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Abstract

Background: Probabilistic assessments of clinical care are essential for quality care. Yet, machine learning, which
supports this care process has been limited to categorical results. To maximize its usefulness, it is important to find
novel approaches that calibrate the ML output with a likelihood scale. Current state-of-the-art calibration methods
are generally accurate and applicable to many ML models, but improved granularity and accuracy of such methods
would increase the information available for clinical decision making.
This novel non-parametric Bayesian approach is demonstrated on a variety of data sets, including simulated
classifier outputs, biomedical data sets from the University of California, Irvine (UCI) Machine Learning Repository, and a
clinical data set built to determine suicide risk from the language of emergency department patients.

Results: The method is first demonstrated on support-vector machine (SVM) models, which generally produce
well-behaved, well understood scores. The method produces calibrations that are comparable to the state-of-the-art
Bayesian Binning in Quantiles (BBQ) method when the SVM models are able to effectively separate cases and controls.
However, as the SVM models’ ability to discriminate classes decreases, our approach yields more granular and dynamic
calibrated probabilities comparing to the BBQ method. Improvements in granularity and range are even more dramatic
when the discrimination between the classes is artificially degraded by replacing the SVM model with an ad
hoc k-means classifier.

Conclusions: The method allows both clinicians and patients to have a more nuanced view of the output of
an ML model, allowing better decision making. The method is demonstrated on simulated data, various biomedical
data sets and a clinical data set, to which diverse ML methods are applied. Trivially extending the method to (non-ML)
clinical scores is also discussed.
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Background
Clinical decision support systems can be defined as any
software designed to directly aid in clinical decision mak-
ing in which characteristics of individual patients are
matched to a computerized knowledge base for the purpose
of generating patient-specific assessments or recommenda-
tions that are then presented to clinicians for consideration
[1, 2]. They are important in the practice of medicine be-
cause they can improve practitioner performance [1, 3–5],

clinical management [6, 7], drug dosing and medication
error rates [8–10], and preventive care [1, 11–16].
Machine learning (ML) gives computers the ability to

learn from, and make predictions on the data without
being explicitly programmed regarding the characteris-
tics of that data [17]. It should not be surprising, then,
that ML pervades clinical decision support, for two rea-
sons. First, clinical decision support systems are struc-
tured such that patients are represented as features
which can be used to map them to categories [18].
Second, healthcare data are complex - they can be
distributed, structured, unstructured, incomplete, and
not always generalizable.
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Although logistic regression is widely used in biomedi-
cine and it is highly recommended over ML approaches,
ML algorithms have been used in many modern clinical
decision support systems, ranging from predicting the
incidence of psychological distress in Alzheimer’s
Disease [19] to post-cardiac-arrest neuroprognostication
[20]. A Google Scholar search of “machine learning
biomedical” renders over 385,000 results.
However, there is a problem when ML algorithms are

used for clinical decision support. The output of a ML
model is usually a real number that is thresholded to
produce a binary output. This outcome appears to come
from a “black box”—a system module whose functioning
is opaque. Yet, caregivers and patients prefer probabilis-
tic statements [21–27]. But this “black box” approach
runs counter to the goal of improving the decision-
making power of physicians by providing more – not
less – information to make better decisions [28]. In
other words, “this patient has a 51% chance of develop-
ing heart disease” is more informative than a binary out-
put of: “a ML algorithm has indicated that this patient
belongs to a group of patients that develops heart
disease.”
The effect of expressing clinical results probabilistically

has been studied for decades. As early as 1977, Shapiro
[29] introduced a method for assessing the predictive skills
of physicians versus the results of “computerized proce-
dures” that had been designed to provide probabilistic pre-
dictions of various clinical outcomes. Hopkins [30]
suggested optimal plain-language descriptions of probabil-
ities in a clinical setting. Grimes and Schulz [31] found
that combining an accurate clinical diagnosis with likeli-
hood ratios from ancillary tests improved diagnostic ac-
curacy in a synergistic manner. Along these lines, Wells et
al. [32] and Kanis et al. [33] provided specific examples of
how probabilistic assessments of proximal deep vein
thrombosis and bone fracture risk, respectively, could
improve clinical outcomes.
Presenting results in probabilistic terms is as important

to patients as it is to clinicians. Doctors using the
decision-making probabilistic process will give informa-
tion to patients about risks and benefits, often in numer-
ical terms [34, 35]. Trevena et al. [36] found that patients
have a more accurate understanding of risk if probabilistic
information is presented as numbers rather than words,
even though some may prefer receiving words.
The goal of this article is then to ensure that both

patient and clinician can gain as much information as
possible, and in the most straightforward way possible,
from the output of an arbitrary ML algorithm by effect-
ively converting ML-generated outputs to probabilities.
The assumption here is that the clinician is uninterested
in a simple cut-off, but wants to gain an intuitive sense
to what degree the ML classifier “believes” that a datum

belongs to one class or another. But for those who desire
a threshold, the calibration is all the more important,
since the rational choice of one class over the other is
determined by whether the class probability is greater or
less than 0.5.
There are three common calibration methods used to

calibrate ML outputs to probabilities today: Platt Scaling
[37], Isotonic Regression [38], and Quantile Binning,
which are discussed in turn [39].
Platt’s method fits a logistic regression (LR) model to

the ML scores from a training set, thereby providing an
equation that directly transforms an ML-based classifier
score to a probability. Although the LR model is not
always appropriate and is prone to overfitting for small
training sets, it can provide good calibration in certain
circumstances (e.g., when Support Vector Machines are
used as classifiers).
In an attempt to improve upon Platt’s method, the iso-

tonic regression (IR) approach releases the linearity
assumptions in the LR model, fitting a piece-wise con-
stant non-decreasing function to the sorted ML scores
in the training set. Although this calibration can yield
good results, the isotonicity assumption is not always
valid. In fact, Niculescu-Mizil and Caruana [40] demon-
strated, using multiple classifiers and data samples of
varying size, that both the Platt and IR methods can pro-
duce biased probability predictions.
Quantile Binning, on the other hand, mitigates the

assumptions in the Platt and IR approaches by sorting
the ML scores from a training set, and partitioning them
into subsets (bins) of equal size. A new ML score can be
simply transformed to a probability by locating its corre-
sponding bin, and then calculating the fraction of posi-
tive outcomes in this bin from the training set [39].
While less restrictive than the other approaches, the
drawbacks of this method include the fact that the num-
ber of bins must be set a priori, and that small training
sets can corrupt the calibration. The Bayesian Binning in
Quantiles (BBQ) method mitigates these limitations by
effectively averaging over many binning schemes, which
leads to a better overall calibration [41].
While it is difficult to argue with the overall accuracy

and generalizability of the BBQ method, the present
work will demonstrate that the granularity and dynamic
range of calibrated probabilities, and in some cases the
calibration accuracies, can be substantially improved by
applying a novel non-parametric Bayesian approach. As
with the previous methods, this approach requires a
training set. But rather than using it to build a mapping
between ML outputs and probabilities, the distributions
of ML output from the positive and negative classes are
directly compared to the ML output in question, render-
ing a probability that the ML output is derived from the
one distribution versus the other.

Connolly et al. BMC Bioinformatics  (2017) 18:361 Page 2 of 12



Since the ML output is compared to the ML outputs
of the two classes, a non-parametric approach is re-
quired, as there is no obvious binning strategy. Although
there are many non-parametric Bayesian methods for
comparing two-samples [42–45], non-parametric Bayes-
ian methods for specifically quantifying the probability
of distribution pairings (i.e., comparing the similarity of
distribution A and B versus the similarity of A to C) are
rare. Capitalizing on its power and simplicity, the Bayes-
ian non-parametric two-sample comparison approach in
Holmes et al. [46], is modified for this purpose. The im-
proved calibration then arises from the non-parametric
approach that effectively allows for an infinite number of
binning schemes, and from naturally including statistical
uncertainties due to finite training samples.
The methodology is tested on a variety of data sets

that have been classified using two different ML tech-
niques. It will be found that the method provides prob-
ability estimates with a high granularity within a broad
range of calibrated probabilities. This is important for
many clinical applications. For example, in risk assess-
ment studies routinely performed by institutional review
boards, government agencies, and medical organizations,
it is crucial to be able to compute probabilities that are
typically <1% [47–50]. Additionally, clinical literature
abounds in examples where probabilities are expressed,
or thresholds are determined, via plotting the logarithm
of probabilities, to ensure interpretability at the extremes
of the probability range [51–53].

Methods
In the proposed approach, a binary ML classifier with a
non-discrete score is assumed. It is further assumed that a
training set is available, from which distributions of
independent scores can be generated for the two classes
in the data set. These distributions can be obtained by
evaluating the score of the classifier applied to left out
points during the leave-one-out (LOO) cross validation
procedure. To determine the probability that a new datum
is derived from a certain class, the ML classifier is evalu-
ated for that datum. Then, a nonparametric Bayesian
hypothesis test is applied to calculate the probability
that the datum is derived from the parent distribution
of that class as opposed to the parent distribution of
the other class.

Mathematical formalism
The (posterior) probability introduced above is calcu-
lated by modifying the formalism in Holmes et al. [46],
which constructed a non-parametric Bayesian two-
sample hypothesis test. In detail, suppose the probability
that a single value Xp is derived from the parent distri-
bution that generated a series of values X1, as opposed
to the parent that generated values X2. The objective is

to calculate Pr(H1|Xp, X1, X2), the posterior probability
of the hypothesis H1 that Xp and X1 are derived from
the same parent. The alternative hypothesis, H2, is that
Xp is derived from the parent of X2. The probability of
interest can then be expressed as

Pr H1jXp;X1;X2
� �

∝Pr Xp;X1;X2jH1
� �

Pr H1ð Þ: ð1Þ

where Pr(Xp, X1, X2|H1) is the likelihood of obtaining
Xp, X1, and X2 given that Xp and X1 are derived from
the same parent distribution, and Pr(H1) is the prior
probability for the hypothesis H1. The prior Pr(H1) is
simply a number, containing a priori estimates of the
occurrences of observations from class 1. The calcula-
tion of Pr(Xp, X1, X2|H1), on the other hand, is calcu-
lated with the help of Polya Trees [54].
Polya trees are a set Π of nested partitions in some

space Θ. In this work, Θ is a one dimensional space
where the ML scores are plotted. The partitions are gen-
erated by setting upper and lower bounds for the ML
score derived from the training set, and then halving the
space in several consecutive steps. At the start of the
procedure, there is only “level 1” partitioning, where the
two bins contain the number of score values, N0 and N1,
that fall on each side of the partition. Each segment of
the space is then halved again, producing a total of 4
bins for the “level 2” partitioning which contain the
counts N00, N01, N10, and N11, and so on.
Figure 1 illustrates the partitioning and labeling of

such counts in each bin. The qX's indicate the probabil-
ity of a value falling into the right vs. left partition. For
instance, q00 is the probability of one of the N00 counts
contained in bin ‘00′ falling into bin ‘000′ vs. bin ‘001′
at the next partitioning step.
Pr(Xp, X1, X2|H1) can then be constructed. Let us as-

sume that the parent distribution for class 1 is described
by some set of binomial parameters, Q. Likewise, sup-
pose the parent distribution for class 2 is described by R,
and P describes the parameters in the parent distribution
of the “new” ML score. P is then equal to Q assuming
hypothesis H1, and to R, assuming the alternative hy-
pothesis H2. Xp, X1 and X2 are realizations of P, Q, and
R, respectively. Assume that, at the jth partition, lj0, mj0

and nj0 (lj1, mj1 and nj1) are the counts of values that fall
on the left (right) side of the split in distributions Xp, X1

and X2, respectively. The likelihood that qj0 (1 − qj0) at
the jth partition is the same for distribution P and Q, but
not R, is then:

Prj Xp;X1;X2

��H1
� � ¼ Z

dp 0dpdqdrPrj Xp;X1;X2 p
0j ; p; q; rH1

� �
Prj p

0; p; q; r Hj 1

� �
ð2Þ
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¼ Γ αj0 þ αj1
� �

Γ αj0
� �

Γ αj1
� �

" #2

�

Γ lj0 þmj0 þ αj0
� �

Γ lj1 þmj1 þ αj1
� �

Γ lj0 þ lj1 þmj0 þmj1 þ αj0 þ αj1
� � �

Γ nj0 þ αj0
� �

Γ nj1 þ αj1
� �

Γ nj0 þ nj1 þ αj0 þ αj1
� � :

ð4Þ

where Γ is the gamma function, δ is the Dirac delta
function, {αj0, αj1} are parameters defined following a
procedure described later in this section, and ~j˜ ¼
∅; 0; 1; 00; 01; 10; 11; 001; 101;…f g (following the notation

in Holmes et al. [46] and Fig. 1). Each p∗0, q∗0 and r∗0 are in-
dependently drawn from Beta(α∗0,α∗1).
Note the second set of brackets in Eq. 3 encompass

the prior section which is comprised of two components:
Dirac delta functions that act to tie p and q together
through p′, and terms involving gamma functions, which
are Dirichlet priors.
Because each partition is assumed to be independent:

PrðXp;X1;X2jH1Þ ¼
Q

j PrjðXp;X1;X2jH1Þ ð5Þ

P (Xp, X1, X2|H2) takes a similar form. With these
two likelihoods, then, the posterior probability P
(H1|Xp, X1, X2) can be calculated explicitly.

There are several practical considerations to keep in
mind while calculating the posterior above. One is that
the definition for αX is adopted from Holmes et al. [46],
where the α’s are set to be constant in a level such that
αL = L2 = αj0 = αj1. Another point to consider is that
floating point precision can lead to redundant score
values. However, at least in the data sets considered in
this work, stopping at the level where the values cannot
be partitioned further is sufficient. In fact, it was found
that in the data sets considered in this work, the number
of levels could be limited to <19 without loss of calibra-
tion accuracy or granularity. However, it remains to be
seen how generalizable this threshold might be.
The lower and upper bounds of the distribution also

need to be determined. Holmes et al. [46] suggested
partitioning in terms of quantiles. However, a more
straightforward approach was found to be sufficient,
where the partition is centered at the median of the
training sample, and then expanding the upper and
lower bounds of the partition space by equal amounts
until it included all the points.
Lastly, priors on H1 and H2 are determined by the

relative sizes of the classes in the training set.

Comparing the BBQ method and the proposed approach
In this section, the method for generating reliability dia-
grams using a variety of data sets and ML classifiers to
compare the state-of-the-art BBQ method and proposed
method is described. Reliability diagrams [40, 55, 56] are
generally used to evaluate the accuracy and granularity
of the conversion methods by comparing the observed
(true) frequency of an event with the predicted probabil-
ity of an event. The predicted probabilities are discretely
sorted into 10 bins, and for each bin, the mean predicted
value is plotted against the true fraction of positive cases.
The better the calibration, the closer the points will fall
to the diagonal line. The finer the granularity, the more
points (occupied bins) will be on the diagram.

Fig. 1 Construction of a Polya tree distribution. Adapted from Ferguson [54]
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The following two ML methods are used: a standard
SVM-based classification method with a well-behaved,
well understood score; and an ad hoc discriminant classifi-
cation method constructed from a k-means algorithm.
The k-means discriminant is calculated by clustering a

training set that contains two distinct classes of objects,
and then determining which labels best represent each
cluster. The centroid is determined for each cluster, and
the label of a new (test) point is assigned via determining
which centroid is proximal. Assuming two classes, A
and B, the k-means discriminant is then defined as the
ratio of the distances of the new point to the two cen-
troids. (Along the same lines, the tuning of the SVM
parameters and feature selection methods are also kept
to a minimum to ensure a wide range of predicted prob-
abilities for the reliability diagrams).
The unconventional definition of the k-means discrim-

inant serves two purposes. First, the algorithm renders a
classifier that has marginal performance, thereby allow-
ing a better understanding of the proposed method’s
behavior when there is a large overlap. Second, the k-
means classifier output distributions are highly non-
Gaussian, allowing insight into the proposed method’s
generalizability.
The methods are demonstrated on three type of data

sets: simulated classifier outputs, data sets from a popu-
lar ML data set repository, and a clinical data set. Each
data set is divided into training and test subsets. The
training sets are used to generate the distributions for
the two classes, X1 and X2. The test sets are then used
to create the reliability diagram, where each point in the
test set, Xp, is compared to X1 and X2 using both BBQ
and the proposed method.
The simulated classifier outputs are generated from

Gaussian distributions. The training set contains 50 posi-
tive cases randomly generated from a Gaussian distribu-
tion with zero mean and unit variance, and 50 negative
cases are randomly generated from a second Gaussian dis-
tribution with a unit variance and certain fractional over-
lap with the first distribution (i.e., non-zero mean). With
the BBQ and proposed method trained on these data, reli-
ability diagrams are constructed on 100 test data with an
equal number of positive and negative cases. The number
of calibrated points in the reliability diagrams, range of
predicted probabilities, and the goodness of fit of the
calibrated points are evaluated. This training and testing is
repeated 20 times for a given overlap in the Gaussian
distributions and the results are averaged.
The biomedical data sets, described in Table 1, were

taken from the University of California, Irvine Machine
Learning repository [57, 58]. Although the balances
between positive and negative instances vary dramatically
between these data sets, any overfitting resulting from
these imbalances would be accounted for in the

calibration. To see this, suppose a ML algorithm produces
an overfitted model if the data set is imbalanced. This im-
balance is roughly approximated in the ‘training’ folds of
the LOO cross-validation used to produce the distribu-
tions of positive and negative instances for the calibration.
Any biases resulting from the ML algorithm’s tendencies
to overfit are then accounted for in these distributions,
since they are constructed from the test folds of the cross-
validation.
The clinical data set, built to identify suicidal individuals

using their language, contains the word frequencies of 161
suicidal and 153 control subjects from the Suicidal Ado-
lescent Clinical Trial [59] and the Suicidal Thought
Markers Study [60]. The data set contains 6226 unique
words; a Kolmogorov-Smirnov test [61] was used to
choose the top 124 most discriminating words for
classification. The data with the reduced feature sets
are L2 normalized on a per-subject basis to increase
the discriminatory power of the SVM classifier and to
therefore produce a wider range of ML scores.
The practical implementation of the proposed method

is described in the previous section. The BBQ method
implemented through the corresponding R package [62],
using the default parameters and the “BDeu2” core func-
tion, as it was found to give finer granularity of probabil-
ities for the SVM than “BDeu”. It was also found to give
a far better calibration (although with fewer calibrated
points) for the k-means algorithm on the Parkinson’s
data set. However, the effect of changing these parame-
ters will be explored.

Results
For the simulated data sets, reliability diagrams are con-
structed for various overlaps in the simulated ML output
distributions. For a given overlap, the χ2p-values quanti-
fying the goodness of fit to a slope of 1, the number of
calibration points, and the range in the calibrated prob-
abilities are averaged and plotted. (The χ2 is calculated
by weighting the residuals by the inverse of the standard
deviation of the calibrated probabilities). Figure 2 com-
pares these averages as a function of the overlap. As
evidenced by the χ2 p-values, the calibration accuracies
for the proposed method are comparable if not higher
compared to the BBQ method, especially for smaller
overlaps. The exception to this lies in the region of
largest overlap, where the BBQ ethod outperforms the
proposed method; however both methods produce fits
with p-values greater than 0.2. Comparing the number
of calibration points and calibrated probability ranges, it
is clear the proposed method consistently outperforms
the BBQ method.
But these results assume highly idealized (Gaussian)

distributions for the ML outputs. Figures 3 and 4 then
present the results from the biomedical data sets. They

Connolly et al. BMC Bioinformatics  (2017) 18:361 Page 5 of 12



include the training set SVM and k-means ML scores
used to generate the reliability diagrams, and the reliabil-
ity diagrams themselves plotted with the diagonals indi-
cating perfect calibration. For comparison, the training
distributions are generated using both LOO and 10-fold
cross validation. It can be seen changing the k-fold
cross-validation used to build the training distributions
simply leads to fewer calibration points for both BBQ
and the proposed method.

Tables 2 and 3 show the χ2p-values and number of cal-
ibrated points for the SVM- and k-means- based classi-
fiers, respectively, for both BBQ and the proposed
method. One can see that the calibrations are, on aver-
age, comparable for the two methods. This is especially
true when the ML scores from each class are unimodal
and cleanly separated from the other class. Pair-wise t-
tests between the χ2p-values yield p-values of 0.61 and
0.58 for the SVM and k-means classifiers, respectively.

Table 1 Description of the data sets obtained from the University of California, Irvine Machine Learning repository, including a brief
description and the number of cases and controls in the training and testing sets used to demonstrate the proposed method

Data set Description Number of training
Cases/Controls

Number of test
Cases/Controls

Number of features Citations

Lung Cancer Clinical data, X-ray data, etc. used to
predict 3 pathological types of lung
cancer. The instances are divided into
three classes of 9, 10, and 13 observations.
For purposes here, the first two classes
are aggregated into a single class.

8/8 11/5 54 integer clinical features [66]

SPECT Instances of normal and abnormal cardiac
diagnoses.

40/40 172/15 22 binary features indicating partial
diagnoses

[67, 68]

Parkinsons Biomedical voice measurements from 31
people, including 23 with Parkinson’s
disease.

72/25 75/23 22 real features [69]

Arcene Mass-spectrometric data that can be used
to distinguish patients with cancer versus
healthy subjects.

44/56 44/56 The data set contains 10,000
integer features; a Kolmogorov-Smirnov
test [61] was used to choose the top
268 most discriminating features for
classification.

[70]

Arrhythmia Normal and “abnormal” instances of
demographic and electrocardiogram
features.

127/99 118/108 278 categorial, integer and real
demographic and electrocardiogram
features. A Kolmogorov-Smirnov test [61]
was used to select the 32 most
discriminating features for classification.

[71]

Breast Cancer This data set contains features from a
digitized images of fine needle aspirates
(FNA) of breast masses, which describe
characteristics of the cell nuclei present in
the images. The data set contains benign
and malignant instances of real-valued
features.

130/219 111/239 8 [72, 73]

Contraception This data set is a subset of the 1987
National Indonesia Contraceptive
Prevalence Survey which samples married
women who were either not pregnant or
do not know if they were at the time of
interview. The aim for the binary classifier
constructed in this work is to predict
whether or not a woman uses
contraception based on their categorical
and integer-valued demographic and
socio-economic characteristics. The subset
contains information for 1473 women,
who are sub-divided based on their
contraceptive use: no use (629), long-term
methods (333), or short-term methods
(511). The goal of the classifier is to
classify women based on whether or not
they use contraception based on
categorical and integer-valued demographic
and socio-economic characteristics.

423/313 421/316 8 [74]
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However, the advantages of the proposed method become
apparent for larger overlaps in the class distributions of
ML scores. This is shown by comparing the accuracies,
numbers of calibrated points, and range of calibration
points for the SVM and k-means method with more and
less overlaps in the ML scores, respectively. Performing a

pair-wise, one-sided t-test between the number of cali-
brated points for the two methods gives a p-value of 0.19
for the SVM classifier, where he overlaps are smaller, indi-
cating the BBQ and the proposed method render similar
numbers of calibrated points. However, performing a simi-
lar test with the k-means classifier where the overlaps are

Fig. 2 The averaged χ2p-values from the fit of the calibration to the diagonal in the reliability diagrams (top), the average number of calibration
points (middle), and the average range in calibrated probabilities (bottom) for the proposed method (red) and the BBQ method (black)

Fig. 3 Histograms of SVM scores from the training set for the two classes, represented as black and red distributions (top row); reliability diagrams
for the BBQ method (middle row), and for the proposed method (bottom row). For comparison, the training distributions are generated using both
LOO (blue) and 10-fold cross validation (green). Those data sets with large overlaps between the predicted values from the two classes are boxed for
emphasis. Note the larger granularity in the (boxed) data set with a larger overlap in the ML scores
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large gives a t-test p-value of 0.002, indicating the
method renders a systematically larger number of
calibrated points. Performing the same test on the
ranges, the p-values are 0.06 and 0.01 for the SVM and k-
means classifiers, respectively, indicating a systematically
more dynamic range of calibrated probabilities. That is,
the results are more dramatic when the tests are per-
formed on just those data sets with high overlap,
highlighted in Tables 2 and 3. While the t-test p-value for
the χ2p-values indicates comparable calibration accuracies
(0.67), the t-test p-values for the calibration points and
ranges indicate substantial differences (0.0002 and 0.003,
respectively). It can then be concluded that the proposed
method renders a systematically larger number and more
dynamic range of calibrated probabilities on the biomed-
ical and clinical data sets. Note that, for either method,

calibration does not seem to be affected by either sample
size or the balance of the data set.
Although Naeini et al. [41] suggested optimum param-

eters for the BBQ method. It is worth exploring whether
the comparisons with the proposed method may change
if they are altered. The scoring method, binning (N0),
and the threshold that determines the optimal binning
(α) are then modified and the BBQ method is re-
evaluated on one of the data sets (the clinical data set)
to gauge the parameters’ effect on the calibration. Table
4 shows the calibration points, range of calibration
points, and reliability diagrams as a function of the
changing BBQ parameters. It is clear from Table 4 that
dramatically altering the BBQ parameters does not
strongly effect the calibration for either the SVM or
k-means classifiers.

Fig. 4 Histograms of k-means scores from the training set for the two classes, represented as black and red distributions (top row); reliability diagrams
for the BBQ method (middle row), and for the proposed method (bottom row). For comparison, the training distributions are generated using both
LOO (blue) and 10-fold cross validation (green). Those data sets with large overlaps between the predicted values from the two classes are boxed for
emphasis. Note the systematically larger granularity in those (boxed) data sets with larger overlaps in the ML scores

Table 2 The χ2 p-values for the fit to the diagonal in the reliability diagram, number of calibrated points, and difference between
the maximum and minimum calibrated probabilities (range) for the SVM classifier presented in Fig. 3

Data set BBQ Proposed method

χ2p-value Calibrated points Range χ2p-value Calibrated Points Range

Lung Cancer <0.001 2 0.82 0.001 4 0.90

SPECT <0.001 5 0.75 <0.001 7 0.92

Parkinsons 0.01 8 1.0 0.651 6 0.95

Arcene 0.387 9 0.96 0.841 8 0.94

Suicide 0.048 9 0.94 0.013 8 0.90

Arrhythmia 0.521 5 0.66 0.001 9 0.87

Breast Cancer 0.003 8 1.0 0.001 7 1.0

Contraception 0.018 5 0.48 0.124 8 0.81

The (Contraception) data set with a large overlap in the score distributions is emphasized in boldface. When compared with the other data sets, the proposed
method produces a larger number of calibrated points, indicating a finer granularity in the calibrated probabilities
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Discussion
In this work, a novel method for calibrating ML scores to
probabilities was introduced. Using a number of data sets
of varying sizes and two different ML methods, it was
demonstrated that this method allows a more granular
and more dynamic range of calibrated probabilities as
compared to a current state-of-the-art calibration tech-
nique (BBQ). This is not surprising given that, unlike the
BBQ, our method is not limited to a finite set of binning
schemes for the calibration, and it naturally folds in statis-
tical uncertainties due to the limited size of the training

sample. Also, the proposed method systematically pushes
out the upper and lower boundaries of the calibrated
probabilities, allowing for more extreme (dynamic) prob-
abilities, which are crucial for assessing clinical risk. The
advantages of the proposed method are particularly
dramatic in the 8 cases boxed in Figs. 3 and 4, where
the overlaps between the class distributions of ML
scores becomes large. The results from the simulated
data indicate that high accuracies in calibration are
possible, especially when the overlaps in the ML score
of the two classes are small.

Table 3 The χ2 p-values for the fit to the diagonal in the reliability diagram, number of calibrated points, and difference between
the maximum and minimum calibrated probabilities (range) for the k-means classifier presented in Fig. 4

Data set BBQ Proposed method

χ2p-value Calibrated points Range χ2p-value Calibrated points Range

Lung Cancer 0.087 2 0.27 0.038 3 0.62

SPECT <0.001 4 0.75 <0.001 5 0.79

Parkinsons 0.544 2 0.11 0.006 3 0.28

Arcene 0.032 3 0.61 0.623 5 0.60

Suicide 0.497 2 0.05 0.724 4 0.34

Arrhythmia 0.389 2 0.26 0.012 4 0.43

Breast Cancer <0.001 3 0.96 <0.001 8 0.98

Contraception 0.867 1 0.003 0.380 4 0.52

The data sets with large overlaps in the score distributions are emphasized in boldface. The proposed method consistently achieves a larger number and more
dynamic range of calibrated points. Note the Contraception data set has one calibration point on the reliability diagram, but a finite range. This is due to the
number of calibration points being calculated from the number of (binned) points in the reliability diagram

Table 4 The χ2 p-values for the fit to the diagonal in the reliability diagram, number of calibrated points, and difference between
the maximum and minimum calibrated probabilities (range) for various BBQ parameters Fig. 3

Classifier Scoring function Threshold (α) Binning parameter (N 0) χ2 p-value Calibration points Range

SVM BDeu 2 0.0001 0.187 7 0.95

SVM BDeu 4 0.0001 0.13 8 0.97

SVM BDeu2 N/A 0.0001 0.023 9 0.97

SVM BDeu 2 0.001 0.187 7 0.95

SVM BDeu 4 0.001 0.13 8 0.97

SVM BDeu2 N/A 0.001 0.048 9 0.94

SVM BDeu 2 0.01 0.187 7 0.95

SVM BDeu 4 0.01 0.13 8 0.97

SVM BDeu2 N/A 0.01 0.066 9 0.94

k-means BDeu 2 0.0001 0.502 2 0.05

k-means BDeu 4 0.0001 0.558 2 0.06

k-means BDeu2 N/A 0.0001 0.497 2 0.05

k-means BDeu 2 0.001 0.502 2 0.05

k-means BDeu 4 0.001 0.558 2 0.06

k-means BDeu2 N/A 0.001 0.497 2 0.05

k-means BDeu 2 0.01 0.502 2 0.05

k-means BDeu 4 0.01 0.558 2 0.06

k-means BDeu2 N/A 0.01 0.496 2 0.05

The BBQ default parameters used in the comparisons above are highlighted in boldface
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Further, as evidenced by the results from the Lung
Cancer, Parkinsons, Suicide, Arrhythmia, Breast Cancer
and Contraception data sets, the imbalance of the train
or test data sets do not have an effect on the accuracy of
the calibration. Sample size also does not appear to
strongly affect calibration either.
It is also interesting that both the proposed method

and the BBQ method were trained using ML output dis-
tributions generated from LOO cross-validation of the
training set that was used to generate the ML model.
The same training set was therefore used to train both
the calibration method and the ML model, and both
calibration techniques were able to calibrate the ML
scores to a high overall accuracy. That is, the results
suggest separate data sets might not be necessary to
train the model and build the case and control distribu-
tions for the calibration. Decreasing the number of folds
only decreases the granularity of both the BBQ and the
proposed method, as demonstrated in Figs. 3 and 4.
In summary, the results indicate that the proposed

method gives comparable or better accuracy (as indicated
from the simulated ML outputs). Both the simulated and
real data sets indicated a systematic finer granularity and
greater range of calibrated probabilities using the pro-
posed method, especially when there are large overlaps in
the ML output distributions for the two classes. Tests on
the clinical data set indicate changes in the BBQ parame-
ters would not change these conclusions.
However, questions may remain as to why ML methods

that return a non-probabilistic result should be considered
when there are so many probabilistic ML methods in the
literature. For instance, in Sowa et al. [63], logistic regres-
sion (LR), decision tree (DT), support-vector machine
(SVM), and random forest (RF) models were trained to dis-
tinguish between individuals with non-alcoholic non-fatty
liver disease (NAFLD) and alcoholic non-fatty liver disease
without cirrhosis (ALDNC), and between alcoholic liver
disease with cirrhosis (ALDC) and alcoholic liver dis-
ease without cirrhosis ALDNC. All of the ML models
yielded comparable accuracies, with the RF carrying
the advantage of a probabilistic interpretation. There
would still be advantages to converting the ML scores
to probabilities in this case. For instance, as shown in
Malley et al. [64], the probabilities returned by these
models – including the LR and RF ones – cannot ne-
cessarily be taken at face value. Also, our method acts
to normalize the ML results from the four classifiers
onto a single, intuitive scale. But, more broadly, there
are instances where ML models with non-probabilistic
outputs outperform methods that allow a probabilistic in-
terpretation of the results. For instance, Statnikov et al.
[65] compared RF and SVM models for microarray-based
cancer classification, finding that SVM models consist-
ently outperformed RF models.

Conclusions
A novel non-parametric Bayesian technique is proposed
for calibrating the outputs of an ML-based algorithm to
a probability. The method’s generalizability was demon-
strated by applying it to two disparate ML classifier dis-
criminants: an SVM discriminant and an arbitrarily
defined k-means discriminant. In applying this method
to these classifiers over a diverse array of real and simu-
lated data sets, it was shown to yield a broader, more
dynamic range of calibrated probabilities with a finer
granularity, especially when discrimination between the
classes is poor. This provides more nuanced diagnostic
and prognostic probabilistic assessments from ML-based
clinical decision support systems, allowing clinicians and
patients to make better decisions. Therefore, converting
ML outputs to probabilities substantially improves
clinical decision making.
Although the focus of this work has been calibrating

ML scores, there is no reason why the output necessarily
needs to be derived from a machine. It can easily be
extended to calibrate any clinical score (e.g., a psychi-
atric rating scales, illness severity scores, etc.), where the
prior on αL goes as 2−L if the scores are discrete [46].
In future work, methods of generalizing this formalism

to multi-class problems will be explored. This is not a
trivial undertaking, as many scores may need to be com-
bined to calculate a posterior probability. Other future
research directions will include understanding how the
Bayesian formalism might be leveraged to include
hypotheses which assume that the new (test) point Xp is
not derived from either of the parent class distributions.
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