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Abstract: A new type of photocatalyst is proposed on the basis of aero-β-Ga2O3, which is a material
constructed from a network of interconnected tetrapods with arms in the form of microtubes with
nanometric walls. The aero-Ga2O3 material is obtained by annealing of aero-GaN fabricated by epi-
taxial growth on ZnO microtetrapods. The hybrid structures composed of aero-Ga2O3 functionalized
with Au or Pt nanodots were tested for the photocatalytic degradation of methylene blue dye under
UV or visible light illumination. The functionalization of aero-Ga2O3 with noble metals results in
the enhancement of the photocatalytic performances of bare material, reaching the performances
inherent to ZnO while gaining the advantage of the increased chemical stability. The mechanisms
of enhancement of the photocatalytic properties by activating aero-Ga2O3 with noble metals are
discussed to elucidate their potential for environmental applications.

Keywords: aeromaterial; Ga2O3; photocatalysis; metal-semiconductor photocatalyst; methylene
blue degradation

1. Introduction

Five different polymorphs have been reported for gallium oxide (Ga2O3), namely, the
monoclinic (β), rhombohedral (α), defective spinel (γ), cubic (σ), and orthorhombic (ε)
structures [1,2]. β-polymorph Ga2O3 has attracted most of the attention due to its supe-
rior chemical and thermal stability, wide bandgap, high stability to breakdown voltage,
and high Baliga’s figure of merit (BFOM). It has been widely studied and utilized for
various applications including in power electronics, solar blind UV photodetectors, solar
cells, and as gas-sensing materials [3–5]. Photocatalysis is another emerging application
of the β-Ga2O3 polymorph. Particularly, the photocatalytic activity of the Ga2O3 poly-
morphs was found to be strongly influenced by its crystal structure in the following order:
β-Ga2O3 > α-Ga2O3 > γ-Ga2O3 [6].

Ga2O3-based pure phases and composites have been examined for energy and en-
vironmental applications, including the decomposition of volatile aromatic pollutants
in air [6]; water purification [7–11]; solar water splitting [12–15]; photocatalytic carbon
dioxide (CO2) reduction with water to produce carbon monoxide (CO), hydrogen (H2), and
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oxygen (O2) [15–21]; photocatalytic reduction of CO2 to produce methane (CH4) [22]; as
well as solar-driven photoreduction of nitrogen (N2) in a clean route to produce ammonia
(NH3) [23].

Generally, three main factors determine the solar-to-chemical energy conversion
efficiencies of photocatalytic processes: (i) light absorption to produce photogenerated
charge carriers; (ii) transfer and separation of charge carriers; (iii) surface reactions to
convert reactants into products through the consumption of charge carriers [24]. Therefore,
the use of a single semiconductor material is limited by these key factors, since their
synergistic combination is rarely found in the same material.

Different approaches have been proposed for enhancing the photocatalytic perfor-
mance of catalysts, such as making use of co-catalysts, the development of semiconductor-
based hybrid photocatalysts, crystal phase engineering, and the rational design of phase
junctions [24], e.g., via implementing heterojunctions [25–28]. Furthermore, coupling pho-
tocatalysts with conductive materials and utilizing the surface plasmon resonance (SPR) to
produce plasmonic photocatalysis [26–30] show promising outcomes. By implementing
these approaches, the following issues were addressed: (i) the light absorption region was
extended by combining various photosensitizers with semiconductors, particularly by
deposition of nanoparticles (NPs) of noble metals such as gold (Au), silver (Ag), and plat-
inum (Pt) to enhance visible light absorption due to SPR; (ii) suppression of electron–hole
recombination through efficient charge separation and confinement of the photogenerated
electrons and holes in different components of semiconductor-based heterostructures or by
using conductive materials, particularly noble metal NPs or carbon materials as electron
acceptors and traps to enhance the carrier separation in photocatalysts and to avoid the
recombination of charges; (iii) surface reactions were enhanced by integrating co-catalysts
with semiconductors.

Nevertheless, the photocatalytic systems developed to date are still far from being
applicable due to low efficiency and poor durability [25]. Particularly, the chemical stability
of photocatalysts, including that of the most widely explored metal oxides as titanium
dioxide (TiO2) and zinc oxide (ZnO) materials, presents a major challenge for practical
applications [26,31].

In this research, we focused on the development of an efficient photocatalyst, which
will not decompose in the process, bringing additional water pollution with metal ions or
new compounds. The nanostructured titania and zinc oxide are the undebatable leaders
among the semiconductor photoactivated catalysts. At the same time, sewage and ground
waters suffer much from the deliberate usage of soaps, medicines, and cosmetics containing
TiO2 and ZnO. According to the WHO reports, content of Zn in tap water can cover 10%
of the daily amount of this mineral in human body, but taking into account its high
accessibility from meat, fish, and cereals, this limit may be exceeded. Ingestion of excessive
amounts of Zn causes fever, nausea, vomiting, stomach cramps, and diarrhea at humans,
decreases the antibiotics effectiveness, etc. [32]. It was reported that intake of Zn overdoses
for a long period of time increases the risks to develop prostate cancer [33]. Thus, the
major concern of modern research is the development of sustainable technologies that are
efficient and cost-effective but also with low level of toxicity.

In this work, we report on the design of an ultra-lightweight, highly porous, and
stable aero-Ga2O3 material and demonstrate the photocatalytic efficiency for potential
applications in photocatalytic water purification.

2. Materials and Methods

The aero-Ga2O3 material belongs to a class of highly porous and ultra-lightweight
“aero-materials” which descend from 3D semiconductor network of interpenetrating ZnO
microtetrapods. The sacrificial network of ZnO microtetrapods was prepared by a simple
flame transport approach, which is described elsewhere [34]. So far, new aero-materials
such as aerographite [35], aero-GaN [36–38], aero-ZnS [39], aero-BN [40], and aero-Si [41]
have been realized by templating the ZnO network. For example, the aerographite is
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produced via the transformation of the sacrificial ZnO microtetrapod network into graphitic
microtubes in a one-step chemical vapor deposition (CVD) process with toluene as the
carbon source [35].

2.1. Materials Synthesis

The new aero-Ga2O3 is produced by a two-step process schematically represented in
Figure 1a. Aero-GaN is first obtained by transforming the ZnO microtetrapods into GaN
microtubes in a hydride vapor phase epitaxy (HVPE) process using hydrochloride (HCl),
metallic gallium (Ga), and ammonia precursors as described in previous reports [36–38].
Gallium chloride (GaCl) is formed in the source zone, where gaseous HCl interacts with
liquid Ga in the first stage of this process, while GaN is formed in the reaction zone via
a chemical reaction between the gaseous molecules of GaCl and NH3. Simultaneously,
the ZnO sacrificial template is decomposed due to the corrosive atmosphere and high
temperatures. Secondly, the aero-GaN is subjected to annealing at 900 ◦C for 1 h under
normal atmospheric conditions. As a result, aero-GaN is transformed into aero-Ga2O3
(also known as “Aerogallox”) [42].
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Figure 1. (a) Schematic representation of the technological routes for the preparation of aerogallox,
(b) and aero-Ga2O3-Au hybrid photocatalyst.

Here, samples were prepared via the second hybrid approach, which is similar to that
applied for the fabrication of the phase pure aerogallox, but it is complemented by the
deposition of Au or Pt coatings in two technological steps. The first coating is deposited on
the ZnO template before the HVPE process is performed for the production of aero-GaN.
Following this, the second coating is deposited on the aero-GaN architecture before the
annealing is performed for the transformation of aero-GaN into aero-Ga2O3. Thin gold or
platinum films were deposited in a Cressington 108 Sputter Coater machine as described
in a previous paper [43]. The thermal treatment leads to the structuring of the initially
continuous metal film and to the formation of hybrid photocatalysts.
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2.2. Materials Characterization

The microstructure morphology of aero-Ga2O3 microtetrapods was studied by scan-
ning electron microscopy (SEM) Zeiss Gemini Ultra55 Plus (Carl Zeiss AG, Oberkochen,
Germany) working at 7 kV. Raman spectra were recorded using a Renishaw InVia Raman
system (Renishaw plc, Wotton-under-Edge, UK) in backscattering geometry at room tem-
perature. The samples were illuminated using a 532 nm line of a CW DPSS laser with a
power density of 11.3 mW/µm2. A 50× microscope objective lens with NA = 0.75 was
used to focus the light on the sample surface. Raman spectra were collected from a single
gallium oxide tube where possible with light normal to the side wall. The scattered light
was detected by a cooled charge-coupled device detector.

A JEOL 6330F (JEOL Ltd., Tokyo, Japan) field emission scanning electron microscope
(FE-SEM) equipped with a Gatan MonoCL cathodoluminescence (CL) microanalysis system
was used for CL characterization. The CL spectra have been taken with an accelerating
voltage of 10 keV and current of 10 nA in the spectral range of 250–600 nm, using a grating
spectrometer and a photomultiplier tube (PMT) detector.

2.3. Photocatalytic Degradation of MB Solution

Methylene blue (MB) dye (Merck KGaA, Darmstadt, Germany) was chosen for investi-
gating the photocatalytic properties of the developed catalyst, since it is a common organic
pollutant recommended by the International Standards Organization ISO 10678: 2010. A
10 µM MB solution in deionized (DI) water was prepared as the organic contaminant. Con-
sequently, 50 mL of MB solution was transferred into a glass beaker with 20 mg of catalyst
and mixed at 600 rpm by a magnetic stirrer. The same concentration of 0.4 mg/mL of the
active material in solution was used for all the tested photocatalysts. The solution with
aero-material was placed under a 100 W Blak Ray Hg lamp (Analytik Jena GmbH, Jena,
Germany) with the main intensity peak at 365 nm, at 14.5 cm distance from the solution
surface to study the photocatalytic properties under ultraviolet (UV) illumination, or under
a 150 W Halogen lamp irradiation ensuring an optical power density of 100 mW/cm2 to
estimate the photodegradation with visible light. To monitor the degradation of MB, the
samples were transferred into cuvettes for UV/Vis spectroscopy, and the absorption spectra
were recorded with a Perkin Elmer Lambda 750 UV/Vis spectrometer (PerkinElmer Life
and Analytical Sciences, Shelton, CT, USA). By monitoring the absorption intensity decay
as a function of time, we calculated the concentration of remaining MB in the solution. The
MB absorption peak was observed at 665 nm and the current concentration of MB was
calculated using Beer–Lambert law:

cMB =
A
εl

(1)

where cMB is the solution concentration, A is the measured absorption value, ε is the
absorptivity of the solution at certain wavelength (λ), and l is the optical pathway during
the measurement expressed in centimeters. The absorptivity of dye ε has been extracted
from the blank test data.

The MB degradation experiments were performed at low pollutant concentration;
thus, the kinetics study was performed according to the first-order Langmuir–Hinshelwood
model that relates the rate of photochemical reactions, which are proportional to the surface
coverage of the photocatalyst:

− ln
(

CMB
C0

)
= K (2)

where K is the adsorption coefficient of the reactant on the surface of the catalyst, cMB is
the solution concentration, and c0 is the initial pollutant concentration.
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3. Results and Discussions
3.1. Morphology of the Aero-Ga2O3

An SEM micrograph of the aero-Ga2O3 material used for photocatalytic degradation
tests is presented in Figure 2a. The aero-Ga2O3 microstructure displays a network of
interconnected microtetrapods. The Ga2O3 tetrapods preserve the initial shape of the
ZnO template; however, they are converted into a hollow geometry. Concerning the
crystallographic structure of the obtained Ga2O3 material, it was shown in previous work
to belong to the β-Ga2O3 polytype with the C2/m (C3

2h) space group [42]. This assignment
was confirmed by the Raman scattering analysis discussed below.
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Figure 2. (a) SEM micrograph of aero-Ga2O3 microtetrapods, (b) Magnified micrograph revealing
the surface features of the microtetrapod surface. The inset in (a) shows a photograph of Aero-Ga2O3.

The morphology of the aero-Ga2O3-Au hybrid photocatalyst (Figure 3) is similar to
that of the pure Ga2O3. However, an array of Ga2O3 nanowires (NWs) terminated by Au
nanoparticles grows inside the Ga2O3 microtubes during the HVPE on sacrificial ZnO
microtetrapods, as illustrated in Figure 3b. The growth of these nanowires was elucidated
in detail in a previous paper [43]. It was shown that the confined reaction conditions during
the HVPE process and hydrothermal dissolution of ZnO lead to the metal-catalytic vapor–
liquid–solid (VLS) growth of NWs. Some nanowires with golden nanoparticles on top are
also observed on the outer surface of aero-Ga2O3-Au, which were formed during the last
step of the oxidation of GaN microtubes after being covered with an ultrathin layer of Au
nanostructures. However, the aero-Ga2O3-Au and aero-Ga2O3-Pt hybrid photocatalysts
are basically composed of Ga2O3 microtubes with noble metal nanocoatings.
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Figure 3. (a) SEM image of an aero-Ga2O3-Au microtetrapod, (b) Magnified image of the microtube
opening in section (a). The inset in (a) shows photographs of Aero-Ga2O3 samples functionalized
with noble metals.
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3.2. Optical Properties

As mentioned below, the Raman spectrum of the aero-Ga2O3 (Figure 4) corroborates
well with its attribution to the β-Ga2O3 monoclinic polytype. The primitive unit cell of
β-Ga2O3 consists of 10 atoms at the Γ-point with irreducible representation Γopt = 10Ag +
5Bg + 4Au + 8Bu predicts a set of 27 optical modes of which 15 g modes are Raman-active
and 12 u modes are IR-active only [44].
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All the Raman active modes are observed in the measured Raman spectrum, which
are summarized in Table 1 along with the classification given in Ref. [44] and refs therein.

Table 1. Spectral position of the Raman peaks of β-Ga2O3, given in cm−1.

Phonon Mode This Work Ref. [44]

Ag(1) 108 111.0
Bg(1) 115 114.8
Bg(2) 146 144.8
Ag(2) 170 169.9
Ag(3) 201 200.2
Ag(4) 321 320.0
Ag(5) 346 346.6
Bg(3) 353 353.2
Ag(6) 416 416.2
Ag(7) 475 474.9
Bg(4) 475 474.9
Ag(8) 631 630.0
Bg(5) 653 652.3
Ag(9) 659 658.3

Ag(10) 767 766.7

The frequencies of the Ag
(7) and Bg

(4) modes coincide. A series of weaker peaks are
also observed at 123 cm−1, 131 cm−1, 140 cm−1, 155 cm−1, 166 cm−1, 211 cm−1, 231 cm−1,
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and 482 cm−1 in the spectrum (Figure 4), which can be attributed to either activation of
Raman inactive modes due to breaking of local symmetry, to some local vibrational modes,
or to second-order Raman modes. The Raman spectra were not affected by metal deposition,
and no vibration modes related to metal inclusions were observed in the spectrum.

The presence of donor and acceptor centers in the prepared aero-Ga2O3, their energy
levels, and the corresponding electron transitions can be deduced from the cathodolumi-
nescence spectrum (Figure 5a). The emission spectrum is deconvoluted into four Gaussian
CL bands with maxima around (3.3–3.4) eV, (2.9–3.0) eV, (2.6–2.7) eV, and (2.3–2.4) eV. The
maxima of CL bands and the position of respective energy levels were determined with an
uncertainty of around 5%. One should also take into consideration that the position of the
luminescence band related to distant donor–acceptor pair recombination depends upon
the excitation power density used in the experiment. The luminescence spectra were not
affected by metal deposition in the materials reported in this paper.

Materials 2021, 14, x FOR PEER REVIEW 7 of 14 
 

 

482 cm−1 in the spectrum (Figure 4), which can be attributed to either activation of Raman 
inactive modes due to breaking of local symmetry, to some local vibrational modes, or to 
second-order Raman modes. The Raman spectra were not affected by metal deposition, 
and no vibration modes related to metal inclusions were observed in the spectrum. 

The presence of donor and acceptor centers in the prepared aero-Ga2O3, their energy 
levels, and the corresponding electron transitions can be deduced from the cathodolumi-
nescence spectrum (Figure 5a). The emission spectrum is deconvoluted into four Gaussian 
CL bands with maxima around (3.3–3.4) eV, (2.9–3.0) eV, (2.6–2.7) eV, and (2.3–2.4) eV. 
The maxima of CL bands and the position of respective energy levels were determined 
with an uncertainty of around 5%. One should also take into consideration that the posi-
tion of the luminescence band related to distant donor–acceptor pair recombination de-
pends upon the excitation power density used in the experiment. The luminescence spec-
tra were not affected by metal deposition in the materials reported in this paper.  

The scheme of energy levels and electron transitions plotted according to the ob-
served CL bands is presented in Figure 5b. This scheme contains two donor and two ac-
ceptor levels, which is in accordance with the model proposed by Mi et al. [45].  

 
Figure 5. (a) Measured and deconvoluted cathodoluminescence (CL) spectrum of aero-Ga2O3 and 
(b) schematic diagram of energy bands and electron transitions in aero-Ga2O3. 

According to this model, the two blue emission bands, at (2.6–2.7) eV and (2.9–3.0) 
eV in our case, arise from electron transitions from the D1 to the A1 level and from the D2 
to the A2 level, respectively. The UV emission band at (3.3–3.4) eV was attributed to the 

Figure 5. (a) Measured and deconvoluted cathodoluminescence (CL) spectrum of aero-Ga2O3 and
(b) schematic diagram of energy bands and electron transitions in aero-Ga2O3.



Materials 2021, 14, 1985 8 of 13

The scheme of energy levels and electron transitions plotted according to the observed
CL bands is presented in Figure 5b. This scheme contains two donor and two acceptor
levels, which is in accordance with the model proposed by Mi et al. [45].

According to this model, the two blue emission bands, at (2.6–2.7) eV and (2.9–3.0) eV
in our case, arise from electron transitions from the D1 to the A1 level and from the D2
to the A2 level, respectively. The UV emission band at (3.3–3.4) eV was attributed to the
recombination of an electron on the D1 donor level with a hole on the A2 acceptor level,
while the green band at (2.3–2.4) eV was associated with electron transition from the D2 to
the A1 level. It was suggested that the donor levels can be formed by oxygen vacancies
(VO

X) and Ga2+ interstitials, while the acceptor levels can be attributed to gallium vacancy
(VGa

X) and gallium–oxygen vacancy pairs [(VGa,VO)X] [45–47]. The PL bands at 2.4, 2.7,
and 3.0 eV have been supposed to arise from donor–acceptor pair recombination involving
the same donor, while acceptors are associated with interstitial oxygen (Oi

0), gallium
vacancy (VGa

2−), and gallium–oxygen vacancy pairs [(VGa,VO)1−], respectively [48]. The
acceptors involved in the donor–acceptor pair recombination generating the green emission
band at 2.3 eV were also associated with either interstitial oxygen (Oi

0), octahedral gallium
vacancy (VGa

2−), or tetrahedral gallium vacancy (VGa
1−) [49].

The prepared aero-Ga2O3 material as well as the aero-Ga2O3-metal hybrid structures
were subjected to photocatalytic tests under UV and visible light illumination in order to
degrade the MB solution. The effect of a wide range of photocatalysts on the degradation
and discoloring of MB was extensively investigated previously, including those based on
β-Ga2O3 [50,51]. Upon excitation by the UV light with a wavelength of 365 nm, an electron
from the acceptor level A2 is excited into the conduction band, as shown in Figure 5b. As
a result of this transition, an electron from the valence band non-radiatively recombines
with the hole formed on the acceptor level, thus leaving a free hole in the valence band.
The holes in the valence band are able to oxidize (OH−) in reaction with water to produce
reactive hydroxyl radicals (•OH). On the other hand, the excited electrons in the conduction
band are able to produce superoxide anion radicals (O2

•−) upon reacting with O2. Both
(•OH) and (O2

•−) are free radicals and being strong oxidants are able to mineralize organic
and inorganic carbon compounds producing carbon dioxide, water, and other smaller
organic molecules [8,10,27,28,51–53].

3.3. Photocatalytic Performance

The evolution of the pollutant concentration during the experiments and photocat-
alytic rate constant were calculated according to Equations (1) and (2), respectively, and
the resulting plots are presented in Figure 6. The photocatalytic activity of the aero-Ga2O3
without metal activation is compared in Figure 6a with that of the initial ZnO microtetrapod
template. The high activity of ZnO under visible light illumination led to 90% degradation
of MB dye within 60 min, while under UV excitation, 90% of the dye is degraded within
35 min. On the other hand, the aero-Ga2O3 performs worse, with only 35% degradation of
dye observed after 45 min both under visible and UV light illumination, while only 43%
was degraded after 60 min under UV excitation.

The performance of the aero-Ga2O3 was significantly improved by noble metal activa-
tion, as shown in Figure 6b, so that the aero-Ga2O3-Au hybrid structure degraded about
85% of the dye within 35 min under UV excitation, while the aero-Ga2O3-Pt composite
degraded 60% after the similar exposure time under UV illumination. After a 60 min
exposure, the dye was almost completely degraded by the aero-Ga2O3-Au hybrid structure,
while 80% of the dye was degraded by the aero-Ga2O3-Pt composite. The photocatalysts
did not promote any noticeable degradation under visible light illumination compared to
the natural dye degradation.
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Figure 6. Comparison of photocatalytic activities under UV and visible light illumination of the prepared aero-Ga2O3

material and the initial ZnO template (a), and of aero-Ga2O3-Au and aero-Ga2O3-Pt photocatalysts (b), the kinetics of the
photodegradation is presented in (c,d) plots corresponding to (a,b) methylene blue (MB) concentration evaluation. The
concentration of the catalyst was maintained at the level of 0.4 mg/mL in all cases.

Adsorption rates of MB on aero-Ga2O3 bare and functionalized with Au and Pt were
analyzed using the pseudo 1st order kinetic model, according to Equation (2). Plots of
ln
(

C0
CMB

)
versus the time of reaction are presented in Figure 6c,d. The rate constants

obtained from the slopes of the lines in Figure 6 in case of no catalyst, aero-Ga2O3, aero-
Ga2O3–Pt, aero-Ga2O3–Au, ZnO tetrapodes under UV and visible light illumination are
presented in Table 2.

Table 2. Kinetic data of MB photodegradation on UV/vis illumination in the presence of catalysts.

Catalyst k (Rate Constant) R2 (Linear Coefficient Regression)

MB (UV) 0.0080 0.9882
Aero-Ga2O3 (UV) 0.0048 0.9418

Aero-Ga2O3-Pt (UV) 0.0286 0.9877
Aero-Ga2O3-Au (UV) 0.7192 0.9588

ZnO (UV) 0.1270 0.9888

MB (vis) 0.0024 0.9803
Aero-Ga2O3 (vis) 0.0014 0.5090

Aero-Ga2O3-Pt (vis) 0.0028 0.9502
Aero-Ga2O3-Au (vis) 0.0033 0.9760

ZnO (vis) 0.0310 0.9930

As mentioned above, two mechanisms are expected to contribute to the enhancement
of photocatalytic activity of semiconductors by noble metal functionalization: namely, the



Materials 2021, 14, 1985 10 of 13

extension of the light absorption region by surface plasmon effects and the suppression
of charge recombination due to carrier separation at the metal-semiconductor Schottky
contact. The surface plasmon resonance frequencies of gold nanoparticles and films
embedded in various semiconductor matrices were found to be in the spectral range
of 500–700 nm [54–59]. The resonance frequencies of platinum are also in the visible light
spectrum [60,61]. However, according to very low catalytic activity under visible light
illumination of aero-Ga2O3 functionalized with Au or Pt, as deduced from Figure 6b, one
can conclude that light absorption is not extended to the visible light spectrum, indicating
that the plasmonic effects of Au or Pt coatings are negligible in the prepared aero-Ga2O3
catalyst. On the contrary, the improvement of the catalytic performance upon Pt deposition,
and especially by Au functionalization, may come from effective carrier separation at the
Schottky contact formed at the semiconductor metal interface, especially when the noble
metal is in the form of dots [62].

According to previously published data, the work function of Au was estimated to be
of 5.2–5.3 eV [63,64], while the reported value for Pt was in the range of 5.6–5.9 eV [3,64]. A
value of 4.0 eV was reported for the electron affinity of Ga2O3 leading to the formation of a
Schottky barrier height of 1.2 eV at the Au/Ga2O3 interface according to the Schottky–Mott
rule [3,5,63,65]:

ΦB = ΦAu − χ (3)

where ΦB is the barrier height, ΦAu is the Au work function, and χ is the electron affinity
of β-Ga2O3.

The Schottky barrier height for the Pt/Ga2O3 interface should be a little higher. How-
ever, the real Schottky barrier height is also affected by the Fermi-level pinning at the
metal-semiconductor interface and by the chemical disorder, so that the measured value of
the barrier height usually differs from the calculated one. For instance, the measured value
of Schottky barrier height was in the range of 1.0–1.7 eV for Au [3,63–65], and 1.0–1.6 eV for
Pt [3,64–66]. Thus, considering the obtained photodegradation results with aero-Ga2O3-Au
and aero-Ga2O3-Pt catalysts, we conclude that the aero-Ga2O3 composite with Au provides
higher catalytic activity, which is most likely due to the higher Schottky barrier and carrier
blocking for Au, as compared to that with Pt. The better quality of the contact ensures more
efficient charge separation at the interface and suppression of free carrier recombination,
which in its turn results in a higher photocatalytic activity of the Ga2O3-Au photocatalysts.
The performance of this photocatalyst is similar to that obtained with the initial ZnO
microstructured template, but the aero-Ga2O3 material is much more stable in contact with
various chemicals compared to ZnO [67,68].

The catalysts presented in this study have been tested for several runs. After the first
test, the catalysts were centrifuged, washed in DI, centrifuged again, and dried at 100 ◦C in
air, and tests were repeated in a new run maintaining the catalyst concentration in solvent
of 0.4 mg/mL. It was observed that material keeps its performance on the fair level after
being reused.

4. Conclusions

The results of this study demonstrate the potential of the newly developed aero-
Ga2O3-Au hybrid structure for environmental applications. Good crystallinity of the
β-Ga2O3 phase of microtubes constituting the aero-Ga2O3 architecture was demonstrated
by Raman scattering spectroscopy. The scheme of energy bands and electron transitions
in aero-Ga2O3 deduced from CL spectra suggests the existence of effective channels for
UV excitation with the 365 nm line of the aero-Ga2O3 matrix with the subsequent for-
mation of (•OH) and (O2

•−) free radicals in water, which are strong oxidants that are
able to oxidize the MB dye. The photocatalytic activity of the pure aero-Ga2O3 material
is behind the performances of the initial ZnO microtetrapods-based template, while the
functionalization of the aero-Ga2O3 with noble metals results in spectacular enhancement
of the photocatalytic performances of this new material. The performed analysis suggests
that the main contribution to this enhancement comes from the formation of Schottky
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barriers at the Au or Pt /aero-Ga2O3 interface leading to effective separation of the excited
free carriers and suppression of their recombination. Although the performance of the
developed photocatalyst is at the level inherent to the initial ZnO template, the aero-Ga2O3
functionalized with noble metals represents a promising composite material exhibiting
high chemical stability and possessing a unique spatial architecture.
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