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Abstract

Summary: The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the
identification of subgroups relevant to the precision medicine setting. In this setting, a relevant subgroup is a
subgroup in which subjects perform either especially well or poorly with a particular treatment assignment.
Herein, we introduce, dipm, a novel R package that implements the DIPM method using R code that calls a pro-
gram in C.

Availability and implementation: dipm is available under a GPL-3 licence on CRAN https://cran.r-project.org/web/
packages/dipm/index.html and at https://ysph.yale.edu/c2s2/software/dipm. It is continuously being developed at
https://github.com/chenvict/dipm.

Contact: heping.zhang@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

In recent years, there has been a shift in medicine toward the more
modern approach known as precision medicine (Ashley, 2016). The
traditional evidence-based medicine collects data from meta-
analyses and randomized controlled trials, from which mean
estimates are derived to infer general recommendations, approxi-
mating the ‘one size fits all’ scenario (Beckmann and Lew, 2016).
Precision medicine diverges from the traditional focus on average
treatment effects and instead considers what the optimal treatment
is for each individual. Moving toward a more targeted approach
takes into greater consideration the heterogeneity that exists in pa-
tient populations. Overall, the aim of precision medicine is to better
deliver safe and effective treatments to patients by identifying the
best treatment for each individual. The Depth Importance in
Precision Medicine (DIPM) method is a biostatistical approach to
realizing the aims of precision medicine (Chen and Zhang, 2020,
2022). The DIPM method is a classification tree method designed to
identify subgroups of patients that perform especially well or espe-
cially poorly with a particular treatment assignment. Currently, the
DIPM method is built for the analysis of clinical datasets with either
a continuous (Chen and Zhang, 2020) or right-censored survival
outcome (Chen and Zhang, 2022) and two or more treatment

groups. Candidate split variables supplied by the user are mined by
the method in search of the most important ones. Motivated by the
work done by Chen et al. (2007) and Zhu et al. (2017), the DIPM
method uses a depth variable importance score to assess the import-
ance of each candidate split variable at each node of the tree. Chen
and Zhang (2022) applied the DIPM method to analyze a micro-
array dataset for breast cancer patients and identified new gene ex-
pression subgroups that are statistically meaningful. We have
developed the dipm R package, which implements the DIPM
method in addition to a method simpler in design with the same re-
search aims. In this application note, we present an overview of
the package and illustrate the usage of dipm through real datasets.
The Supplementary Material contains a manual (the vignette for the
package).

2 Methods and implementation

The DIPM method is designed for the analysis of clinical datasets
with either a continuous or right-censored survival outcome variable
Y and two or more treatment assignments (Chen and Zhang, 2020,
2022). Without loss of generality, higher values of Y denote better
health outcomes. Note that this is also true for the survival case only
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when the event of interest is harmful, as longer times to the harmful
event are more beneficial. When Y is a right-censored survival out-
come, the data must also contain a status indicator d. When d¼1,
this indicates that the event of interest has occurred, while d¼0
indicates that an observation is right-censored.

Candidate split variables are also part of the data and may be
binary, ordinal or nominal. All of the learning data are said to be
in the first or root node of the classification tree, and nodes may
be split into two child nodes. Borrowing the terminology used in
Zhu et al. (2017), at each node in the tree, a random forest of
‘embedded’ trees is grown to determine the best variable to split
the node. Once the best variable is identified, the best split of the
best variable is identified based on a calculated score. A flowchart
outlining the general steps of the DIPM algorithm is provided in
Figure 1.

In the DIPM method, the depth variable importance score is
used to find the best split variable at a node. The score is a rela-
tively simple measure that takes into account solely two compo-
nents: the depth of a node within a tree and the magnitude of the
relevant effect. Using depth information makes use of the obser-
vation that more important variables tend to be selected closer to
root nodes of trees. Meanwhile, the strength of the split is also
taken into account. This second component is a statistic specified
depending on the particular analysis and data at hand. Recall that
at each node in the overall classification tree, a random forest is
constructed to find the best split variable at the node. Once the
forest is fit, for each tree T in this forest, the following sum is cal-
culated for each covariate j:

scoreðT; jÞ ¼
X

t2Tj

2�LðtÞGt: (1)

Tj is the set of nodes in tree T split by variable j. L(t) is the depth
of node t. For example, the root node has depth 1, the left and right
child nodes of the root node have depth 2. Gt captures the magni-
tude of the effect of splitting node t. Depending on the type of data
available, the test statistic Gt will vary. Next, the split criteria used
are defined depending on the type of outcome variable and the
number of treatment assignments as well. See the Supplementary
Material for more details.

The dipm package contains two main functions: dipm and
spmtree. The dipm function generates classification trees for the
precision medicine setting as described above. The spmtree is also
designed for the same aim as a simpler tree method. However,
this method does not fit a random forest at each node. Instead,
the more classical approach of considering all possible splits of all
candidate split variables is used, and the single split with the high-
est split criteria score is selected as the ‘best’ split of the node. For

each method, the R code calls a C program to generate each tree.
The C backend is used to take advantage of C’s higher computa-
tional speed in comparison to R. Furthermore, the R package has
been designed to remain consistent with existing R package
implementations of tree-based methods such as rpart (Therneau
and Atkinson, 2018) and partykit (Hothorn and Zeileis, 2015).
Maintaining consistent function arguments across packages is
helpful so that users can focus on the analysis at hand instead of
spending excessive amounts of time deciphering the intricacies
unique to each package. In addition, the package contains a prun-
ing function pmprune that removes terminal sister nodes with the
same optimal treatment. This package also contains the function
node_dipm, which is specially designed for subgroup analysis and
compatible with the plot method defined in the partykit package.
It visualizes stratified treatment groups through boxplots for a
continuous outcome and survival plots for a survival outcome,
respectively.

3 Example usage

For both the dipm and spmtree functions, at a minimum, the user
must supply a formula and a dataset. For the formula argument,
the formula must take format Y � treatment jX1þX2 for data
with a continuous outcome variable Y and Surv(Y, d) �
treatment jX1þX2 for data with a survival outcome variable Y
and a status indicator d. A format such as Y � treatment j. may
be used when all variables in the data, excluding Y, d (if applic-
able), and the treatment variable, are to be used as candidate split
variables. For the data argument, the supplied dataset must con-
tain an outcome variable Y and a treatment variable. If Y is a
right-censored survival time outcome, then there must also be a
status indicator d. The types argument is optional. When the
types argument is missing, the default is to assume all of the
candidate split variables are ordinal, which includes numeric
variables. If this is not the case, then all of the variables in the
data must be specified with a vector of characters in the order
that the variables appear. The possible variable types are:
‘binary’, ‘ordinal’, ‘nominal’, ‘response’, ‘status’ and ‘treatment’.
Detailed instructions, examples and returned output can be found
in the Supplementary Material.

The weight change data (MASS::anorexia) for young female
anorexia patients from the MASS package consists of 72 observa-
tions and 3 variables (Venables and Ripley, 2013). The data con-
tain three treatment groups: (i) for cognitive behavioral treatment,
(ii) for control and (iii) for family treatment. PreWeight is the
weight in pounds of the patient before study period. Similarly,
PostWeight represents that of the patient after study period. In our

Fig. 1. Overview of DIPM method classification tree algorithm. A flowchart outlin-

ing the general steps of the proposed method’s algorithm is depicted in the figure

above
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Fig. 2. Tree visualization of anorexia data using function node_dipm
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Fig. 3. Tree visualization of breast cancer data using function node_dipm
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analysis, we consider PostWeight as the response of interest and fit
a tree based on the DIPM method. Figure 2 visualizes the tree using
the function node_dipm. For both identified subgroups, family
treatment is identified as the optimal treatment. However, the ef-
fect of cognitive behavioral treatment versus control is more pro-
found in the subgroup of patients with higher weights before the
study than in the subgroup of patients with lower weights before
the study.

The dataset (TH.data::GBSG2) from the package TH.data
contains the observations of 686 women from the German Breast
Cancer Study Group (Sauerbrei et al., 2000). The treatment is hor-
monal therapy (0 for no, 1 for yes). The detailed descriptions of
other variables can be seen in the Supplementary Material. We fit a
survival tree based on the DIPM method and visualize the tree using
the function node_dipm in Figure 3. Hormonal therapy is most ef-
fective except for the patients with progesterone receptor less than
74 fmol and tumor grade I or progesterone receptor more than
74 fmol and tumor size greater than 26 mm and progesterone recep-
tor greater than 320 fmol.

4 Significance and conclusions

In summary, the dipm R package implements the DIPM classifica-
tion tree method designed for the analysis of clinical datasets with a
continuous or right-censored survival outcome variable and two or
more treatment groups. A secondary, additional method is also
included in the package that employs a much simpler approach in
identifying the best split at a node. Both methods have been carefully
evaluated in previous works (Chen and Zhang, 2020, 2022).
Furthermore, we develop a plotting function that produces an image
of each tree instead of solely a data frame of nodes. Overall, this
package delivers a new and handy computational tool that imple-
ments the novel DIPM method in the search for subgroups relevant
to the precision medicine setting.
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