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Abstract 

The breeder’s equation, ∆z̄ = Gβ, allows us to understand how genetics (the genetic covariance matrix, G) and the vector of linear 
selection gradients β interact to generate evolutionary trajectories. Estimation of β using multiple regression of trait values on relative 
fitness revolutionized the way we study selection in laboratory and wild populations. However, multicollinearity, or correlation of 
predictors, can lead to very high variances of and covariances between elements of β, posing a challenge for the interpretation of the 
parameter estimates. This is particularly relevant in the era of big data, where the number of predictors may approach or exceed the 
number of observations. A common approach to multicollinear predictors is to discard some of them, thereby losing any information 
that might be gained from those traits. Using simulations, we show how, on the one hand, multicollinearity can result in inaccurate 
estimates of selection, and, on the other, how the removal of correlated phenotypes from the analyses can provide a misguided 
view of the targets of selection. We show that regularized regression, which places data-validated constraints on the magnitudes of 
individual elements of β, can produce more accurate estimates of the total strength and direction of multivariate selection in the 
presence of multicollinearity and limited data, and often has little cost when multicollinearity is low. We also compare standard and 
regularized regression estimates of selection in a reanalysis of three published case studies, showing that regularized regression can 
improve fitness predictions in independent data. Our results suggest that regularized regression is a valuable tool that can be used as 
an important complement to traditional least-squares estimates of selection. In some cases, its use can lead to improved predictions 
of individual fitness, and improved estimates of the total strength and direction of multivariate selection.
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Lay Summary 

To understand how traits will evolve in populations, it is necessary to determine which traits are under natural or sexual selection, 
and the strength and direction of that selection. Organisms are comprised of many correlated traits and selection often acts on 
these traits simultaneously, necessitating multiple traits to be included in evolutionary predictions. Estimating selection on multiple 
correlated traits, however, is a well-known statistical challenge. In this article, we use simulations and reanalyses of published data 
to show that modern regularized regression methods can generate more accurate estimates of the total strength and direction of 
multivariate selection in the presence of correlated traits and have minimal cost when correlations between traits are low. Our results 
suggest that regularized regression can improve our understanding of some aspects of selection and should be employed alongside 
traditional least-squares approaches in selection analyses.

Introduction
Understanding how selection acts on phenotypes is a fundamen-
tal challenge in evolutionary biology. Organisms are comprised of 
many correlated traits and selection acts on these traits simul-
taneously, necessitating a multivariate approach to the study of 
selection. In their seminal paper, Lande and Arnold (1983) out-
lined a method to estimate selection on correlated traits by per-
forming a multiple regression of trait values on relative fitness. 
The vector of partial regression coefficients, β, which are obtained 
from the model, estimates the magnitude and direction of selec-
tion acting directly on each trait when all traits under selection 

are included in the model. The Lande–Arnold approach has since 
been widely adopted to estimate selection in both wild and lab 
populations, producing hundreds of estimates of multivariate 
directional selection (Hereford et al., 2004). It has significantly 
advanced our understanding of how selection acts in nature.

One challenge to any multiple regression approach, which 
may be particularly prevalent in multivariate selection analyses, 
is that predictor variables can be highly correlated, making it dif-
ficult to disentangle their independent effects on a response vari-
able (Figure 1). This situation is exacerbated by finite sample sizes 
and environmental variation that also contribute to uncertainty 
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in multiple regression; however, our focus in this paper is on mul-
ticollinearity. Selection often acts on functional suites of traits 
that are correlated, such as the cuticular hydrocarbons of insects 
(Blows & Allan, 1998), volatile floral compounds that produce a 
scent (Chapurlat et al., 2019), or components of an insect’s song 
that are combined to attract mates (Hoikkala et al., 1998; Hoy 
et al., 1988; Talyn & Dowse, 2004). We would like to be able to 
disentangle the independent effects of each correlated trait on 
fitness to identify the targets of selection.

The issue of multicollinearity in selection analyses was docu-
mented by Lande and Arnold (1983) who emphasized that when 
traits under selection are perfectly correlated, β cannot be esti-
mated using the full data. While perfectly correlated traits may 
be unlikely to occur, highly correlated sets of traits are common, 
and when there are more than two traits under selection, visually 
inspecting all the bivariate correlations between them is unin-
formative of the overall correlation structure, or multicollinearity, 
in the data. When predictor traits are highly correlated, the esti-
mates of selection gradients have large standard errors. Consider 
the algebra of ordinary least-squares (OLS) regression:

w = Xβ + e

where w is the vector of relative fitnesses of individuals (indi-
vidual fitnesses divided by population mean fitness), X is an n × p 
matrix of p traits measured on n individuals, β is the vector of 
partial regression coefficients that we aim to solve for, and e is 
the residual variation not accounted for by the model. Assume 
that each trait is centered on its mean and divided by its stand-
ard deviation, so all the traits have an equal variance 

(
σ2

)
 of one. 

Solving for β, the estimated partial regression coefficients (selec-
tion gradients) are:

β̂ = (X′X)−1X′w,

where′ denotes the matrix transpose, and −1 denotes the matrix 
inverse. X′X is the sums of squares and cross product matrix of 
predictors, which indicates how much information about the esti-
mated coefficients is contained in the data. The amount of inde-
pendent information in the data is indicated by the eigenvalues 
of X′X, with larger eigenvalues signifying more information. The 

inverse of X′X determines the variance of the estimated partial 
regression coefficients and consequently their standard errors:

V
Ä
β̂
ä
= σ2(X′X)−1

To uniquely estimate the regression coefficients, every linear 
combination of the columns of X′X must describe independent 
information in the data. There are at least two reasons why one 
or more linear combinations of X′X may carry no independent 
information, signified by a corresponding eigenvalue that is very 
low or zero: (a) the number of individuals measured is less than 
the number of traits (n < p), or (b) one or more of the traits is a lin-
ear combination of the others. For many selection analyses, (a) is 
not likely to be an issue, as many more individuals than traits are 
typically measured in a study. However, with the increasing use 
of phenomic technologies (Houle, 2010), it is possible to measure 
hundreds, or even thousands of traits, which is likely to become 
an increasing problem. Multicollinearity between traits may often 
occur, however, particularily if the selection of many related traits 
is the focus of the study.

Multicollinearity is often diagnosed post hoc by the vari-
ance inflation factor (VIF) or related metrics that are produced 
by regression software. VIFs indicate the increase in variance 
of regression coefficients due to multicollinearity. A VIF of 8, for 
example, means that the variance of a regression coefficient is 
eight times larger than it would be in the absence of multicol-
linearity. Traits that have high VIFs, based on arbitrary cutoffs 
such as 10 (e.g., Belsley et al., 2005), are often discarded from 
the data, and multiple regression analyses rerun to estimate 
selection on the remaining traits (Mitchell-Olds & Shaw, 1987), 
or other more complicated methods to estimate selection such 
as principal component (PC) regression (Lande & Arnold, 1983) 
or partial least squares are used. However, the interpretability of 
the partial regression coefficients as estimates of selection from 
these models is not always straightforward (but see Chong et al., 
2018). Removing traits with high VIFs leads to biased estimates of 
selection on the remaining traits (Morrissey & Ruxton, 2018). We 
illustrate this in Figure 1 where the sign of the parameter esti-
mate changes when a correlated predictor is omitted from the 
regression. Estimates of selection on the principal components 

Figure 1.  Regression of predictor variables (A) X1 and (B) X2 on a response variable from simple linear regression. The true partial regression 
coefficients of predictors 1 and 2 are 5 and −2, respectively, and the correlation between X1 and X2 is 0.7. When correlated predictors are left out of 
the model, estimated regression coefficients are biased in magnitude (panels A and B) and sign (panel B). The estimated partial regression coefficient 
for X1 when X2 is omitted from the model is 3.12 ± 0.45, and the estimated partial regression coefficient for X2 when X1 is omitted from the model is 
0.35 ± 0.47.
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(PCs) can be hard to interpret because the estimate of selection 
is on composite traits that are constructed regardless of their 
importance to fitness (Mitchell-Olds & Shaw, 1987). Although it 
is straightforward to transform selection estimates on PCs back 
to the original trait space, the resulting estimates of selection on 
the original traits are biased (Chong et al., 2018). Projection pur-
suit regression (Friedman & Stuetzle, 1981) can also help solve 
interpretability problems by defining orthogonal axes of the mul-
tivariate phenotype that maximize the explained variation in fit-
ness (Schluter & Nychka, 1994). However, when this approach is 
implemented in a reduced data space, the estimates of selection 
are also biased.

These methods all aim to solve the problem of multicollinear-
ity in selection analyses with the common side effect of producing 
biased estimates of selection. Multiple regression, however, cor-
rectly assesses the effect of multicollinearity in the uncertainty 
of the parameter estimates it produces, and yields unbiased esti-
mates of selection that are frequently favorable. For example, the 
goal of many selection analyses is to determine which traits have 
a direct effect on fitness and what that effect is. For this question, 
multiple regression produces the appropriate unbiased estimates 
and their uncertainty. When the estimated coefficients from 
selection studies are to be used as inputs in further statistical 
analyses, such as meta-analyses of the strength of selection (e.g. 
Kingsolver et al., 2001; Morrissey, 2016), it is also important that 
estimates be unbiased and have a measure of uncertainty, which 
multiple regression produces. For these reasons, Morrissey and 
Ruxton (2018) argued that using biased regression methods will 
be a detriment to biological studies, such as selection gradient 
analyses, where the values of the individual selection coefficients 
and their uncertainty are of interest.

For certain questions and studies of selection, however, obtain-
ing unbiased estimates may be of less importance to researchers 
than obtaining accurate estimates. Methods that decrease the 
variance of an estimator more than they increase the square of 
the bias will reduce the mean square error (MSE) of the estimator 
and increase its accuracy. This is the well-known bias–variance 
trade-off (Hastie et al., 2009). In many biologically relevant cases, 
we may be able to obtain more accurate estimates of selection, by 
introducing bias toward estimates that are a priori more reasona-
ble. We already discussed two classes of methods that are biased 
but may increase the accuracy of estimated selection: subset 
selection and dimension reduction. Regularization, which is also 
known as shrinkage, is a third class of methods that may increase 
the accuracy of estimated coefficients, although it has not been 
widely applied in selection analyses (but see Morrissey, 2014). 
Regularized regression fits a model with all of the original traits, 
but their estimated coefficients are shrunken toward (or to) zero 
compared to the OLS estimates. This reduces the variance of the 
estimated coefficients, while also biasing the estimates toward 
zero. Depending on the relative changes in variance and bias, 
this can either increase or decrease the accuracy of estimated 
coefficients.

Ridge regression (Hoerl & Kennard, 1970), the lasso (Tibshirani, 
1996), and their combination, the elastic net (Zou & Hastie, 2005), 
are the common types of regularization that are similar to OLS 
regression, but add a penalty to the sum of squared errors (ridge) 
or absolute values (lasso). They find the best-fit regression coeffi-
cients by minimizing the following functions:

β̂ridge = argmin
β





n∑
i=1

Ñ
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j=1

xijβj

é2
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where n is the number of observations, p is the number of 
traits, β0 is the intercept, and λ is the tuning parameter, chosen by 
the researcher, that determines the relative impact of the usual 
residual sums of squares vs. the regularization penalty (Hastie et 
al., 2009).

In the case of ridge regression, where the penalty is applied 
to squared coefficients (L2 regularization), larger coefficients are 
disproportionately shrunken compared to small coefficients. In 
the presence of multicollinearity, these large coefficients also 
tend to be the ones that are estimated with the most error. In 
ridge regression, all squared coefficients are shrunk toward zero, 
but do not become zero unless λ is infinity. Therefore, all of the 
traits with nonzero gradients in an OLS analysis will still have 
nonzero gradients following ridge regression. Lasso regularization 
penalizes the absolute value of the coefficients (L1 regularization) 
rather than their square (Tibshirani, 1996). Consequently, some 
of the estimated coefficients may be exactly zero when λ is suffi-
ciently large, and thereby the lasso performs both shrinkage and 
variable selection. The elastic net is a combination of ridge and 
lasso penalties allowing the relative weighting of the two penal-
ties to be adjusted either by choice of the investigator or accord-
ing to some criteria, such as cross-validation. The elastic net 
thus can result in both shrinkage and variable selection. Ridge 
and lasso penalties can also be expressed as Bayesian priors over 
the model parameters (e.g., ridge = Normal prior; lasso = Laplace 
prior), and indeed there are several other Bayesian forms of regu-
larization (Gianola, 2013; Melo et al., 2019; Park & Casella, 2008). 
Bayesian analyses allow for a more flexible set of models to be 
implemented through a variety of prior distributions that may 
better match the data, and they also yield uncertainty in their 
estimates through the posterior distribution. However, this flexi-
bility can come with optimization problems and a high computa-
tional cost (e.g., Celeux et al, 2012). In this article, we specifically 
focus on ridge, lasso, and elastic net penalties in a frequentist 
framework.

It is important to state at the outset that different aspects of 
selection may be of primary interest in each study, and conse-
quently, there is no single measure of accuracy and no single 
regression method that is appropriate to apply across the board 
to selection analyses. We focus on four different measures of 
accuracy that capture aspects of the total strength and direction 
of a multivariate selection vector, and that are likely to be of gen-
eral interest to evolutionary biologists: (a) The proportional error 

in the total estimated strength of selection, given by 
‖β̂‖
‖β‖ , (b) the 

MSE of the estimated multivariate selection gradient, given by 
the Euclidian distance between β̂ and β, scaled by the number 
of traits 

(∥∥∥β̂− β
∥∥∥ /n

)
, (c) divergence in the direction of estimated 

and true selection, given by the angle between the vectors β̂ and 
β, and (d) the proportion of individual coefficients (all coefficients 
and those with p < .05 in a standard multiple regression) that esti-
mate selection in the correct direction (i.e., have the correct sign).

Here we investigate the utility of regularized regression for the 
estimation of the strength and direction of multivariate vectors 
of linear selection, and give guidance on when these approaches 
are more accurate compared to OLS regression using these four 
measures of accuracy. We first assess the frequency and extent 
of multicollinearity in a sample of studies. Next, we simulate 
data where the true selection gradient is known, apply the dif-
ferent regression approaches, and quantify the accuracy of each 
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approach. Finally, we reanalyze data from the three published 
studies to compare the estimates of selection from standard, 
principal component, and regularized regression, and the ability 
of each model to correctly predict fitness in independent data.

Methods
Quantifying multicollinearity
The VIF is a metric of multicollinearity that is commonly pro-
duced by most regression packages and indicates how much the 
estimated variance of a regression coefficient is increased above 
what it would be if that trait was uncorrelated with all others in 
the model. The VIF for trait i is

VIFi = (n− 1)σi
2 ∗ (X′X)−1

ii = P−1
ii

where P is the phenotypic covariance matrix of the traits 
measured. VIFs produce a sensible measure of the effect of mul-
ticollinearity on the precision of the estimate for each regression 
coefficient. However, arbitrary rules of thumb, such as discarding 
variables with a VIF greater than some constant are not very sen-
sible (O’brien, 2007).

Unfortunately, many published selection studies do not 
include the phenotypic covariance matrix necessary for the cal-
culation of the VIF, making it difficult to determine the perva-
siveness of multicollinearity. We acquired a handful of relevant 
studies from different systems to quantify the extent of multi-
collinearity observed in empirical data. We haphazardly searched 
for multivariate selection studies that presented the phenotypic 
covariance matrix of the traits measured, or which had the raw 

data available as a supplement to the article or published in the 
Dryad data repository. We identified 10 papers (Angell et al., 2020; 
Bartkowska & Johnston, 2015; Brachi et al., 2012; Chapurlat et al., 
2019; Lindholm et al., 2014; Morrissey, 2014; Oh & Shaw, 2013; 
Poissant et al., 2016; Sanjak et al., 2018; Sztepanacz & Rundle, 
2012; Walker et al., 2014) that estimated multivariate selection 
on 3–31 traits and calculated the average and range of VIFs for 
traits included in the published analyses (Table 1). One caveat of 
this approach is that many studies may have already excluded 
correlated traits during exploratory analyses (e.g., Chapurlat et 
al., 2019), leading to an underestimation of the VIFs likely to be 
found for suites of traits.

Data simulations
Proof of concept simulation
We start with a proof-of-concept example to demonstrate the 
behavior of multiple and regularized regression in the absence 
and presence of multicollinearity. For each simulation, we sim-
ulated n records of the three traits from a multivariate normal 
distribution with a covariance structure of an identity matrix 
I, or mid (Supplementary Table S1) and high multicollinearity 
(Supplementary Table S2), respectively. In the presence of mid 
multicollinearity, the VIFs for the three traits were 37.3, 5.7, and 
27.0, and the average VIF was 23.3. In the presence of high mul-
ticollinearity, the VIFs were 79.8, 11.8, and 56.7, and the average 
VIF was 50.1. This is a high average multicollinearity compared to 
the published studies shown in Table 1. The simulated selection 
gradient β was [−0.18, 0.30, −0.60], and we drew unique gradients 
of fitness with respect to phenotype from a Poisson or binomial 

Table 1.  Recent studies that estimate multivariate selection using the Lande–Arnold multiple regression framework and that have 
phenotypic data available either within the article or on the Dryad data repository.

Study Species Number of 
traits

Trait type(s) Fitness component(s) Approximate 
sample size

Mean 
VIF

Max. 
VIF

Poissant  
et al. (2016)

Parus major 4 Morphological Lifetime reproductive 
success

986 males; 1,095 
females

1.1 1.1

Brachi et al. 
(2012)

Arabidopsis 
thaliana

7 Phenological Total fruit length 688 1.1–10.4 27.5

Bartkowska &  
Johnston, 
(2015)

Lobelia 
cardinalis

6 Phenological and 
morphological

Total seeds produced 
per individual

860 2, 2.6 4.9

Lindholm et al. 
(2014)

Poecilia 
reticulata

7 Morphological and 
Reproductive

Number of offspring 
sired

30 2–4.5 9.1

Walker et al. 
(2014)

Notiomystis 
cincta

9 Plumage color and 
morphological

Number of mates, 
number of 
fertilizations, number 
of fledglings

79 1.2, 3.7  6.9

*Sztepanacz 
and Rundle 
(2012)

Drosophila 
serrata

8 Chemical 
communication

Binomial mating 
success

1,978 5.4 15.4

Sanjak et al. 
(2018)

Homo 
sapiens

25 males
31 females

Biomedical Lifetime reproductive 
success

217,728 females;
158,638 males

122.9 1944

Chapurlat et al. 
(2019)

Gymnadenia 
conopsea

19 Chemical 
communication, 
phenology, morphology

Number of 
fruits × fruit mass

139; 169 3.0, 2.3 9.0

*Angell et al. 
(2020)

Protopiophila 
litigata

17 Chemical 
communication

Binomial mating 
success

186; 234 21 52.3

*Chong et al. 
(2018)

Arabidopsis 
thaliana

4 Phenological Fruit production 50 (line means) 6.2 12.5

Morrissey 
(2014)

Ovis aries 4 Morphological Survival 846 males; 398 
females

2.8 4.5

Oh and Shaw 
(2013)

Laupala 
cerasina

3 Courtship song Binomial acoustic 
preference

73 1.0 1.0

Note. Studies were haphazardly chosen and are not an exhaustive sample. Mean and max variance inflation factor (VIF) are the average and maximum VIF of 
predictors in the model. *Studies that were analysed using regularized regression in 'Empirical case studies section' 

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad064#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad064#supplementary-data
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distribution. Because of the nonlinear mapping between fitness 
and phenotype in these simulations, the simulated selection 
gradient is not equal to the true gradient in each simulation. To 
determine the true selection gradient in each simulation we fol-
lowed the approach in Morrissey (2014), calculating the selection 
gradient as the partial derivative of trait value with respect to 
relative fitness for each trait by finite differences. We generated 
106 records of phenotype according to the true value of P for each 
simulation, and then for every individual calculated expected 
and absolute fitness and averaged them to obtain population 
mean fitness. For each of the three traits, we recalculated popu-
lation mean fitness after adding and subtracting 0.03 from each 
phenotypic record, and then took the difference to determine the 
partial derivative of trait value with respect to relative fitness.

Empirically informed simulations
The estimates of selection and their standard errors produced 
by the standard Lande–Arnold approach of multiple regression 
are influenced by four key parameters: the size of the popula-
tion sampled, n; the number of traits measured, p; the phenotypic 
covariance structure among the traits, P; and the distribution of 
the fitness component measured. To assess the utility of regu-
larized regression in selection gradient analyses more generally, 
we simulated data spanning an empirically informed parameter 
space, which represents realistic scenarios that may be encoun-
tered in selection studies that are undertaken in the field or the 
lab. We simulated all combinations of (a) sample size, n = 100, 400, 
1,000, (b) number of traits, p = 4, 7, 12, 17, (c) low, and mid/high 
eigenvalue dispersions of P which were informed by the empirical 
P collected in Table 1, and (d) fitness measures which were either 
binomial or Poisson distributed to represent common scenarios 
such as mating success and seed count/offspring number, respec-
tively (Supplementary Table S3). For each scenario, we carried 
out two sets of simulations. In the first set of simulations, all the 
traits were simulated to be under selection. In the second set of 
simulations, at least one trait was always under selection, but the 
other included traits were not all necessarily under selection. The 
number of traits not under selection was randomly determined 
in each simulation.

For each simulation, we simulated unique P from an inverse 
Wishart distribution with scale matrix S and degrees of freedom 
v, to span the range of multicollinearity we observed in Table 1. 
Each P was standardized to unit variance for each trait. For each 
simulation, we simulated n records of p traits, z, with a mean of 
0 and covariance P from a multivariate normal distribution. We 
drew unique gradients of fitness with respect to phenotype, b, 
from a normal distribution (µ = 0, σ = 3) and normalized b to 
unit length. We then simulated individual fitness from a Poisson 
or binomial distribution with expected values of exp(zbʹ) or  
logit−1(zbʹ), respectively. To calculate the true selection gradients 
β for each simulation, we used the method of finite differences 
described for the proof-of-concept example above.

Analyses
Proof of concept and empirically informed simulations
We estimated the vector of linear selection gradients, β̂, for each 
of the simulated data sets using least-squares multiple regres-
sion, ridge regression, lasso, and the elastic net. Our analyses 
were implemented in R (R Core Team, 2023) using the lm function 
for least-squares multiple regression, and the elastic net package 
(Friedman et al., 2010) for regularized regression. The shrinkage 
parameter λ for regularized regressions was chosen using 10-fold 
cross validation (CV) to minimize the MSE of the models. Equal 

weight (α = 0.5) was given to ridge and lasso penalties for elas-
tic net regression. The response variables were either Poisson 
or binomially distributed, however, we fit linear models with a 
Gaussian function for all methods to make them comparable to 
the standard Lande–Arnold regression approach.

Empirical case studies
For 3 of the 10 studies in Table 1 that are identified with an aster-
isk, we reanalyzed the data using standard linear regression and 
regularized regression approaches. Each case study data set was 
randomly split into an estimation (85% of the data) and a test set 
(15% of the data), with the estimation set used to estimate stand-
ard and regularized selection gradients, as described in the pre-
vious section. For regularized models, the shrinkage parameter λ 
was chosen using 10-fold CV to minimize the MSE of the models, 
and for elastic net regression equal weight was given to ridge and 
lasso penalties (α = 0.5). The best-fitting model from the estima-
tion set was used to predict fitness in the test set. To obtain confi-
dence intervals on the predictions, we bootstrapped the analysis 
500 times, redrawing unique estimation and test sets. We quan-
tified the accuracy for models with binomial fitness measures 
by classification accuracy, and positive and negative predictive 
values. For Poisson distributed fitness, we classified the accuracy 
by the percent variance of true fitness that was explained by pre-
dicted fitness in the test data (R2).

Results
Published selection gradients
Most studies of multivariate selection that we surveyed focus on 
relatively few traits (three to eight traits) and have modest data 
sets of tens to hundreds of observations (Table 1). A few stud-
ies have thousands of observations, while one study of humans 
includes hundreds of thousands of observations. The median of 
mean VIFs over studies is 5.4, while the median of the maximum 
VIF over studies is 8.5. Two studies have average VIFs over 10, and 
these are both studies that include large numbers of traits (Angell 
et al., 2020; Sanjak et al., 2018). Five studies have maximum VIF 
values over 10. One possible factor shaping VIF in these studies 
is the exclusion of highly correlated predictors a priori, a type of 
exploratory data filtering not necessarily described in the meth-
ods of papers.

Proof-of-concept
The results of the proof-of-concept example are shown in Figure 
2. We examined the accuracy of each method of analysis in 
response to the average VIF of the model. VIFs reflect the com-
bination of sample size, trait number, and data structure that 
leads to multicollinearity, and therefore, provide a more complete 
assessment of multicollinearity than any one of these individual 
parameters we varied. In cases where there was no multicollin-
earity in the simulated data, all regression methods performed 
well. For Poisson distributed fitness, there is a small upward bias 
in the total strength of estimated selection at low multicolline-
arity for all regression methods and for multiple regression with 
binomial fitness (Figure 2A). Some upward bias is expected, as a 
consequence of taking the L2 norm of a vector estimated with 
error in a finite sample (Morrissey, 2014). As the sample size 
increases, the magnitude of this bias should decrease. For high 
multicollinearity, multiple regression performed poorly for both 
fitness distributions, overestimating the total strength of selec-
tion by as much as three times its true value (Figure 2A and B). 

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad064#supplementary-data
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Ridge regression, on the other hand, consistently underestimated 
the total strength of selection, but by less than 50%. Estimates 
were further from the truth for all methods when fitness was 
binomially distributed for all methods, and this behavior was 
exacerbated when multicollinearity was high.

Empirically informed simulations
As above, we examined the accuracy of each method of analysis 
as a function of the average VIF of the model. The performance of 
all regression methods in terms of the error in the total estimated 
strength of selection is shown in Figure 3A–D. In all simulations, 
regularized models produce better estimates of the total strength 
of selection than Lande–Arnold multiple regression when VIF is 
high. Multiple regression tends to overestimate the total strength 
of selection and overestimate it more than regularized models 
at moderate to high VIF. The difference between the methods 
is small when multicollinearity is low, with OLS regression per-
forming better than regularized regression in some cases. Overall, 
however, regularized models perform as well at high multicolline-
arity as multiple regression does at low multicollinearity.

The type of regularization that performs best depends on the 
distribution of the fitness component measured. Ridge regression 
was best when fitness had a Poisson distribution (Figure 3A and 
C) and lasso was best when fitness was binomially distributed 
(Figure 3B and D). In the simulations, the weighting of L2 vs. L1 
regularization (α) in the elastic net was fixed at 0.5. There was not 
much difference between lasso and elastic net over the range of 
multicollinearity or fitness distributions studied. Overall, the total 
strength of selection was more poorly estimated by all methods 
when fitness is binomially distributed (Figure 3C and D) and when 
some traits that are included in the model are not under selection 
(Figure 3D).

The performance of all regression methods in terms of our 
measure of MSE is shown in Supplementary Figure S1A–D. At low 
multicollinearity, all regression methods perform similarly, but 
regularized regression performs slightly worse at the lowest VIF 

than OLS regression. With high VIF, OLS always showed the high-
est MSE, and ridge regression always performed the best. When 
all traits were subject to selection, lasso and elastic net regres-
sions had slightly higher MSE than ridge regression, but when 
some traits were not under selection, MSE of lasso and elastic 
net regressions was markedly higher at high VIF (Supplementary 
Figure 1C and D). This behavior is unexpected as one of the 
potential advantages of lasso and elastic net is to perform feature 
selection or shrink some coefficients to zero.

Regularized and multiple regression both estimated similar 
directions of multivariate selection (Figure 4). When the aver-
age VIF of the traits was less than 10 there was little difference 
between the methods. At high multicollinearity (VIF ≥ 40) regu-
larized models were closer, on average, to the true direction of 
selection by about 10 degrees when sample sizes were low and 
only a few degrees when sample sizes were high. However, the 
confidence intervals on these estimates are larger than the aver-
age difference between the methods.

The final measure of accuracy we considered was whether the 
estimated gradients had the correct sign. The results for simula-
tions where all traits were under selection are shown in Figure 
5. The lasso and elastic net can shrink estimates to 0, and when 
they did, we considered this to be a direction error when there was 
simulated selection on that trait. Similarly, if the simulated selec-
tion on the trait was 0 and the method estimated a nonzero gradi-
ent that was also considered a direction error, although this rarely 
happened in this set of simulations. We considered the accuracy 
of all individual gradients together, and the accuracy of the sub-
set of gradients that were far enough from zero to be statistically 
supported in a multiple regression. On average, all methods did 
a good job of estimating the direction of the subset of individual 
gradients that were statistically supported in multiple regression 
(p < .05) (Figure 5A and B solid bars). However, multiple regression 
and ridge regression had the lowest estimation error, suggesting 
they are superior to lasso and elastic net. When considering all 
coefficients together (Figure 5A and B transparent bars), ridge 

Figure 2.  Proportional error in the estimated length of β (total strength of selection) when fitness has a (A) Poisson or (B) binomial distribution, as a 
function of the average variance inflation factor (VIF) of predictors. Points depict the mean of 300 simulations of each parameter combination and 
bars show the 95% confidence intervals of the estimates.

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad064#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad064#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad064#supplementary-data


Evolution Letters (2024), Vol. 8  |  367

regression and elastic net outperformed multiple regression 
when multicollinearity was high, and performed similarly to each 
other and to multiple regression when multicollinearity was low. 
Lasso performed the worst in all cases, and in particular, when 
all gradients (regardless of statistical support) were considered 
together. This is because in Figure 5, no traits were truly unse-
lected, so any coefficients shrunk to 0 were treated as an error.

The results for simulations where some of the traits included 
in the model are not under selection are shown in Figure 6. First, 
we considered classification accuracy for lasso and elastic net 
methods, i.e., did the model correctly include (exclude) a trait that 
was (not) under selection (Figure 6A). Ridge and multiple regres-
sion estimate selection on all traits in the model, precluding a 
meaningful metric of classification accuracy for these methods. 
Both lasso and elastic net performed similarly to each other and 
for both distributions of fitness. On average, classification accu-
racy was between 50% and 60%, and this did not depend on the 
multicollinearity of the traits. We next considered how well each 
regression method performed at estimating the correct direction 

of selection (Figure 6B). The estimated selection gradient was con-
sidered incorrect if it was estimated to be nonzero for traits that 
were not under selection, and if it was zero or of different sign 
for traits under selection. On average the proportion of gradients 
estimated in the correct direction was less than 50% across the 
range of multicollinearity studied. All methods performed sim-
ilarly poorly to each other and for both distributions of fitness, 
and much worse than in simulations where all traits were under 
selection.

Case studies
We reanalyzed data from two case studies where the fitness meas-
ure was binomially distributed and one where fitness was Poisson 
distributed, using multiple and regularized regression. We do not 
know the true selection gradient in real data, so we quantified the 
performance of each model by how well it predicted fitness in the 
test data. For the Sztepanacz and Rundle (2012) data, there was 
no difference in predictive ability between any of the regression 
methods (Table 2). The estimated selection gradients were very 
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Figure 3.  Proportional error in the estimated length of β (total strength of selection) when fitness has a binomial or Poisson distribution as a function 
of the average VIF of predictors. Points depict the mean of 300 simulations of each parameter combination and bars show the 95% confidence 
intervals of the estimates. Line with shading shows a LOWESS smooth curve ± one standard error. “Top panel” shows results for simulations where all 
traits are under selection and have a (A) Poisson (B) binomial distribution. “Lower panel” shows results from simulations where only some traits are 
under selection and fitness has a (C) Poisson (D) binomial distribution. Note the difference in scale of the y-axis for different panels.
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similar, and consistent in both magnitude and sign between the 
methods. For these data, regularization does not appear to be an 
improvement or cost compared to standard Lande–Arnold regres-
sion. This is not surprising, considering the average VIF of these 
data was relatively low (5.4), eight traits were studied, and the 
sample size was very large compared to most studies (n = 1,978).

In the original analysis of Angell et al. (2020), selection was 
estimated on the first 9 of 17 principal components and trans-
formed to estimates of selection on individual traits (Fig. 3A of 
Angell et al., 2020) using the approach outlined in Chong et al., 
(2018). We show these gradients in Table 3 alongside our regu-
larized estimates. The VIF was 21 in these data and the sample 
size was 186 individuals. In the original paper, the authors found 
statistical support for selection acting on 10 of 18 traits studied 
using the Chong et al., (2018) approach. For three of these traits, 
OLS and the three regularized regression methods estimated 
selection in the opposite direction. Despite the differences in 

the estimated selection gradients, all of the regression methods, 
including Lande–Arnold regression, predicted fitness with similar 
accuracy as indicated by the positive and negative predicted val-
ues (Table 3).

Chong et al., (2018) also estimated selection gradients on prin-
cipal component scores (first 4 of 5 PCs) and transformed them 
into the original traits. Their results suggested that selection on 
flowering time and flowering duration was of equal strength and 
in opposite directions. Ridge regression yielded a similar result, 
with selection for earlier flowering and for longer flowering time 
of approximately equal magnitude (Table 4). Lasso regression, on 
the other hand, estimated selection for earlier flowering that was 
about twice as strong, but estimated no selection on flowering 
duration. Using the ridge regression model to predict fitness in 
an independent set of data explained more of the variation in 
fitness than the lasso model, indicating that it is a better model 
than the lasso in this case. All of the regularized models had 

Figure 4.  Angle between the vector of estimated multivariate selection and the true selection gradient (accuracy of the estimated multivariate 
direction of selection) when fitness has a (A) Poisson and (B) binomial distribution. Points depict the mean of 300 simulations of each parameter 
combination and bars show the 95% confidence intervals of the estimates.

Figure 5.  The proportion of individual selection gradients estimated to be in the correct direction when there is selection on all traits for (A) Poisson 
and (B) binomial distributed fitness. Transparent bars with 95% confidence intervals are determined with all estimated gradients. Solid bars with 95% 
confidence intervals are determined for estimated gradients that have a p-value <.05 in a standard multiple regression.
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higher predictive ability than standard Lande–Arnold regres-
sion for these data, but none of the differences were statistically 
significant.

Discussion
Dealing with multicollinearity in selection analyses has been a 
challenge since Lande and Arnold (1983) proposed the estima-
tion of selection on multivariate trait combinations using mul-
tiple regression. Regularized regression is an approach that has 
become particularly popular in recent years with the rise in 
machine learning and “big data” (e.g., Acharjee et al., 2013; Okser 
et al., 2014). Our simulations show that, for some measures of 
accuracy, using regularized regression in multivariate studies of 
selection can provide a substantial benefit compared to stand-
ard multiple regression. For other measures of accuracy, regu-
larized regression may perform more poorly than least-squares 
analyses. Below, we evaluate general trends that come from our 
analyses and the usefulness of regularized regression for estimat-
ing the strength and direction of selection on multivariate trait 
combinations.

Overall, our simulations of known selection gradients show 
that when multicollinearity is low there is no detectable cost of 
using regularized regression when accuracy is assessed as the 
total strength of selection, MSE of the multivariate selection 
gradient, or in the overall direction of selection. When multicol-
linearity is high, all the regularized models perform better than 
OLS multiple regression for these measures of accuracy. However, 
which regularized model performs best depends on the meas-
ure of accuracy, whether fitness has a binomial (viability-like) 
or Poisson (fecundity-like) distribution, and whether some traits 
included in the analysis are not under selection. Improvements 
in the accuracy of the total strength of selection and MSE can be 
rather large, but improvements in the estimation of the direction 
of selection are always modest.

We observe the largest benefit of regularization when estimating 
the total strength of selection acting on a suite of traits (Figure 3). In 
the presence of any estimation error, the total strength of selection 
(calculated by the length of the estimated vector) is biased upward, 
which we observe at low levels of multicollinearity (Figure 3). This 
is the bias highlighted by Hereford et al. (2004) for univariate esti-
mates of the strength of selection, determined by absolute values 

Figure 6.  (A) Proportion of individual selection gradients that were correctly selected (or not) as being under selection all traits included in the 
analysis are under selection. (B) Proportion of individual selection gradients that were estimated in the correct direction when only some traits 
included in the analysis are under selection. Height of the bar is the average proportion with 95% confidence intervals from 300 simulations. 
Classification of feature accuracy was from a contingency table.

Table 2.  Estimated sexual selection gradients on male cuticular hydrocarbons of Drosophila serrata from Sztepanacz and Rundle (2012).

Regression method OLS Lasso Ridge Elastic net

Coefficients (SE)

l2 0.066 (0.031) 0.062 0.060 0.066
l3 −0.074 (0.290) −0.068 −0.069 −0.071
l4 0.005 (0.044) . −0.002 0.001
l5 −0.043 (0.050) −0.010 −0.034 −0.012
l6 −0.232 (0.058) −0.209 −0.212 −0.214
l7 0.060 (0.085) – 0.041 –
l8 0.557 (0.041) 0.545 0.538 0.551
l9 −0.234 (0.052) −0.205 −0.220 −0.206

Accuracy – 0.65 [0.572, 0.680] 0.625 [0.566, 0.677] 0.625 [0.569, 0.677] 0.625 [0.569, 0.677]
PPV – 0.635 [0.522, 0.732] 0.634 [0.518, 0.737] 0.635 [0.520, 0.742] 0.635 [0.519, 0.735]
NPV – 0.631 [0.521, 0.738] 0.630 [0.517, 0.732] 0.631 [0.521, 0.740] 0.631 [0.520, 0.737]

Note. OLS estimates from multiple regression were presented in the original paper and regularized estimates are presented alongside. Coefficients shown in bold 
were statistically supported in multiple regression at α = 0.05. OLS = ordinary least squares; PPV = positive predictive value; NPV = negative predictive value.
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of selection gradients. They showed that the bias is large when the 
standard errors are as large as the estimated coefficients, a com-
mon situation in selection gradient analysis, but that the bias rap-
idly decreases as relative error decreases. This upward bias is on 

the order of 
√

1+
( s
b

)2
 where s is the standard error and b is the 

absolute value of the regression coefficient (Morrissey, 2014). When 
multicollinearity is high and the sample size is low, standard errors 
of the estimates are often much larger than the estimates them-
selves, and therefore regularization helps reduce this bias. We found 
that the total strength of selection is estimated with more error, and 
consequently, a larger upward bias, when fitness is binomially dis-
tributed than Poisson distributed, for a given sample size and mul-
ticollinearity. This is a consequence of the higher residual variance 
in binomial than Poisson models. The stronger shrinkage of coef-
ficients by ridge regression compared to lasso or elastic net better 
attenuates the larger upward bias. However, the weaker shrinkage of 
coefficients imposed by lasso and elastic net is more helpful at low 
multicollinearity when fitness has a Poisson distribution.

In some scenarios, it may be enough for researchers to simply 
determine whether a trait is or is not under selection, and the 
direction of selection acting on it. This is the rationale for our final 
measure of accuracy, the proportion of estimates that are in the 

correct direction. In this context, least-squares regression always 
performs as well as regularized regression, showing the benefits 
of a lack of bias. As expected, ridge regression performs just as 
well as least squares, since it never alters the sign of estimates 
relative to least squares. Lasso was notably inferior to the other 
estimates, and the elastic net shares some of this disadvantage.

An unexpected result is that both the lasso and elastic net reg-
ularization perform poorly when some of the traits are not under 
selection. One of the advertised advantages of these methods is 
that they allow shrinkage of small estimates to 0, which would 
seem to give them an advantage in detecting the absence of 
selection. For suites of traits where only some are under selection, 
lasso and elastic net correctly identify the traits under selection 
about 55% of the time, on average (Figure 6A). This result under-
scores that the traits identified as/as not being under selection 
will be those that in combination with other traits in the model 
yield better predictions of fitness, not those that are more likely 
to be/not be under selection. Selection is rarely estimated in the 
correct direction for any of the regression methods when some of 
the traits included in the model are not under selection, for the 
same reason (Figure 6B). Our results suggest that unless there is 
an a priori reason to predict that correlated traits are also under 

Table 3.  Estimated sexual selection gradients on male cuticular hydrocarbons of Protopiophila litigata from Angell et al. (2020).

Regression 
method

PC 
(9PCs)

OLS Lasso Ridge Elastic net PC (17 
PCs)

Coefficients 
(+/− SE)

– FID peak 1 0.195 0.023 (0.621) – 0.086 – 0.491
– FID peak 2 0.396 −0.384 (0.835) −0.294 −0.287 −0.475 −0.080
– FID peak 3 0.438 −0.947 (0.904) −0.851 −0.817 −1.228 1.646
– FID peak 4 −0.086 0.440 (0.581) 0.256 0.291 – −0.140
– FID peak 5 0.520 0.372 (1.133) – 0.142 – 0.472
– FID peak 6 1.446 0.640 (0.860) 0.303 0.454 – 0.783
– FID peak 7 −0.291 −0.241 (0.552) −0.176 −0.162 – −0.403
– FID peak 8 −0.266 0.612 (1.296) – 0.023 – −1.164
– FID peak 9 −0.332 −0.537 (0.758) −0.580 −0.182 – −0.035
– FID peak 10 −0.066 −0.232 (0.976) – 0.025 – −0.272
– FID peak 11 0.003 −0.124 (1.071) – −0.104 – −0.014
– FID peak 12 −0.232 −0.353 (0.906) – −0.182 – −0.340
– FID peak 13 −0.807 −1.080 (0.801) −0.823 −0.547 – −0.558
– FID peak 14 −0.659 0.526 (0.764) – 0.202 – −1.528
– FID peak 15 0.170 1.799 (0.650) 1.312 1.263 1.181 0.311
– FID peak 16 −0.370 −0.345 (0.749) – 0.029 – 0.452
– FID peak 17 −0.429 0.499 (1.091) – 0.191 – −0.051
– FID peak 18 0.371 NA – 0.067 – 0.431
Accuracy – – 0.616 [0.474, 0.763] 0.609 [0.447, 0.763] 0.616 [0.474, 0.763] 0.610 [0.447, 0.763] –
PPV – – 0.613 [0.400, 0.824] 0.604 [0.400, 0.813] 0.610 [0.417, 0.818] 0.606 [0.400, 0.800] –
NPV – – 0.621 [0.421, 0.810] 0.616 [0.412, 0.813] 0.623 [0.412, 0.824] 0.617 [0.412, 0.810] –

Note. PC estimates were presented in the original paper and we show the regularized and OLS estimates alongside. The selection gradients shown are for the data 
collected in 2013. Coefficients shown in bold were statistically supported in multiple regression at α = 0.05. OLS = ordinary least squares; PPV = positive predictive 
value; NPV = negative predictive value.

Table 4.  Estimated selection on Arabidopsis phenology from Chong et al., (2018).

Regression 
method

OLS regression PC regression 
(4 PCs)

Lasso Ridge Elastic net

Coefficients (+/− SE)

– Flowering time −0.299 (0.191) −0.181 −0.371 −0.143 −0.249
– Flowering duration 0.050 (0.182) 0.186 – 0.109 0.048
– Branch number 0.080 (0.085) 0.034 – 0.083 0.067
– Rosette diameter 0.059 (0.068) 0.072 – 0.072 0.070
– Rosette leaf number 0.061 (0.097) 0.033 – −0.006 –
R2 – 0.55 [0.007, 0.939] – 0.680 [0.081, 0.997] 0.964 [0.838, 0.997] 0.696 [0.059, 0.996]

Note. PC estimates were presented in the original paper and we show the regularized estimates alongside. OLS = ordinary least squares.
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selection, including them in a selection analysis will lead to less 
accurate estimates of selection on focal traits, than not including 
them.

Regularization introduces bias into estimated regression coef-
ficients by placing constraints on the magnitudes of estimated 
coefficients, which also reduces their variance. Ultimately, the 
question of interest and structure of data will determine whether 
and which type of regression is likely to be the most useful. We 
show that the decrease in the variance of regularized estimates 
can outweigh the increase in bias that regularization introduces, 
leading to more accurate estimates of summaries of multivariate 
selection by some of our accuracy measures. However, for other 
measures of accuracy, the benefit of decreased variance may not 
outweigh the increase in bias, presenting an argument for OLS 
multiple regression in those cases. When the estimate of selec-
tion on a particular trait is the parameter of interest, applying 
regularization to the entire estimated selection gradient may not 
produce a more accurate estimate of selection for any individual 
trait. It depends on whether the decrease in variance for that trait 
is outweighed by the increase in bias. OLS, however, will always 
provide unbiased estimates of selection on individual traits.

Other traditional solutions to the problems of multicollinearity 
and limited data are to perform subset selection or use principal 
component or other data reduction techniques (Lande & Arnold, 
1983; Mitchell-Olds & Shaw, 1987). However, these approaches 
can have undesirable properties, such as producing estimates 
of selection in the wrong direction as demonstrated in Figure 
1. Choosing how to reduce a data set can invite arbitrary deci-
sions regarding the number of important principal components 
to include. A frequent, but underdocumented analog of this data 
reduction problem is in the initial choice of variables to measure, 
where researchers may choose to exclude highly correlated traits 
a priori, in the interests of reducing the variance inflation that the 
study of correlated traits brings. Our results demonstrate that, 
in some cases, we can study aspects of selection on highly cor-
related traits in a meaningful way using regularized regression. 
A previous study that explored regularized regression for esti-
mating selection in Soay sheep suggested that it did not improve 
our understanding of selection in this system, but highlighted 
the possible utility in other situations (Morrissey, 2014). Our 
more comprehensive simulations show that regularization can 
improve the accuracy of the total strength and direction of esti-
mated multivariate selection gradients under realistic scenarios.

Our reanalysis of the three published data sets provided mixed 
results for the benefits of regularization. We obtained different 
estimates of selection than Angell et al. (2020) who estimated sex-
ual selection via binomial mating success on pheromone traits 
in Protopiophila litigata. Using principal component regression, 
they found statistically supported selection on 10 of 18 traits. 
Our reanalysis using all the regularization techniques, as well 
as least squares, estimated selection on three of those 10 traits 
in the opposite direction. We also estimated the trait under the 
strongest selection (β = 1.446) in the original analysis to be under 
almost five times weaker selection (β = 0.3). The reconstituted 
selection gradients in the original analysis represent selection on 
only 50% of the multivariate trait space (selection was estimated 
on 9 of 18 PCs), while the regularized estimates encompass the 
entire space. In principle this could be one explanation for the dif-
ference in the estimated selection gradients, however, that does 
not seem to be the case here. The reconstituted selection gradi-
ents from an analysis of 17 of 18 PCs are not more similar to the 
regularized estimates (Table 3). Despite producing different esti-
mates of selection, all the models did a similar job at predicting 

fitness in an independent data set (Table 3), demonstrating that 
all estimated multivariate selection gradients, including those 
in the original paper, provide important biological information 
about selection. However, they do not provide the same answers 
with regard to the strength and direction of selection on individ-
ual traits, highlighting that the question at hand will determine 
which method will perform best.

For the other two case studies we reanalysed, regularized 
regression provided similar results to the original analyses. The 
estimated sexual selection gradient in Sztepanacz and Rundle 
(2012) was very close to that produced by regularized regression, 
showing no benefit (or cost) to using the regularized approach 
when data are abundant, and multicollinearity is low. The regu-
larized reanalysis of Chong and Stinchcombe (2018) recapitulated 
the results they found from performing principal component 
regression and back-transforming the coefficients to the original 
traits.

There are similarities between regularized regression and 
principal component regression, however, regularized regression 
allows more flexibility. Although PC regression allows researchers 
to set some multivariate trait combinations to zero, unless the 
loading of a trait on all principal components is zero, it will be 
estimated to have a nonzero coefficient. Therefore, PC regression 
shares more similarity to ridge regression than the lasso. One 
particular benefit of regularization compared to PC regression is 
that it is possible to omit some traits from the regularization and 
not others by applying separate penalty factors to each trait. If 
the penalty factor for a particular trait is set to 0, no shrinkage 
is applied to the estimated coefficient. This option is straightfor-
ward to implement in the glmnet R package and is very useful if a 
researcher wants unbiased estimates of selection for some traits, 
or is particularly interested in an estimate of the strength of 
selection acting on one focal trait and fitting others as covariates. 
Regularized regression also determines optimal shrinkage based 
on the data, by using CV, obviating the need for arbitrary deci-
sions by the analyst. In traditional PC regression, the researcher 
chooses how many PCs to regress on relative fitness, omitting 
those that explain the least variation which also contribute the 
most to multicollinearity (Jolliffe, 2002), often based on some 
arbitrary cutoff of variance explained or visual break in a scree 
plot. This has been criticized on the grounds that these PCs can be 
important in predicting relative fitness (Chong et al, 2018; Jolliffe, 
2002; Mitchell-Olds & Shaw, 1987). There are at least two alter-
native ways of choosing which PCs to include that could miti-
gate this problem. The first is the employment of cross-validation 
in the choice of variables. The second is to determine whether 
the variance explained by a given principal component is larger 
than the sampling error using the Tracy–Widom distribution 
(Johnstone, 2008; Saccenti et al., 2011; Sztepanacz & Blows, 2017). 
Neither approach has, to our knowledge, been widely applied in 
selection studies.

Despite the advantages we highlight, regularized regression 
has drawbacks. The estimates it produces are biased, unlike 
least-squares estimators. Although we demonstrate the bias–
variance trade-off can work in favor of regularized regression in 
the range of parameters and for the summaries of multivariate 
selection that we studied, the introduced bias reduces the util-
ity of regularized selection gradients in meta-analyses (Morrissey 
& Hadfield, 2012; Siepielski et al., 2013). We, therefore, suggest 
that regularized gradients be presented alongside OLS multiple 
regression estimates and their standard errors. In the frequen-
tist framework we employed, regularized regression does not 
directly yield standard errors of estimated coefficients, standard 
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error, or p-values. Implementing such error estimation by boot-
strapping or cross-validation, or by using Bayesian approaches is 
possible but more time-consuming. Some researchers may view 
the lack of p-values and standard errors as a drawback of using 
regularized regression in selection analyses. We do not share this 
opinion, given the rampant misunderstanding of the meaning 
of statistical significance, and that biological and statistical sig-
nificance are often unrelated (Motulsky, 2015; Wasserstein et al., 
2019). The magnitudes of the coefficients will indicate their rela-
tive importance. However, when estimates of individual selection 
coefficients and their uncertainty are the parameters of most 
interest, OLS regression or Bayesian approaches to regularization 
that allow for uncertainty of parameter estimates to be retained 
through the posterior distribution, will likely be a more favora-
ble approach. Regularized regression may also have more limited 
utility when the goal is to obtain estimates of mean-standardized 
selection gradients (Hereford et al., 2004) on traits that are meas-
ured on different scales. Traits measured on different scales will 
have different magnitudes of the regularization penalty applied 
to them, simply due to differences in the scale of the data (Hastie 
et al, 2009).

Overall, our analyses show that regularized regression is a 
straightforward and easily implementable approach that can 
provide more accurate estimates of the total strength and direc-
tion of multivariate selection than traditional approaches. Our 
reanalysis of the three case studies showed that it can help the 
interpretation of selection when multicollinearity is high and 
data are limited, and that it produces similar selection gradi-
ents to multiple regression in the remaining cases. Ultimately, 
the question and data structure at hand will determine which 
regression approach will be best for estimating selection in 
each case. Regularized regression is a promising method for 
future studies of multivariate selection and will become par-
ticularly important as phenomic technologies increase and the 
number of traits that we can estimate selection on in a single 
study.
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