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Abstract

Transient ischemic attack (TIA), an important risk factor for stroke, is associated with

widespread disruptions of functional brain architecture. However, TIA-related struc-

tural alterations are not well established. By analyzing structural MRI data from 50 TIA

patients versus 40 healthy controls (HCs), here we systematically investigated TIA-

related morphological alterations in multiple cortical surface-based indices (cortical

thickness [CT], fractal dimension [FD], gyrification index [GI], and sulcal depth [SD]) at

multiple levels (local topography, interregional connectivity and whole-brain network

topology). For the observed alterations, their associations with clinical risk factors and

abilities as diagnostic and prognostic biomarkers were further examined. We found

that compared with the HCs, the TIA patients showed widespread morphological

alterations and the alterations depended on choices of morphological index and ana-

lytical level. Specifically, the patients exhibited: (a) regional CT decreases in the trans-

verse temporal gyrus and lateral sulcus; (b) impaired FD- and GI-based connectivity

mainly involving visual, somatomotor and ventral attention networks and inter-

hemispheric connections; and (c) altered GI-based whole-brain network efficiency and

decreased FD-based nodal centrality in the middle frontal gyrus. Moreover, the

impaired morphological connectivity showed high sensitivities and specificities for dis-

tinguishing the patients from HCs. Altogether, these findings demonstrate the emer-

gence of morphological index-dependent and analytical level-specific alterations in

TIA, which provide novel insights into neurobiological mechanisms underlying TIA and

may serve as potential biomarkers to help diagnosis of the disease. Meanwhile, our

findings highlight the necessity of using multiparametric and multilevel approaches for

a complete mapping of cerebral morphology in health and disease.
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1 | INTRODUCTION

According to the WHO guidelines, transient ischemic attack (TIA) is

defined as a sudden onset of neurological symptoms due to vascular

etiology that resolve within 24 hr (Albers et al., 2002; Easton

et al., 2009). Although the episodes of symptoms are transient, persis-

tent cognitive impairments occur to patients with TIA in multiple

domains (Bakker et al., 2003; Sachdev et al., 2004; Su et al., 2018).

Moreover, patients with TIA have a high risk of suffering from stroke

(Giles & Rothwell, 2007). Therefore, characterizing structural and

functional brain alterations in TIA is of great significance not only for

understanding neurobiological substrate of TIA but also for early diag-

nosis and intervention of stroke.

Advanced multimodal MRI techniques provide powerful tools to

study structural and functional alterations in various brain disorders

in vivo. With respect to TIA, existing studies mainly employ resting-

state functional MRI to explore brain alterations in patients. It has

been shown that TIA is associated with disrupted functional brain

architecture at multiple levels, including disturbances in local neural

activity (Guo et al., 2014; Lv, Li, et al., 2019), breakdown of inter-

regional functional connectivity (Li et al., 2013; Zhu et al., 2019), and

disruption of large-scale network topology (Lv, Han, et al., 2019).

Regarding TIA-related structural alterations, there is only one study so

far that examined gray matter volume in patients via a voxel-based

morphometry analysis of structural MRI (sMRI) data (Li et al., 2015).

However, volumetric measures derived from the voxel-based

morphometry approaches are thought to reflect a composite of

multiple morphological indices (Hutton, Draganski, Ashburner, &

Weiskopf, 2009; Voets et al., 2008), and thus may overlook specific

morphological alterations in TIA.

The human cerebral cortex is a highly complex, folded structure,

whose morphological architecture can be captured from different

aspects through various morphological indices, such as cortical thick-

ness (CT), fractal dimension (FD), gyrification index (GI), and sulcal

depth (SD). Moreover, previous studies have shown that different

morphological indices are associated with distinct genetic influences

(Panizzon et al., 2009; Strike et al., 2019; Winkler et al., 2010) and

exhibit differential developmental and aging trajectories (Hogstrom,

Westlye, Walhovd, & Fjell, 2013; Raznahan et al., 2011; Wierenga,

Langen, Oranje, & Durston, 2014). These findings suggest that differ-

ent morphological indices are largely independent of each other.

Therefore, it is important to utilize multiple indices to provide a more

precise and specific characterization of morphological alterations in

TIA. Further, beyond local morphological architecture, numerous stud-

ies have shown that areas within the same neuroanatomical circuits

show morphological covariance across participants (Andrews,

Halpern, & Purves, 1997; Lerch et al., 2006), forming whole-brain

morphological covariance networks (Bassett et al., 2008; He, Chen, &

Evans, 2007). In particular, as recent methodology progresses, such

morphological covariance networks can be mapped at the individual

level (Kong et al., 2015; Tijms, Series, Willshaw, & Lawrie, 2012;

Wang, Jin, Zhang, & Wang, 2016), which are able to account for inter-

individual variability in cognition and behavior and act as diagnostic

biomarkers for brain diseases (Chen et al., 2017; Li & Kong, 2017;

Seidlitz et al., 2018). With respect to TIA, however, it remains largely

unknown whether and how interregional morphological connectivity

and whole-brain morphological network organization are disrupted.

In this study, we aim to provide a comprehensive mapping of

morphological alterations in patients with TIA. To this end, four corti-

cal surface mesh-based indices (CT, FD, GI, and SD) were employed to

investigate morphological alterations in 50 patients with TIA versus

40 healthy controls (HCs) at the level of: (a) local topography by uni-

variate analysis of regional mean in each of 148 regions of interest

(ROIs); (b) interregional morphological connectivity via bivariate analy-

sis of morphological covariance between each pair of the 148 ROIs;

and (c) whole-brain morphological network organization through mul-

tivariate analysis of large-scale morphological covariance patterns

among the 148 ROIs. For the observed morphological alterations, we

further examined their associations with risk factors for TIA and their

potential as biomarkers to distinguish the patients from controls and

predict ischemic attacks of the patients during 1-year follow-up.

2 | MATERIALS AND METHODS

2.1 | Participants

Following the WHO guidelines, we recruited 51 patients with TIA

who had transient (i.e., less than 24 hr) neurologic symptoms due to a

possible vascular etiology as evaluated by experienced clinical neurol-

ogists. The patients were from the Department of Neurology, Anshan

Changda Hospital from April 2015 to June 2016. Patients with hem-

orrhage, leukoaraiosis, epilepsy, migraine or a history of psychiatric

disease were excluded from this study. For each patient, we recorded

the following information: (a) history of TIA and stroke; (b) risk factors

including hypertension, diabetes mellitus, coronary artery disease, cur-

rent smoking, and drinking; (c) medications used before the MR scan-

ning; (d) in-hospital evaluation of arterial stenosis (carotid duplex

ultrasound and MR angiography), atrial fibrillation (electrocardiogram)

and brain infarcts (diffusion-weighted imaging and T2-FLAIR); and

(e) 1-year telephone follow-up of stroke and/or TIA. Based on the

methods described previously, an score which considered age, blood

pressure, clinical features, duration of symptoms, and history of diabe-

tes (ABCD2) was obtained for each patient to evaluate the risk for

subsequent stroke (Johnston et al., 2007). One patient was excluded

due to loss of the structural image, leaving 50 TIA patients (39 males;

age = 57.340 ± 9.768 years) in the final analyses. Out of the

50 patients, 4 (8%) experienced a history of stroke, 25 (50%) had a

history of TIA, 6 (12%) had white matter hyperintensity in diffusion-

weighted images, and 9 (18%) had intracranial large-vessel stenosis or

carotid artery stenosis. The transient symptoms of the patients

included difficulties moving left (21 patients, 43.8%) or right

(18 patients, 37.5%) side of the body, numbness in the left limb

(3 patients, 6.3%), sudden loss of vision (6 patients, 12.5%), mouth

droop (1 patient, 2.1%) and speaking difficulty (21 patients, 43.8%). In

addition, 40 age- and sex-matched HCs (29 males;
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age = 55.300 ± 7.936 years) were recruited from the local community

via advertisements. The HCs had no physical diseases or history of

psychiatric or neurologic diseases. This study was approved by the

Ethics Committee of the Center for Cognition and Brain Disorders,

Hangzhou Normal University. Written informed consent was obtained

from each participant.

2.2 | Clinical procedure

All participants completed a series of physiological and biochemical

tests within 24 hr before the MR scanning, including blood systolic

pressure, blood diastolic pressure, blood sugar level, cholesterol, tri-

glycerides, high-density lipoprotein cholesterol and low-density lipo-

protein cholesterol. In addition, all participants underwent the mini-

mental state examination (MMSE) to evaluate global cognition

(Schultz-Larsen, Lomholt, & Kreiner, 2007).

2.3 | sMRI data acquisition

All MRI data for both the TIA patients and HCs were acquired using a

3.0 T scanner (MR750, GE Medical Systems, Waukesha, WI) at

Anshan Changda Hospital. To minimize the effects of scanner states

and body rhythms of participants as much as possible, the MR scan-

ning was performed at around 3:00 p.m.–5:00 p.m. for most partici-

pants (46 out of the 51 patients and 35 out of the 40 HCs). The MR

scanning was performed from 6 hr to 16 days (2.673 ± 2.978 days)

after the last TIA for all patients. sMRI data were acquired using a 3D-

MPRAGE sequence: 176 sagittal slices; repetition time = 8,100 ms;

echo time = 3.1 ms; matrix = 256 × 256; field of

view = 256 × 256 mm2; and thickness/gap = 1.0/0 mm. This session

lasted for about 5 min.

2.4 | sMRI data preprocessing

The sMRI data were processed with Computational Anatomy Toolbox

(CAT12, http://www.neuro.uni-jena.de/cat) based on Statistical Para-

metric Mapping software (SPM12, http://www.fil.ion.ucl.ac.uk/spm/

softwarespm12). CAT12 offers a volume-based approach for estimating

regional CT without extensive reconstruction of cortical surface and has

been proved to be a fast and reliable alternative to FreeSurfer (Righart

et al., 2017; Seiger, Ganger, Kranz, Hahn, & Lanzenberger, 2018).

Briefly, individual structural images were first segmented into gray

matter, white matter and cerebrospinal fluid. Then, estimation of CT

and reconstruction of central surface were performed based on a

projection-based thickness method (Dahnke, Yotter, & Gaser, 2013).

Specifically, this method estimates white matter distance and projects

the local maxima to other gray matter voxels using a neighbor relation-

ship described by the white matter distance (Dahnke et al., 2013). The

projection-based thickness method could handle the partial volume

information, sulcal blurring, and sulcal asymmetries. The reconstruction

of the central surface uses topology correction (Yotter, Dahnke,

Thompson, & Gaser, 2011) and spherical mapping (Yotter, Thompson, &

Gaser, 2011). In addition, CAT12 allows estimation of other morpho-

logical indices of FD, GI, and SD, which were also calculated for each

participant with default parameter settings. The calculation of CT, FD,

GI, and SD was performed in subject native surface space. Finally, the

resultant morphological maps were resampled into the common

fsaverage template and smoothed using a Gaussian kernel (15-mm full

width at half maximum for CT and 25-mm full width at half maximum

for the others). The usage of larger filter sizes for the FD, GI, and SD

maps is due to the underlying nature of these folding measures that

reflect contributions from both sulci and gyri, and thus the filter size

should exceed the distance between a gyral crown and a sulcal fundus.

2.5 | Construction of individual morphological
brain networks

In this study, we constructed four large-scale morphological brain net-

works for each participant based on their four vertexwise surface

maps of CT, FD, GI, and SD. A brain network is comprised of a collec-

tion of nodes linked by edges, wherein nodes represent brain regions

and edges represent interregional connectivity. The method used to

construct single-subject morphological brain networks has been

shown to have high both short-term and long-term test–retest reli-

ability in previous studies (Kong et al., 2015; Wang et al., 2016).

2.5.1 | Node definition

To define network nodes, we utilized a widely used surface atlas

(Destrieux, Fischl, Dale, & Halgren, 2010) to parcel the cerebral corti-

cal surface into 148 ROIs, with each ROI representing a node.

2.5.2 | Edge definition

To estimate network edges, we calculated morphological connectivity

between any pair of ROIs using a method similar to our previous study

(Wang et al., 2016). First, for each morphological index we extracted

all values within each ROI in the surface-based space, which were used

to estimate regional probability density functions using a normal kernel

function (MATLAB function, ksdensity). After converting the resultant

probability density functions to probability distribution functions

(PDFs), we calculated the Jensen–Shannon divergence (JSD) between

any pair of PDFs, a variation of the Kullback–Leibler divergence (KLD).

Formally, for two PDFs P and Q, the KLD and JSD are calculated as:

KLD PjjQð Þ=
Xn

i=1

P ið Þlog P ið Þ
Q ið Þ and JSD PjjQð Þ= 1

2
KLD PjjMð Þ+ 1

2
KLD QjjMð Þ,

LV ET AL. 2047

http://www.neuro.uni-jena.de/cat
http://www.fil.ion.ucl.ac.uk/spm/softwarespm12
http://www.fil.ion.ucl.ac.uk/spm/softwarespm12


where M= 1
2 P+Qð Þ, and n is the number of sample points (256 in the

current study). Finally, the morphological connectivity between two

regions was defined as the square root of the JSD, followed by a sub-

traction from 1. This resulted in four 148×148 morphological con-

nectivity matrices for each participant.

2.5.3 | Threshold selection

For the morphological connectivity matrices derived above, a sparsity-

based thresholding procedure was employed to convert each of them

to a set of binary networks. Sparsity is defined as the ratio of the

number of actual edges divided by the maximum possible number of

edges in a network. Thus, the sparsity-based thresholding procedure

ensures the same number of edges for the resultant networks across

participants at a fixed sparsity. Due to the lack of a conclusive method

to determine a single sparsity, we repeatedly thresholded each mor-

phological connectivity matrix over a consecutive sparsity range of

[0.04 0.4] with an interval = 0.02. This sparsity range guarantees that

the resultant networks have sparse properties (Achard, Salvador,

Whitcher, Suckling, & Bullmore, 2006; Wang et al., 2009) and are esti-

mable for the small-world attributes (Watts & Strogatz, 1998).

2.6 | Network analysis

For each morphological brain network derived above

(90 participants × 4 morphological indices × 18 sparsity levels), we

calculated four efficiency measures (local efficiency, global efficiency,

normalized local efficiency, and normalized global efficiency) to char-

acterize their global organization and five nodal centrality measures

(degree, efficiency, betweenness, eigenvector, and page-rank) to cap-

ture local roles of each node within them.

2.6.1 | Network efficiency measures

Global efficiency reflects the ability of parallel information processing

of a network, while local efficiency measures the fault tolerance of a

network (Latora & Marchiori, 2001). To determine whether morpho-

logical brain networks were topologically organized into small-world

organization, global efficiency and local efficiency were normalized by

the corresponding mean derived from 100 random networks that pre-

served the same degree distributions as the real brain networks

(Maslov & Sneppen, 2002; Milo et al., 2002). Typically, a network is

said to be small world if it has a normalized local efficiency larger than

1 and a normalized global efficiency approximately equal to 1 (Wang

et al., 2009; Watts & Strogatz, 1998).

2.6.2 | Nodal centrality measures

Nodal degree quantifies the overall connectivity of a node with other

nodes in a network. Nodal efficiency reflects the ability of a node to

propagate information with other nodes in a network (Achard &

Bullmore, 2007). Nodal betweenness captures the influence of a node

over information flow among other nodes in a network

(Freeman, 1977). Nodal eigenvector centrality is able to quantify the

importance of a node by taking into account not only the degree but

also the eigenvector centrality of its neighbors in a network

(Bonacich, 1972). As a variant of eigenvector centrality, nodal page-

rank centrality introduces a small probability of random damping

(i.e., damping factor) to handle walking traps in a network (Boldi, San-

tini, & Vigna, 2009). For each type of morphological brain network of

each group, a node was identified as a hub if its average across partici-

pants was at least 1 SD greater than the average across all participants

and nodes in at least one of the five nodal centrality measures (Tian,

Wang, Yan, & He, 2011).

Notably, given that each network measure was a curve or func-

tion of sparsity, we calculated the area under the curve (i.e., the inte-

gral over sparsity range) for each network measure of each participant

to provide a threshold-independent summary scalar for the hub iden-

tification and subsequent statistical analyses.

2.7 | STATISTICAL ANALYSIS

2.7.1 | Between-group differences in local
topography (intraregional mean)

A nonparametric permutation test was used to inter between-group

differences in each morphological index in a ROI-wise manner. Briefly,

for each morphological index of each ROI, we initially calculated the

between-group difference of the mean values. An empirical distribu-

tion of the difference was then obtained by randomly reallocating all

of the values into two groups and recomputing the mean differences

between the two randomized groups (10,000 permutations). The 95th

percentile point of the empirical distribution was used as a critical

value in a one-tailed test of whether the observed group difference

could occur by chance. For each morphological index, a Bonferroni

method was employed to correct for multiple comparisons across the

148 ROIs. Prior to the permutation tests, the general linear model was

used to remove effects of age and sex from the mean of each mor-

phological index within each ROI. In detail, the mean of each morpho-

logical index within each ROI was treated as a dependent variable,

and age and sex were treated as independent variables in the general

linear model. The residuals from the model were used for the permu-

tation tests. For significant between-group differences, the effect size

(i.e., Cohen's d) was calculated as the difference between the means

of two groups divided by the pooled SD (Cohen, 1969; Cohen, 1987)

based on age- and sex-adjusted data.

2.7.2 | Between-group differences in interregional
morphological connectivity

We employed a network-based-statistic approach (Zalesky, Fornito, &

Bullmore, 2010) to localize the regional pairs showing altered
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morphological connectivity in TIA. Briefly, a t statistic matrix was first

derived by performing two-sample t test for each connection between

the two groups. Analogous to comparisons of local topography, the

general linear model was used to remove effect of age and sex from

morphological connectivity between each pair of regions before the

two-sample t tests. An initial significance threshold (i.e., p < .001) was

then applied to screen suprathreshold links, among which all con-

nected components and their associated sizes (i.e., the number of

edges) were determined. Subsequently, a null distribution of compo-

nent size was empirically derived for each connected component

using a nonparametric permutation approach (10,000 permutations).

Finally, the corrected p-value for a connected component with a size

of M was determined by calculating the proportion of the 10,000 per-

mutations for which the maximal component size was larger than M.

2.7.3 | Between-group differences in whole-brain
morphological network measures

Between-group differences in global and nodal network measures

were also inferred using nonparametric permutation tests. For each

type of morphological brain networks, the Bonferroni method was

used to separately correct for multiple comparisons across 4 global

measures and across 148 nodes for each nodal centrality measure.

Again, effects of age and sex were removed via the general linear

model, and the Cohen's d was calculated for any measures showing

significant between-group differences.

2.7.4 | Relationship between morphological
alterations and clinical variables in TIA

Kolmogorov–Smirnov tests were first employed to test the normality

of metrics showing TIA-related alterations and clinical variables

(ABCD2 score, blood systolic pressure, blood diastolic pressure, blood

sugar level, cholesterol, triglycerides, high-density lipoprotein choles-

terol, and low-density lipoprotein cholesterol) of the patients. For

regions, edges and network measures showing TIA-related morpho-

logical alterations, Pearson or Spearman partial correlation analyses

were then conducted to assess their associations with clinical vari-

ables with age and sex as covariates of noninterest.

2.7.5 | Differentiating the TIA patients from HCs

For regions, edges and network measures showing TIA-related morpho-

logical alterations, we plotted the receiver operating characteristic

(ROC) curves to test whether they might serve as potential biomarkers

for differentiating the TIA patients from controls. Specifically, for each

metric showing TIA-related alterations, many different thresholds were

used to classify each participant into either patient or control group.

For each threshold, the fraction of correctly identified patients

(i.e., sensitivity or true positive rate) and the fraction of correctly

identified controls (i.e., specificity or true negative rate) were calculated.

Finally, a cut-off point that simultaneously optimized the sensitivity and

specificity was determined and the classification accuracy at the cut-off

point was calculated as the fraction of correctly identified participants

(both controls and patients) in the total samples. These procedures

were performed using public codes (https://github.com/dnafinder/roc).

In addition to plotting the ROC curves based on one-dimensional

features, we utilized the support vector machine (SVM) method which

can handle multivariate features. Specifically, we separately trained a

linear SVM classifier based on features derived from different combi-

nations of morphological index and analytical level as well as all fea-

tures of local topography, interregional connectivity and whole-brain

network topology derived from CT, FD, GI, and SD. The accuracies of

the classifiers were evaluated via 10-fold cross-validation.

2.7.6 | Exploratory analysis of follow-up ischemic
attacks in the TIA patients

For regions, edges and network measures showing TIA-related mor-

phological alterations, we further compared their differences between

the patients suffering from ischemic attacks in 1 year after the MR

scanning and those without follow-up ischemic attacks (permutation

tests). For significant between-group differences (corrected by the

Bonferroni method across all metrics showing TIA-related morpholog-

ical alterations), the ROC analyses were further conducted to test

their capabilities for predicting follow-up ischemic attacks in TIA.

2.8 | Validation analysis

2.8.1 | Effects of TIA history

In this study, some patients had a history of TIA before the last ische-

mic attack. To evaluate the effect of TIA history on the observed TIA-

related morphological alterations, we compared their differences

between patients with more than an ischemic attack (25) and patients

who suffered first-time ischemic attack (25) via nonparametric permu-

tation tests (10,000 times).

2.8.2 | Effects of symptom durations

To test whether the observed TIA-related morphological alterations

were dependent on symptom durations of the patients, we calculated

Spearman correlations between the morphological alterations and

symptom durations of the last TIA attack for the patients.

2.8.3 | Effects of brain lesions

Six patients were found to have white matter hyperintensities in our

study (Supplementary Figure 1). To rule out the effects of lesions on
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our findings, we reanalyzed between-group differences after exclud-

ing the six patients with brain lesions.

3 | RESULTS

3.1 | Demographic and clinical characteristics of
participants

Demographic and clinical information of all participants are summa-

rized in Table 1. There were no significant differences in age

(p = .288), sex (p = .546), or MMSE scores (p = .170) between the TIA

patients and HCs. Compared with the HCs, the TIA patients exhibited

significantly higher blood systolic pressure (p < .001), diastolic pres-

sure (p = .003), blood sugar level (p < .001), total cholesterol (p = .043)

and low-density lipoprotein cholesterol (p = .005).

3.2 | TIA-related alterations in local morphological
topography

Compared with the HCs, the TIA patients exhibited significant alter-

ations in regional CT (p < .05, Bonferroni corrected), as character-

ized by decreases in the left anterior transverse temporal gyrus

(p = .0001, Cohen's d = 0.914), the left posterior ramus of the lateral

sulcus (p = .0001, Cohen's d = 0.829) and the right vertical ramus of

the anterior segment of the lateral sulcus (p = .0001, Cohen's

d = 1.014) (Figure 1). No regions were observed to show TIA-

related alterations in regional FD, GI or SD (p > .05, Bonferroni

corrected).

Of note, no significant between-group differences were found

when the multiple comparison correction was performed across all

tests (592 = 4 morphological indices × 148 regions) (p > .05,

Bonferroni corrected).

TABLE 1 Demographics and clinical characteristics of all participants

TIA (n = 50) HCs (n = 40) p-Value

Age (years) 57.340 ± 9.768 55.300 ± 7.936 .288a

Sex, No. (M/F) 39/11 29/11 .546b

MMSEc 29.240 ± 2.560 28.579 ± 1.671 .170a

Blood systolic pressure (mmHg)d 145.120 ± 20.655 127.188 ± 19.730 <.001a

Blood diastolic pressure (mmHg)d 86.800 ± 10.388 79.531 ± 10.680 .003a

Blood sugar level (mmol/L)e 6.263 ± 2.077 5.108 ± 0.748 .001a

Total cholesterol (mmol/L)e 5.232 ± 1.114 4.741 ± 1.023 .043a

Triglycerides (mmol/L)e 1.613 ± 0.953 1.875 ± 1.341 .298a

HDL-C (mmol/L)e 1.107 ± 0.234 1.053 ± 0.294 .350a

LDL-C (mmol/L)e 3.306 ± 0.956 2.697 ± 0.917 .005a

ABCD2 scores, median (min–max) 4 (2–6)

Smoking, no. (%) 32 (64%) 19 (47.5%) .116b

Drinking, No. (%) 20 (40%) 20 (50%) .343b

Hypertension, No. (%) 24 (48%) 7 (17.5%) .002b

Diabetes, No. (%) 8 (16%) 0 (0%) .008b

Coronary artery disease, No. (%) 2 (4%) 0 (0%) .201b

Atrial fibrillation, No. (%) 1 (2%)

Medication

Antiplatelets, No. (%) 50 (100%)

Statins, No. (%) 2 (4%)

White matter hyperintensity, No. (%) 6 (12%)

Vessel stenosis, No. (%) 9 (18%)

TIA/stroke attack in 1-year follow-up, No. (%)f 12 (24%)

Note: Data are presented as mean ± SD unless stated otherwise.

Abbreviations: F, female; HCs, healthy controls; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; M, male; MMSE,

mini-mental state examination; TIA, transient ischemic attack.
ap-Values were obtained using two-sample two-sided t tests.
bp-Values were obtained using Pearson chi-square tests.
cData were missing for two controls.
dData were missing for eight controls.
eData were missing for six controls.
fData were missing for four patients.
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3.3 | TIA-related alterations in interregional
morphological connectivity

Two connected components were identified to exhibit decreased

morphological connectivity in the TIA patients in comparison with the

HCs: one was derived from the FD-based morphological networks

that included 29 nodes and 32 edges (p = .009, corrected), and the

other was derived from the GI-based morphological networks that

included 17 nodes and 18 edges (p = .046, corrected) (Figure 2).

According to the functional connectivity networks proposed by Yeo

et al. (2011), 18 out of the 29 nodes (62.1%) included in the FD-based

component were involved in visual, somatomotor, ventral attention

and default mode networks, while 14 out of the 17 nodes (82.4%)

included in GI-based component were involved in visual,

somatomotor, and ventral attention networks (Figure 2). For edges

included in the two components, the majority was interhemispheric

connections (FD-based component: 20/32, 62.5%; GI-based compo-

nent: 10/18, 52.6%). No components were found to show TIA-related

morphological connectivity alterations for neither CT- nor SD-based

morphological networks.

3.4 | TIA-related alterations in whole-brain
morphological network measures

3.4.1 | Global network efficiency

First, all types of morphological brain networks exhibited highly effi-

cient small-world organization in both groups, as characterized by

larger-than-1 normalized local efficiency and approximately-equal-

to-1 normalized global efficiency (Figure 3). Nevertheless, between-

group comparisons revealed significant alterations in quantitative

values of network efficiency in the patients (p < .05, Bonferroni

corrected). Specifically, compared with the HCs, the TIA patients

exhibited significant increases in local efficiency (p = .007, Cohen's

d = 0.590), global efficiency (p = .006, Cohen's d = 0.568), and nor-

malized global efficiency (p = .009, Cohen's d = 0.567), and

decreases in normalized local efficiency (p = .007, Cohen's d = 0.500)

for GI-based morphological brain networks (Figure 4). No TIA-

related network efficiency alterations were observed for CT-, FD-,

or SD-based morphological brain networks (p > .05, Bonferroni

corrected).

F IGURE 1 Decreased regional cortical thickness in transient ischemic attack (TIA). Compared with the healthy controls (HCs), the TIA
patients exhibited significant decreases in regional cortical thickness (CT) in the left anterior transverse temporal gyrus, the left posterior ramus of
the lateral sulcus and the right vertical ramus of the anterior segment of the lateral sulcus (p < .05, Bonferroni corrected)
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F IGURE 2 Impaired interregional morphological connectivity in transient ischemic attack (TIA). Compared with the healthy controls (HCs),
two connected components were identified to exhibit decreases in fractal dimension (FD)-based (a) and gyrification index (GI)-based
(b) morphological connectivity in the TIA patients. The components were mainly involved in regions of the visual, somatomotor, and ventral
attention networks, and were mainly composed of interhemispheric connections

F IGURE 3 Small-world organization of whole-brain morphological networks as a function of sparsity thresholds. Highly efficient small-world
organization was observed in all types of morphological brain networks of both groups as characterized by larger-than-1 normalized local
efficiency and approximately-equal-to-1 normalized global efficiency. HCs, healthy controls; TIA, transient ischemic attack; Eloc, local efficiency;
Eglob, global efficiency
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3.4.2 | Nodal centrality

We identified 41, 38, 38, and 34 hubs in the HCs, and 44, 40, 35, and

34 hubs in the TIA patients for the CT-, FD-, GI-, and SD-based mor-

phological brain networks, respectively (Figure 5). The hubs over-

lapped to a great extent between the two groups with 31, 22, 24, and

30 hubs common to the HCs and TIA patients, resulting in dice coeffi-

cients of 0.729, 0.564, 0.658, and 0.882 for the CT-, FD-, GI-, and

SD-based networks, respectively. According to the functional connec-

tivity networks proposed by Yeo et al. (2011), the distribution of

nodes in these networks was consistent between two groups for the

CT-based (r = .982, p = .001), GI-based (r = .807, p = .020), and SD-

based (r = .990, p = .005) networks except for FD-based networks

(r = .690, p = .063) (Figure 6). In addition, we noted that the hubs were

involved in more sulci than gyri for the CT-, FD-, and SD-based net-

works in both the HCs (CT: 27 vs. 11; FD: 23 vs. 10; SD: 22 vs. 12)

and TIA patients (CT: 30 vs. 9; FD: 23 vs. 14; SD: 24 vs. 10), while the

numbers of sulci and gyri in hubs were similar for GI-based network

(HCs: 18 vs. 17; TIA: 18 vs. 16) (Figure 5).

Quantitative comparisons revealed that relative to the HCs, the

TIA patients showed significant alterations in nodal centrality only for

the FD-based morphological brain networks (p < .05, Bonferroni

corrected), as characterized by decreased nodal degree (p = .0002,

Cohen's d = 0.918), efficiency (p = .0002, Cohen's d = 0.923), eigen-

vector (p = .0001, Cohen's d = 0.932), and page-rank (p = .0001,

Cohen's d = 0.882) in the right middle frontal gyrus (Figure 7). No

regions exhibited significant between-group differences in any nodal

centrality measures for the CT-, GI-, or SD-based morphological brain

networks (p > .05, Bonferroni corrected).

Of note, the reported results did not survive when the multiple

comparison correction was performed across all tests (2,932 = 4 mor-

phological indices × 4 global measures + 4 morphological indices × 5

nodal centrality measures × 148 nodes) (p > .05, Bonferroni corrected).

3.5 | Brain-clinical relationships in the TIA patients

For the regions, edges and network measures showing TIA-related

morphological alterations, no significant correlations were found with

any clinical variable in the patients (p > .05, Bonferroni corrected; Sup-

plementary Table 1).

3.6 | Sensitivity and specificity of morphological
metrics in classification of TIA

For the regions, edges and network measures showing TIA-related

morphological alterations, the mean strength of decreased morpho-

logical connectivity exhibited the highest accuracy for distinguishing

the TIA patients from HCs. Specifically, 44 out of the 50 patients

with TIA and 34 out of the 40 HCs were classified correctly for the

mean connectivity strength of the FD-based component (accu-

racy = 86.7%, sensitivity = 88.0%, specificity = 87.5%, AUC = 0.939,

p < .001), and 47 out of the 50 patients and 34 out of the 40 HCs

were classified correctly for the mean connectivity strength of the

GI-based component (accuracy = 90.0%, sensitivity = 94.0%,

specificity = 85.0%, AUC = 0.934, p < .001) (Figure 8). All the other

measures exhibited relatively poor discriminant performance

(AUC <0.8).

For the SVM-based analyses, poor discriminant performance was

found regardless of the features used (accuracy <0.7; Supplementary

Table 2).

3.7 | Effect of follow-up ischemic attacks in the
TIA patients

For the regions, edges and network measures showing TIA-related

morphological alterations, no significant differences were found

between the patients suffering from ischemic attacks in 1 year after

the MR scanning and those without follow-up ischemic attacks

(p > .05, Bonferroni corrected; Supplementary Table 3).

3.8 | Results of validation analyses

For the regions, edges and network measures showing TIA-related

morphological alterations, no significant differences were found

F IGURE 4 Altered network efficiency in transient ischemic attack (TIA). Compared with the healthy controls (HCs), the TIA patients exhibited
significant increases in local efficiency, global efficiency and normalized global efficiency, and decreases in normalized local efficiency for
gyrification index (GI)-based morphological brain networks
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between the patients with more than an ischemic attack and the

patients who suffered first-time ischemic attack (p > .05, Bonferroni

corrected), no significant correlations were found with the symptom

durations of the last TIA attack for the patients (p > .05, Bonferroni

corrected), and largely comparable patterns were observed after

excluding the six patients with brain lesions (Supplementary

Tables 4–6).

4 | DISCUSSION

In the current study, we employed four surface mesh-based indices to

investigate morphological alterations in patients with TIA at three

levels. We found widespread morphological alterations in TIA and the

alterations were dependent on the choices of morphological index

and analytical level. These findings provide evidence for the

F IGURE 5 Hubs in whole-brain
morphological networks. Nodal size
indicates the times a node was
identified as a hub among five
nodal centrality measures. HCs,
healthy controls; TIA, transient
ischemic attack
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emergence of profound morphological alterations in TIA, and highlight

the complementary nature of different morphological indices and ana-

lytical levels in completely characterizing cortical morphology in health

and disease.

First, for local morphological topography, reduced CT was

observed in the patients in the left anterior transverse temporal gyrus,

left posterior ramus of the lateral sulcus and right vertical ramus of

the anterior segment of the lateral sulcus. The temporal transverse

gyrus, known also as the Heschl gyrus, is situated on the superior tem-

poral gyrus at the upper surface of the temporal lobe and buried deep

in the lateral fissure of Sylvius (Simon et al., 2013). Previous studies

have indicated that the left anterior transverse temporal gyrus is asso-

ciated with auditory perception, music processing, language-related

cognition, speech execution and motor learning (Koelsch, 2005;

Sugata et al., 2020; Wensing et al., 2017). As a part of the inferior

parietal lobule, the left posterior ramus of the lateral sulcus is involved

in motor execution and pain perception (Du, Xiao, & Zuo, 2018; Hetu

et al., 2013; Yang, 2015). The right vertical ramus of the anterior seg-

ment of the lateral sulcus, which extends dorsally into the inferior

frontal gyrus, is related to time and pain perception (Meyer, Wil-

liams, & Eisenberger, 2015; Teghil et al., 2019). Given that patients

with TIA exhibit persistent cognitive impairments, including motor

execution, auditory perception and speech execution, we speculate

that the decreased CT in these three regions may, at least partially,

contribute to these cognitive deficits in TIA.

Second, for interregional morphological connectivity, decreases

were observed in the patients for FD- and GI-based morphological

brain networks. Moreover, the decreases were mainly involved in

interhemispheric connections. Impaired interhemispheric connectivity

has been previously reported in patients with stroke and TIA for func-

tional brain networks (Lv, Han, et al., 2019; Wang et al., 2010). Thus,

our findings of disrupted interhemispheric morphological connectivity

may be structural substrate of the impaired interhemispheric func-

tional connectivity in the disease. Interestingly, consistent with our

previous study (Lv, Han, et al., 2019), the decreased connectivity

exhibited excellent performance for differentiating the TIA patients

from HCs. These findings together indicate that impaired inter-

hemispheric connectivity may serve as a reliable biomarker for diagno-

sis of ischemic attacks.

Finally, for whole-brain network organization, we found efficient

small-world organization for all types of morphological brain networks

in both TIA patients and HCs. These results suggest the preservation

of an optimal organization of the patients' brains to support efficient

information transfer of both modular and distributed processing. Nev-

ertheless, quantitative comparisons revealed increased local and

global efficiency for GI-based morphological brain networks in the

F IGURE 6 Hub distribution in the context of functional subnetworks. Similar hub distributions were observed between the transient

ischemic attack (TIA) patients and healthy controls (HCs) at the functional subnetwork level for cortical thickness (CT)-, gyrification index (GI)-,
and sulcal depth (SD)-based but not fractal dimension (FD)-based morphological brain networks. Numbers above the bars are dice coefficients of
hubs between the two groups
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patients with TIA. Local efficiency is predominantly associated with

short-range connections between nearby regions and reflects modular

information processing of the brain, whereas the global efficiency is

mainly associated with long-range connections and reflects integrative

information processing between and across remote regions of the

brain. Thus, the observed increases suggest impaired functional segre-

gation and integration in TIA. When normalized by random networks,

global efficiency remained increased, while local efficiency was

decreased in the patients. These findings suggest a shift toward ran-

dom configurations in the TIA patients' brains that favor lower local

coordination compared to the small-world organization and thus may

lead to less modularized and more distributed processing information

processing. It should be noted that the global network alterations

were contrary to our previous functional network study, which

observed decreased local, global and normalized global efficiency in

TIA (Lv, Han, et al., 2019). The disagreement may reflect distinct neu-

ral mechanisms that govern morphological and functional brain net-

work alterations in TIA. This speculation sounds plausible given poor

correspondence between morphological and functional brain net-

works (Reid et al., 2016). In the future, it is important to examine

common and specific network alterations in TIA by combining multi-

modal MRI techniques.

For regional organization of whole-brain morphological networks,

some frontal and occipital regions, such as inferior frontal gyrus and

anterior occipital sulcus, were consistently identified as hubs as char-

acterized by their central placement in the morphological brain net-

works in terms of different centrality measures. The regions are

consistent with previous findings from other modalities or approaches

of brain networks (van den Heuvel & Sporns, 2013). Moreover, the

hubs overlapped to a great extent between the TIA patients and HCs

regardless of the type of morphological brain networks. These findings

indicate the integrity of hub regions in contributing to overall network

function in TIA. Interestingly, we noted that the hubs involved more

sulci than gyri for the CT-, FD-, and SD-based morphological brain

networks in both groups, suggesting a greater role of sulci than gyri in

coordinating the networks. Analogous to largely intact hubs in TIA,

quantitative centrality comparisons of all nodes revealed only one

region (i.e., the right middle frontal gyrus) that showed decreases in

the patients for FD-based morphological brain networks. The

decrease may be implicated in cognitive impairments in TIA given the

F IGURE 7 Decreased nodal centrality in transient ischemic attack (TIA). Compared with the healthy controls (HCs), the TIA patients showed
decreased nodal degree, efficiency, eigenvector, and page-rank in the right middle frontal gyrus for fractal dimension (FD)-based morphological
brain networks (p < .05, Bonferroni corrected)
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involvement of the right middle frontal gyrus in attention and working

memory (Japee, Holiday, Satyshur, Mukai, & Ungerleider, 2015).

It should be emphasized that the TIA-related morphological alter-

ations seem to depend on the choices of morphological index and

analytical level based on which between-group comparisons were

conducted. Specifically, TIA-related regional morphological alterations

appeared to occur only in CT, while impaired interregional connectiv-

ity and disrupted whole-brain topology appeared to emerge only in

folding-based (i.e., FD and GI) morphological indices. These findings

suggest different mechanisms that drive the TIA-related morphologi-

cal alterations in CT and cortical folding. CT, which captures the lami-

nar structure of the cortex, reflects the size, density and arrangement

of cells (neurons, neuroglia, and nerve fibers) in the cerebral cortex

(Narr et al., 2005), while the folding-based indices represent the com-

plexity of the cerebral surface (Luders et al., 2006; Van Essen

et al., 2006; Yotter, Nenadic, Ziegler, Thompson, & Gaser, 2011). The

cortical folding may result from different neurodevelopmental rates of

expansion of superficial and deep cortical layers, which vastly

increases cortical surface area relative to the cranium. A previous

study has shown that cortical folding (indexed by local GI) and surface

area were positively related, both of which correlated negatively with

CT (Hogstrom et al., 2013), indicating increasing local gyrification and

arealization with decreasing CT. In addition to the different cellular

mechanisms, distinct genetic origins (Panizzon et al., 2009; Strike

et al., 2019; Winkler et al., 2010) and differential developmental/aging

trajectories (Hogstrom et al., 2013; Raznahan et al., 2011; Wierenga

et al., 2014) have been frequently reported between cortical folding/

surface area and CT. These distinct characteristics in cellular

mechanisms, genetic origins and developmental/aging trajectories

between CT and cortical folding may result in their different suscepti-

bilities to analytical levels in revealing TIA-related alterations. Of note,

evidence from previous computational modeling studies has shown

that increased cortical folding might be more efficient means to facili-

tate brain connectivity and functional development than increasing

the thickness of the cortex (Murre & Sturdy, 1995; Ruppin,

Schwartz, & Yeshurun, 1993). It is thus an interesting topic in the

future to explore whether TIA-related morphological alterations in

cortical folding can account for cognitive impairments of the patients

to a greater extent than those in CT.

This study has several limitations. First, this is a cross-sectional

study. It is important for future studies to trace longitudinal morpho-

logical changes as TIA progresses. Second, this study lacked cognitive

data for the patients. It would be interesting to investigate cognitive

relevance of the observed TIA-related morphological alterations in the

future. Third, given that TIA is an important risk factor for stroke, it is

interesting to explore trajectories of morphological alterations along

the continuum from TIA to stroke. Fourth, we did not collect the

information of TIA attack times for the patients with TIA history,

which may confound our findings. It is interesting for future studies to

examine the relationships between TIA attack times and morphologi-

cal brain architecture in the patients. Fifth, only four surface-based

morphological indices that were calculated with the CAT12 toolbox

were used in this study. A more complete mapping of TIA-related

morphological alterations can benefit from analyzing other morpho-

logical indices that are computationally available in different tool-

boxes, such as surface area and surface normal. Finally, our findings

F IGURE 8 Transient ischemic attack (TIA)-control classification. The mean strength of impaired fractal dimension (FD)-based (a) and
gyrification index (GI)-based (b) morphological connectivity in transient ischemic attack (TIA) distinguished the patients from healthy controls
(HCs) with high sensitivities and specificities. AUC, area under curve; ROC, receiver operating characteristic
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did not survive multiple comparison correction across all tests, and

thus may be false positive results. Presumably, this may be due to

small sample size of this study and/or large variation in the TIA attack

times of the patients. These two factors may also explain why we did

not observe significant correlations between TIA-related morphologi-

cal alterations and clinical variables of the patients and poor discrimi-

nant performance between the patients and controls by SVM (Cui &

Gong, 2018). Future studies are required to examine the reproducibil-

ity of our findings by recruiting more and clinically homogeneous

patients.

5 | CONCLUSIONS

This study demonstrates that the emergence of morphological index-

dependent and analytical level-specific morphological alterations in

TIA, which provide novel insights into mechanisms underlying TIA and

may serve as potential biomarkers to help early diagnosis of the dis-

ease. Meanwhile, our findings highlight the necessity of multi-

parametric and multilevel approaches for a complete mapping of

cerebral morphology in health and disease.
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