T

)
 . Let  yit   and  xit   denote the 

same response and explanatory variables as in the cross- 
sectional data setting, but with  t   indicating their depen-
dence on the time of assessment ( 1 ≤ i ≤ n ,  1 ≤ t ≤ T  ). 
By applying the semiparametric log- linear model in (4) 
to each assessment  t  , we obtain an extension of the semi-
parametric log- linear model for the association of longi-
tudinal  yit   and  xit  :

 

µit = E
(
yit|xit

)
, log

(
µit

)
= x⊤it β = β0 + β1xi1 + . . . +

βpxip, 1 ≤ i ≤ n, 1 ≤ t ≤ T.   
(8)

Thus, we do not explicitly model correlations among the 
repeated  yit   ’s. Inference about  β  is based on extending 
the estimating equations in (5) to the correlated  yit   ’s.

Let

 

µi =
(
µi1, . . . ,µiT

)⊤ , yi =
(
yi1, . . . , yiT

)⊤ ,

Di = ∂µi
∂β , Si = yi − µi, 1 ≤ i ≤ n.   

The estimating equations, which are often called the 
generalised estimating equations (GEE) in the literature, 
for inference about  β  have the form:

 
wn

(
β
)

=
n∑

i=1
wni

(
β
)

=
n∑

i=1
DiV

−1
i

(
yi − µi

)
= 0

  
(9)

where  Vi = Var
(
yi|xi

)
  is the conditional variance of  yi   

given  xi  . As in the cross- sectional case, we can readily eval-
uate  Di   and  Vi   under (8) and set  Var

(
yit|xit

)
= µit

(
1 − µit

)
  

for each  t
(
1 ≤ t ≤ T

)
 . However, the conditional covariance 

between  yis, yit   given  xis, xit   is quite complex. In almost all 
applications of GEE, we use a working correlation  R

(
α
)
  

to approximate the true correlation  Corr
(
yis, yit|xis, xit

)
 , 

where  R
(
α
)
  is a  T × T   correlation matrix with its entries 

defined by a parameter vector α .3 Popular choices of 

 R
(
α
)
  are the working independence, with  R = IT  , and 

working exchangeable, with  R
(
ρ
)

= CT
(
ρ
)
 , model, where 

 IT   denotes the  T × T   identity matrix and  ρ  is a parameter.

Under a specific  R
(
α
)
 , we have  Vi = A

1
2
i R

(
α
)

A
1
2
i  , where 

 Ai = diagt
(
Var

(
yit|xit

))
  denotes a diagonal matrix with 

 Var
(
yit|xit

)
  on its  t  th diagonal. As in the case of cross- 

sectional data, inference is always valid even if  R
(
α
)
  
(
Vi
)
  is 

not the true correlation (variance) of  yi   given  xi  . In (9), 

 wn
(
β
)
  also depends on α , though we have suppressed 

this dependence to highlight the fact that (9) is the equa-
tion for estimating  β . Thus, α  must be estimated (except 
for the working independence model) to solve (9) for  β.  
We can either assign a value to or estimate α  together 
with  β . For example, under  R

(
ρ
)

= CT
(
ρ
)
 , we may set  ρ  to 

any value between 0 and 1 or estimate  ρ  using correlated 
residuals  yit − µ̂it  , with 

 
µit = exp

(
x⊤it β̂

)
 
. Inference about 

 β  is based on the asymptotic normal distribution of the 
GEE estimator  ̂β , which has mean  β  and variance  Σβ :

 Σβ = B−1E
(

DiV
−1
i Var

(
yi|xi

)
V−1

i D⊤
i

)
B−⊤, B = E

(
DiV

−1
i D⊤

i

)
 

 (10)

where B⊤  denotes the transpose of B  . We can esti-
mate  Σβ  by the sandwich variance estimator  Σ̂β , which 
is obtained by:

 

Σ̂β = B̂−1
(

1
n

n∑
i=1

D̂iV̂
−1
i ŜiŜ⊤i V̂−1

i D̂⊤
i

)
B̂−⊤,

B̂ = 1
n

n∑
i=1

D̂iV̂
−1
i D̂⊤

i
  

(11)

where  ̂Di  ,  ̂Vi   and  ̂Si   denote substituting  ̂β  in place of  β  
for the respective quantity  Di  ,  Vi   and  Si  .

Popular software packages all support semiparametric 
regression models for both cross- sectional and longitu-
dinal data. For example, PROC GEE in SAS and geeglm() 
in the geepack package in R6 can be used to fit the semi-
parametric log- linear models in (4) for cross- sectional 
and (8) for longitudinal data.

ApplICATIon
We illustrate our considerations with both real and simu-
lated data. In all the examples, we set the statistical signif-
icance at  α = 0.05 . All analyses are carried out using the 
geeglm() function in the geepack package in R.6

simulation study
We consider modelling regression associations of a single 
time- invariant binary explanatory variable  xi   with a binary 
response  yit   in a longitudinal study with three assessments. 
To simulate the correlated  yit  , we use a Gaussian copula 
with the marginal  yit   given  xi   following a Bernoulli7:

 

yit|xi
i.d.∼ Bernoulli

(
µi
)

, log
(
µi
)

= β0 + xiβ1, 1 ≤ t ≤ 3,

xi
i.i.d.∼ Bernoulli

(
1
2

)
.

 
 (12)

For our simulation, we set  β0 = −2  and  β1 = 1  and an 
exchangeable correlation  C3

(
ρ
)
  in the trivariate normal 

with  ρ = 0.5 .
We fit the semiparametric (8) to the data simulated, 

that is,

 E
(
yit|xi

)
= µit, log

(
µit

)
= β0 + xiβ1 , (13)

using the GEE in (9) under the working independent 
correlation model. Shown in table 1 are the estimates of 
 β  along with their standard errors (SEs) (both asymptotic 
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Table 2 Estimates of parameters, SEs, p values and relative risks over time from GEE model to the Smoking Cessation Study 
data

Estimates, SEs, p values and estimates’ relative risk

Parameter Estimate SE P value Relative risk

Baseline (β0) –2.156 0.339 <0.001 0.081

Month 3 (β1) 0.754 0.354 0.033 2.125

Month 6 (β2) 0.865 0.354 0.014 2.375

Month 12 (β3) 0.486 0.380 0.201 1.625

GEE, generalised estimating equations; SE, standard error.

Table 1 Parameter estimates, SEs (asymptotic and empirical) and type I errors from GEE model with 1 000 MC replications

Estimates of GEE

True value

Estimate SE Hypothesis testing

 ̂β Empirical Asymptotic  H0 Type I error

β0=–2 –2.01 0.109 0.110 β0=–2 0.048
β1=1 1.01 0.123 0.125 β1=1 0.049

GEE, generalised estimating equations; MC, Monte Carlo; SE, standard error.

and empirical), over 1 000 Monte Carlo (MC) replications 
under a sample size  n = 500 . The estimates  ̂β  were quite 
close to their true values, and the asymptotic SEs were 
quite close to their empirical counterparts. Also, shown in 
table 1 are type I error rates from testing the null hypoth-
esis  H0 : β0 = −2  and  H0 : β1 = 1 . We estimate the type I 
errors using MC iterations. Let T

(
m
)
  denotes the Wald 

statistic at the  m  th MC replication, the type I error rate for 
testing  H0  is estimated by: 

 
α̂ = 1

1000
∑1000

m=1 I{
T
(

m
)

s ≥q1,0.95

}
 
, 

where  q1,0.95  is the 95th percentile of a  χ
2
1  distribution, 

a χ2 distribution with 1 df. As seen, the type I error rates 
were close the normal values  α = 0.05 .

real study
Smoking is the chief avoidable cause of morbidity and 
mortality in the USA, exacting a substantive financial 
burden as well.8 Smoking rates among persons with 
serious mental illness are exceptionally high, contrib-
uting to significant medical morbidity and mortality in 
this population, with many unlikely to live beyond their 
50th birthday. Persons with mental illness spend nearly 
one- third of their monthly public assistance income on 
cigarettes instead of buying needed food, clothing and 
shelter.9 A study was conducted to evaluate the effect of a 
multicomponent smoking cessation programme adapted 
to patients with serious psychiatric disorders within an 
outpatient psychiatric clinic at the University of Rochester 
Medical Center. This study, sponsored by the New York 
State Department of Health Tobacco Control Program, 
capitalises on packaging multiple evidence- based compo-
nents to achieve a better outcome than when each prac-
tice is individually implemented in a number of clinical 
venues, for example, central line–associated bloodstream 

infections and ventilator- associated pneumonia.10 Among 
the 276 participating subjects, 99 also participated in a 
formal evaluation, in which interviews were conducted at 
the point of enrolment (baseline), prior to intervention 
and again at 3, 6 and 12 months.

For illustrative purposes, we model the binary absti-
nence outcome, defined as the 7- day point prevalence (ie, 
abstinent from smoking for 7 days in a row), from prein-
tervention at baseline,  t = 0 , to each of the three postin-
tervention assessments,  t = 1, 2, 3 , at 3, 6 and 12 months, 
using data from 99 subjects. We create three time- varying 
dummy variables  x1it  ,  x2it   and  x3it   to indicate intervention 
effects at  t = 1, 2, 3 :

 

x1it =




1 ift = 1

0 ift ̸= 1
, x2it =




1 ift = 2

0 ift ̸= 2
, x3it =




1 ift = 3

0 ift ̸= 3 . 

Let  yit = 1  if the  i  th subject is abstinent for 7 days consec-
utively and  yit = 0  otherwise. The semiparametric GEE for 
change of abstinence rates over time is given by:

 

E
(
yit|xit

)
= µit, log

(
µit

)
= β0 + x1itβ1 + x2itβ2 + x3itβ3,

t = 0, 1, 2, 3, 1 ≤ i ≤ 99.   
(14)

We fit (8) to the 7- day point prevalence data using the 
GEE in (9) under the working independent correlation 
model.

Shown in table 2 are the estimates  ̂β  of 

 β =
(
β0,β1,β2,β3

)⊤
  and associated SEs, p values for 

testing the null  H0 : βt = 0  and RRs (exponentiated  

 ̂βt  ) at each assessment  
(
1 ≤ t ≤ 3

)
 . The results show a RR 

greater than 1 for all three postintervention assessments, 
though only statistically significant at months 3 and 6. 
The intervention did have a significant effect on reducing 
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smoking in this study sample, though the effect dimin-
ished 12 months after the intervention.

dIsCussIon
We extended the popular approach for modelling RRs for 
binary responses to longitudinal data by leveraging the 
semiparametric GEE. Like the original approach in Zou,1 
the parameters of the proposed log- linear model have 
the log of RR interpretation and, thus, with appropriately 
defined explanatory variables, can be used for inference 
about RRs when modelling longitudinal regression rela-
tionships with binary responses. We also illustrated the 
proposed approach using both real and simulated longi-
tudinal data.

The proposed GEE- based approach provides valid infer-
ence under the missing completely at random (MCAR) 
mechanism.3 11 In many real studies, missing data follow 
the missing at random (MAR) mechanism,3 11 in which 
case the lowest patterns done by the proposed approach 
generally yield biased estimates of RR. We can readily 
extend the approach to provide valid inference under 
MAR by employing the weighted generalised estimating 
equations (WGEEs).11 Under WGEE, we also model the 
missingness of the binary response over time using GLMs 
for binary responses such as logistic regression and esti-
mate its parameters and the parameters of the log- linear 
model in (8) together using a set of estimating equations 
that extend (9) to include the additional parameters.3
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