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Abstract

Raw honey contains a diverse microbiota originating from honeybees, plants, and soil.

Some gram-positive bacteria isolated from raw honey are known for their ability to produce

secondary metabolites that have the potential to be exploited as antimicrobial agents. Cur-

rently, there is a high demand for natural, broad-spectrum, and eco-friendly bio-fungicides in

the food industry. Naturally occurring antifungal products from food-isolated bacteria are

ideal candidates for agricultural applications. To obtain novel antifungals from natural

sources, we isolated bacteria from raw clover and orange blossom honey to evaluate their

antifungal-producing potential. Two Bacillus velezensis isolates showed strong antifungal

activity against food-isolated fungal strains. Antifungal compound production was optimized

by adjusting the growth conditions of these bacterial isolates. Extracellular proteinaceous

compounds were purified via ammonium sulfate precipitation, solid phase extraction, and

RP-HPLC. Antifungal activity of purified products was confirmed by deferred overlay inhibi-

tion assay. Mass spectrometry (MS) was performed to determine the molecular weight of

the isolated compounds. Whole genome sequencing (WGS) was conducted to predict sec-

ondary metabolite gene clusters encoded by the two antifungal-producing strains. Using MS

and WGS data, we determined that the main antifungal compound produced by these two

Bacillus velezensis isolates was iturin A, a lipopeptide exhibiting broad spectrum antifungal

activity.

Introduction

Antifungal resistance in medically and agriculturally relevant fungi is increasing globally,

straining the limited selection of safe and effective antifungal agents. The development of

novel antifungal agents is much slower than the spread of antifungal resistant strains, which

presents a serious human health and food security problem [1]. In the medical field, fungal

infections are extremely difficult to treat. Fungicides that are broad spectrum, effective, and

safe to use, are limited. Furthermore, the prevalence of multi-drug resistant fungal pathogens
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has been increasing in hospitals and nursing homes [2]. For the widely deployed azole family,

resistance has been observed in common fungal pathogens [1]. For example, multi-azole-resis-

tant strains of the opportunistic pathogen Aspergillus fumigatus have been isolated from

patients with invasive aspergillosis [3]. Fluconazole-resistant Candida glabrata with increased

resistance to the other first-line antifungal drug echinocandin was also observed, which further

limited the available options to treat this infection [4]. Additionally, multidrug-resistant Can-
dida auris, first isolated in 2009, has invasively infected patients worldwide through hospital-

acquired transmission [5]. In the agricultural field, fungal plant pathogens have also acquired

resistance against antifungal agents. Even though more fungicides are available for field appli-

cation, the rapid rate of antifungal resistance development is alarming. A classic example of an

organism with high risk of antifungal resistance development is Botrytis cinerea, which is able

to adapt to new fungicide classes. Multidrug-resistant B. cinerea strains have been isolated in

strawberry fields around the world [6]. The predominant class of chemicals used for antifungal

treatment of crops is azoles. Scientists have urged to restrict the use of azoles in agriculture, as

resistant fungal strains are being continuously isolated from environmental and clinical set-

tings at an increasing rate [7]. However, due to the lack of alternatives, it is still being widely

used in economically important crops to avoid crop losses. In contemporary food systems,

spoilage caused by fungi is no less serious. Food loss due to fungal spoilage was estimated to

account for 5–10% of the world food supply, and post-harvest spoilage was estimated to con-

tribute to 25% of global food waste [8, 9]. In a survey of 51 juice manufacturers, 92% reported

experiencing yeast or mold spoilage in their finished product and 89% reported previous

occurrences of yeast or mold spoilage of their ingredients [10]. Spoilage fungi are difficult to

control due to their ability to survive extreme conditions, like low water activity, limited nutri-

ents, high acidity, and extreme heat treatment. Moreover, the trade-off of common fungal-

controlling approaches in the food industry is the negative environmental impact, such as food

waste, unsustainable packaging, and environmental damage by synthesized chemicals [11].

Natural bio-fungicide could be a beneficial addition to traditional fungal-controlling

approaches and mitigate the environmental impact.

The urgent need for natural, novel, safe, and potent antifungal compounds lead us to seek

solutions from natural products, like honey. Raw honey is inhibitory to fungi, partially due to

its high sugar content and low water activity [12]. However, a survey comparing the antifungal

effects of raw monofloral honey with synthetic honey demonstrated that heather and lavender

honey exhibited higher antifungal activity than sugar-based synthetic honey [13, 14]. Other

than osmotic inhibition, some chemical components in raw honey are also antifungal: hydro-

gen peroxide, flavonoids, phenolic acids, lysozymes, and other antioxidant compounds [15].

Additionally, antifungal bacteria are present in raw honey. In previous studies, Bacillus spp.

strains isolated from raw honey were able to produce a variety of secondary metabolites to

inhibit the growth of other microorganisms and gain survival advantages. B. subtilis H215 was

isolated from raw honey and it was inhibitory to Byssochlamys fulva H25 [16]. Another isolate

found in US domestic honey, B. thuringiensis SF361, showed broad spectrum antifungal activ-

ity against Aspergillus, Penicillium, Byssochlamys, and Candida albicans [17, 18]. Additionally,

lactic acid bacteria isolated from honey samples including Lactobacillus plantarum, Lactobacil-
lus curvatus, Pediococcus acidilactici, and Pediococcus pentosaceus showed inhibition against

pathogenic Candida species [19]. Both lactic acid bacteria and Bacillus spp. produce a variety

of antifungal secondary metabolites including organic acids, volatile compounds, ribosomally

synthesized peptides, and nonribosomal peptides [20–22]. The potential application of these

microbial natural products in the food industry, agricultural and medical field is promising.

One example is nisin, a bacteriocin isolated from Lactococcus lactis subsp. lactis strain and

exhibits broad-spectrum antibacterial activity [21]. Nisin is used in dairy and meat products as
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a biopreservative compound to inhibit foodborne pathogen Listeria monocytogenes [23]. Addi-

tionally, several strains of B. subtilis, B. thuringiensis, and B. amyloliquefaciens were approved

as commercial biopesticides by the Environmental Protection Agency (EPA) [24]. Lipopep-

tides secreted by these Bacillus species were used commercially as antifungal agents to control

plant diseases caused by phytopathogens [25].

In an effort to isolate novel antifungal compounds as candidates for medical and/or agricul-

tural applications, we designed this study to isolate, purify, and characterize antifungal pro-

teinaceous compounds from raw honey. Several Bacillus strains were isolated from raw clover

and orange blossom honey. Extracellular antifungal compounds were purified via ammonium

sulfate precipitation, solid phase extraction (SPE), and reversed-phase high performance liquid

chromatography (RP-HPLC). Whole genome sequencing was performed on two antifungal

producing strains identified as B. velezensis. Using a combination of genome secondary metab-

olite gene cluster analysis and mass spectrometry (MS), we determined that the antifungal

compound belonged to the iturin family.

Results

Four of 15 bacterial isolates from clover honey and 8 of 23 isolates from orange blossom honey

yielded an inhibition zone when spotted on at least one fungal indicator. The 16S rRNA gene

sequence of these 12 isolated strains showed highest identity to that of several Bacillus spp. To

evaluate the antifungal potential of honey isolates, food-isolated fungal strains were selected as

indicators for antifungal assay (S1 Table). Cross reactivity of the honey bacterial isolates

against these fungal strains and BLAST identification results were summarized in Table 1.

Table 1. Summary of identity, source, and cross-reactivity against food-associated fungal indicators of honey bacterial isolates.

Isolates BLAST ID a Honey

Source

Cross reactivityb

Syncephalastrum Aspergillus S11-

0016

Aspergillus S11-

0033

A.

fumigatus
A.

niger
Rhodotorula P.

glabrum
Cladosporium

Co-1 B. toyonensis Clover - - - + - - - -

Co-5 B. toyonensis Clover - - + ++ ++ - ++ -

Co-6 B. toyonensis Clover + - + ++ ++ + ++ -

Co-10 B. aerius Clover \ \ \ + - \ + +

Co-17 B. cereus Orange

blossom

+ - + ++ + - + -

Co-18 B. megaterium Orange

blossom

\ \ \ - - \ - -

Co-20 B.

amyloliquefaciens
Orange

blossom

+ \ - + + + - ++

Co-21 B. cereus Orange

blossom

+ - + + - - - -

Co-26 B.

amyloliquefaciens
Orange

blossom

+ \ \ + - - + +

Co-29 B.

amyloliquefaciens
Orange

blossom

+ \ \ + + - - ++

Co-30 B.

amyloliquefaciens
Orange

blossom

+ \ \ + + - - ++

Co-33 B. aryabhattai Orange

blossom

\ \ \ - - \ - -

a BLAST ID was determined based on 16S rRNA gene homology search using NCBI Nucleotide BLAST tools. The species with the highest similarity were reported.
b Cross reactivity was determined using deferred overlay inhibition assay. The inhibition level against the fungal indicators was defined based on visual observation. “+”:

low inhibition level. “++”: strong inhibition level. “-”: no observed inhibition. “\”: inconclusive result.

https://doi.org/10.1371/journal.pone.0266470.t001
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Isolates that showed antifungal activity against at least three fungal indicators were selected for

antifungal production in liquid broth. The production conditions, including the medium type,

incubation temperature, and shaking speed, were optimized. As the only two isolates showing

the ability to excrete antifungal compounds, isolate Co-29 and Co-30 were selected and

renamed as WRB-ZX-001 and WRB-ZX-002 for the following experiments. These two isolates

were grown in BHI broth at 30˚C, 150 rpm for 24 hours and 48 hours, and cell-free superna-

tant showed clear inhibition zones against fungal indicators. The antifungal compounds pro-

duced by the isolates were further purified and the isolates were whole genome sequenced.

Antifungal compounds produced by isolates WRB-ZX-001 and WRB-ZX-002 were first

purified by ammonium sulfate precipitation of the cell-free culture supernatant. Precipitate

from 60% ammonium sulfate showed the highest antifungal activity (Fig 1, Table 2). Ammo-

nium sulfate precipitates were further purified by solid phase extraction with C18 columns

and acetonitrile. The eluants for the optimal recovery of antifungal compounds were 50% and

60% acetonitrile. The SPE eluates were loaded onto HPLC, and fractions were collected to test

for antifungal activity. Two major peaks were observed in the HPLC spectra and fractions with

Fig 1. Deferred inhibition assay of purified products from Bacillus velezensis WRB-ZX-001 and WRB-ZX-002

against food-isolated Aspergillus fumigatus. Precipitates of WRB-ZX-001 and WRB-ZX-002 from 60% ammonium

sulfate were shown in A and B. Solid phase extraction eluates of 60% acetonitrile for WRB-ZX-001 and WRB-ZX-002

were shown in C and D. Two-fold serial dilution was performed for all samples to determine the antifungal activity

units.

https://doi.org/10.1371/journal.pone.0266470.g001
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elution times between 28.5 min to 30 min for both isolates showed highest antifungal activity

(200 AU/mL). These fractions were loaded once more onto HPLC to confirm their purity, and

single peak was observed for both samples (Fig 2). SPE eluates (50% acetonitrile) and HPLC

fraction collection samples (28.5 min to 30 min) for isolates WRB-ZX-001 and WRB-ZX-002

were analyzed with DIMS and LC-MS, respectively. The HPLC samples analyzed with LC-MS

showed major peaks with m/z value of 1057.57 (Fig 3), which was also present in SPE sample

WRB-ZX-002 (results not shown). Another compound with singly charged m/z value of

1043.55 and doubly charged m/z value of 522.28 was present in both SPE eluates and HPLC

collected samples (S1 Fig). Based on results from previous studies, we presumed that the ions

with m/z value of 1043.55 and 1057.57 were C14 and C15 iturin A [M+H]+, respectively [26,

27]. The molecular formula of C14 and C15 iturin A is C48H74N12O14 and C49H76N12O14 [28].

For isolate WRB-ZX-001, the 4,183,488 bp genome was assembled to 15 contigs with an

average coverage of 104x and N50 of 685,546 bp. For isolate WRB-ZX-002, the genome size is

4,185,188 bp, and the genome was assembled to 15 contigs with an average coverage of 128x

and N50 of 1,001,971 bp. Both isolates have the same GC content of 45.97%. Isolate WRB-ZX-

001 contains an estimated 4,165 genes and 4,003 coding sequences (CDSs), while isolate

WRB-ZX-002 contains an estimated 4,167 genes and 4,004 CDSs. To obtain functional labels,

protein BLAST hits were mapped against the curated Gene Ontology (GO) database and GO

Table 2. Antifungal activity of purification products of Bacillus velezensis isolates against food-isolated Aspergil-
lus fumigatus.

Purification procedure Bacillus velezensis WRB-ZX-001 Bacillus velezensis WRB-ZX-002

Cell-free filtrate 20 AU/mL 40 AU/mL

Ammonium sulfate precipitant 800 AU/mL 800 AU/mL

Solid phase extraction eluate 800 AU/mL 1600 AU/mL

HPLC fraction 200 AU/mL 200 AU/mL

Antifungal activity unit (AU/mL) is defined as the reciprocal of the highest dilution showing a clear inhibition zone.

https://doi.org/10.1371/journal.pone.0266470.t002

Fig 2. Reversed-phase HPLC of purified products of Bacillus velezensis WRB-ZX-001 and WRB-ZX-002.

Purification process included ammonium sulfate precipitation, solid phase extraction, and HPLC fraction collection.

Single peaks shown in A and C were from isolate WRB-ZX-001 and WRB-ZX-002, respectively, and both have shown

inhibition against fungal indicator strain Aspergillus fumigatus as shown in B and D.

https://doi.org/10.1371/journal.pone.0266470.g002
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terms were assigned to the query sequences, with 3,261 annotated sequences for isolate

WRB-ZX-001 and 3,263 annotated sequences for isolate WRB-ZX-002. Based on BLAST2GO

genome annotation results, the predicted CDSs were assigned to three principal categories:

biological process, cellular component, and molecular function. For isolates WRB-ZX-001 and

WRB-ZX-002, the most abundant groups in the category of biological process were cellular

process (38%), metabolic process (36%), and biological regulation (8%). In the category of cel-

lular component, the most dominant terms were integral component of membrane (55%),

cytoplasm (26%), and plasma membrane (16%). In the category of molecular function, the

most representative terms were hydrolase activity (32%), oxidoreductase activity (17%), metal

ion binding (13%), transmembrane transporter activity (11%), DNA binding (10%), and ATP

binding (9%). Detailed GO annotation and node score distribution for Bacillus velezensis
WRB-ZX-001 and WRB-ZX-002 was reported in S3 Table. To calculate average nucleotide

identity (ANI) and classify the two isolates at species level, orthoANI analysis was performed.

The type strain that isolates WRB-ZX-001 and WRB-ZX-002 were most closely related to was

B. velezensis FZB42, with orthoANI values of 98.96% and 98.93% respectively. Based on the

proposed species boundary of 95–96% orthoANI value, we concluded that both WRB-ZX-001

and WRB-ZX-002 should be classified as B. velezensis species [29–31]. To elucidate the phylo-

genetic relationships between our two isolates and the closely related B. amyloliquefaciens
group, a total of 42 reference genomes were obtained from the NCBI database. Forty-one B.

amyloliquefaciens group isolates and one B. subtilis subsp. subtilis str. 168 were included in the

phylogenetic analysis. The phylogenetic tree based on 4,035 core genome SNPs revealed close

relatedness of the two isolates from this study with type strains B. velezensis FZB42 and B. vele-
zensis KACC18228 (Fig 4). Additional genome comparison of B. velezensis type strains FZB42

and CBMB205, B. amyloliquefaciens type strain DSM7, and isolates WRB-ZX-001 and

WRB-ZX-002 was visualized with BRIG version 0.95 (Fig 5). Gaps in the circular chromosome

represented regions with no homology to the reference strain B. velezensis FZB42. Gaps for the

two isolates from our study were consistent due to high levels of nucleotide homology. Several

gaps were present when comparing two isolates from this study with the closely related type

strain B. velezensis FZB42, indicating the potential presence of novel gene products. To evalu-

ate the secondary metabolite synthesis potential, genomes of WRB-ZX-001 and WRB-ZX-002

were annotated using NCBI Prokaryotic Genome Annotation Pipeline (PGAP) database.

BAGEL4 was used to predict open reading frames (ORFs) for ribosomally synthesized proteins

and peptides, including bacteriocins, ribosomally synthesized and post-translationally modi-

fied peptides (RiPPs). Five putative gene clusters of interest were identified by BAGEL4 in the

genomes of B. velezensis WRB-ZX-001 and WRB-ZX-002. Both strains contained 3 contigs

with genes related to the production of secondary metabolites, including antimicrobial peptide

Fig 3. Mass spectra for purified antifungal compounds produced by Bacillus velezensis WRB-ZX-001 and

WRB-ZX-002. A and B are LC-MS spectra for HPLC collected active fraction of WRB-ZX-001 and WRB-ZX-002. Ion

with m/z value of 1057.57 was assigned to C15 iturin A [M+H]+. Ion with m/z value of 1079.55 was assigned to C15

iturin A [M+Na]+.

https://doi.org/10.1371/journal.pone.0266470.g003
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LCI and thiopeptide, bacteriocin amylocyclicin, linear azole/azoline-containing peptide

(LAP), and lantibiotic cerecidin. Additionally, antiSMASH was used to identify secondary

metabolite biosynthetic gene clusters (BGCs) including nonribosomal peptide synthetases

(NRPSs), polyketide synthases (PKSs), RiPPs, and other antimicrobial synthases. A total of 16

putative BGCs were identified in both genomes, including 5 NRPSs for bacillibactin, fengycin,

bacillomycin D, iturin and surfactin, three trans-acyl-transferase polyketide synthases (trans-

AT-PKS) for macrolactin H, bacillaene and difficidin, one type III PKS, three RiPP clusters for

thiopeptide, lanthipeptide, amylocyclin, and others (Table 3). According to the results of anti-

SMASH analysis, both isolates contained a gene cluster with 88% similarity to iturin synthe-

tase, and the predicted peptide sequence of the nonribosomal peptide is L-Asn-D-Tyr-D-Asn-

L-Gln-L-Pro-D-Asn-L-Ser. To further confirm the presence of iturin gene cluster, BLAST

analysis was performed on both genomes. Four iturin genes (ituD, ituA, ituB, ituC) were

detected in the genome of both isolates, with a similarity of 98.60% to itu operon complete

CDS from the reference strains B. subtilis ZK0 (NCBI accession number: KT781920.1) and B.

subtilis subsp. krictiensis str. ATCC 55079 (NCBI accession number: KU170613.1). The pres-

ence of iturin gene clusters in the genome further validated the MS data, indicating the pro-

duction of C14-iturin (m/z of [M+H]+ 1043.55) and C15-iturin (m/z of [M+H]+ 1057.57).

Fig 4. Core genome phylogeny of 43 Bacillus amyloliquefaciens group isolates. Maximum likelihood tree was

constructed with core genome SNPs identified by kSNP. 41 reference genomes of Bacillus amyloliquefaciens group

isolates were obtained from NCBI genome database. The core genome of Bacillus subtilis 168 was used as outgroup.

Phylogeny was inferred by RAxML under time-reversible model with gamma distributed substitution sites and 1000

bootstrap repetitions. Bar represents 0.2 substitution per site. Isolates from this study were labeled with red circle.

https://doi.org/10.1371/journal.pone.0266470.g004
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Absorption at OD 600 nm was used to plot the growth curve for isolate WRB-ZX-001 and

WRB-ZX-002. Antifungal activity against fungal indicator A. fumigatus was calculated and

plotted with the growth curve (Fig 6). The antifungal production started at 24 hours and 18

hours for WRB-ZX-001 and WRB-ZX-002, respectively. The highest antifungal production

occurred after cells reached late stationary phase. The antifungal activity was quantified by

serial dilution, which was the reason why the antifungal activity fluctuated before reaching

maximum production. To optimize the production of antifungal compounds, bacterial cells

were collected at 48 hours for the following experiments. The heat stability and protease stabil-

ity for the antifungal compounds produced by WRB-ZX-001 and WRB-ZX-002 were tested

and results were summarized in Table 4. After heat treatment using a 15 min, 121˚C cycle in

the autoclave, a 2-fold decrease in antifungal activity for WRB-ZX-001 was observed while

sample WRB-ZX-002 had no decrease. For the protease stability test, antifungal compounds

produced by WRB-ZX-001 and WRB-ZX-002 showed resistance to pronase E, α-chymotryp-

sin, and trypsin, with no change in their antifungal activity compared to control. Only sample

WRB-ZX-002 showed a 2-fold decrease in antifungal activity after treatment with pepsin.

Based on these results, we concluded that antifungal compounds produced by WRB-ZX-001

and WRB-ZX-002 were heat-resistant and protease-resistant.

Discussion

In general, bacterial spores are abundant in raw honey, many of which have the potential to

exhibit antifungal properties [19]. Previous studies have isolated Bacillus spp., Clostridium

Fig 5. Genome comparison of Bacillus velezensis WRB-ZX-001 and WRB-ZX-002 against closely related Bacillus
type strains. Bacillus velezensis FZB42 was used as the reference strain. The circular ring map was constructed by

BLAST Ring Image Generator (BRIG, version 0.95). From inner to outer ring: 1) GC content; 2) Bacillus velezensis
FZB42 nucleotide sequence; 3) GC Skew; 4) Bacillus velezensis WRB-ZX-001 nucleotide sequence; 5) Bacillus velezensis
WRB-ZX-002 nucleotide sequence; 6) Bacillus velezensis CBMB205 nucleotide sequence; 7) Bacillus amyloliquefaciens
DSM7 nucleotide sequence.

https://doi.org/10.1371/journal.pone.0266470.g005
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spp., Lactobacillus spp. and other lactic acid bacteria (LAB) from raw honey [32]. Many mem-

bers from LAB and Bacillus species have been shown to be antifungal, including Lactobacillus
casei, Lactobacillus plantarum, B. subtilis and B. velezensis [22]. Bioactive compounds, like

ribosomally synthesized bacteriocins and non-ribosomally synthesized small peptides, can be

produced by these bacteria, which could potentially be exploited for industrial and medical

applications. In this study, our two antifungal B. velezensis isolates from raw honey are inhibi-

tory against various food-isolated fungi (Table 1). Bacillus species devote a large portion of

their genome to secondary metabolism, potentially due to competition they face in the envi-

ronment [33]. Bacillus species are ubiquitous in soil and the ocean, which often have complex

microbial communities. By producing secondary metabolites that can inhibit closely related

Table 3. Potential secondary metabolite synthesis gene clusters identified in Bacillus velezensis WRB-ZX-001 and WRB-ZX-002 by antiSMASH 5.0.

Strain Cluster Type Froma Toa Secondary metabolite Similarityb (%)

Bacillus velezensis WRB-ZX-001 1 Other 298857 354273 Bacilysin 100

1 Other 500231 554177 Teichuronic acid 100

1 NRPS 876498 928287 Bacillibactin 100

1 RiPP 876498 928287 Amylocyclicin 100

2 PKS-like 65404 106648 \ \

2 Terpene 189448 210188 \ \

2 TransAT-PKS 557837 646070 Macrolactin H 100

3 T3PKS 212154 250873 \ \

3 Terpene 314561 336444 \ \

3 NRPS 360563 498152 Fengycin/Plipastatin 100

3 NRPS 360563 498152 Bacillomycin D 100

3 NRPS 360563 498152 Iturin 88

3 TransAT-PKS 560507 670621 Bacillaene 100

4 TransAT-PKS 85797 191987 Difficidin 100

5 Thiopeptide/LAP 114108 143862 \ \

5 NRPS 154585 219992 Surfactin 91

8 Class II lanthipeptide 47789 66288 \ \

Bacillus velezensis WRB-ZX-002 1 TransAT-PKS 550815 656586 Difficidin 100

1 T3PKS 954998 993717 \ \

1 Terpene 1057405 1079288 \ \

1 NRPS 1103407 1240996 Fengycin/Plipastatin 100

1 NRPS 1103407 1240996 Bacillomycin D 100

1 NRPS 1103407 1240996 Iturin 88

1 TransAT-PKS 1303351 1413465 Bacillaene 100

2 NRPS 73679 125468 Bacillibactin 100

2 Other 447789 501741 Teichuronic acid 100

2 Other 647699 703115 Bacilysin 100

3 PKS-like 65404 106648 \ \

3 Terpene 189448 210188 \ \

3 TransAT-PKS 557837 646070 Macrolactin H 100

4 Thiopeptide/LAP 114001 143734 \ \

4 NRPS 154457 219864 Surfactin 91

6 Class II lanthipeptide 1 18500 \ \

a Location of gene clusters in the Bacillus velezensis genome.
b Similarity based on BLAST analysis against known gene clusters.

https://doi.org/10.1371/journal.pone.0266470.t003
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species and other microorganisms in the ecological niche, Bacillus species have gained signifi-

cant survival advantages [34]. Previous researchers have isolated a variety of secondary metab-

olites with antibacterial and antifungal properties from Bacillus species, some of which are

nonribosomal peptides (NRPs) [34]. NRPs are synthesized by nonribosomal peptide

Fig 6. Growth curve and antifungal activity curve for Bacillus velezensis WRB-ZX-001 (A) and WRB-ZX-002 (B).

Growth curve was plotted by measuring absorption at OD600nm every 30 min and a standard form of logistic equation

was used to fit the absorption data (red line). Antifungal activity was measured by well diffusion overlay inhibition

assay of serially diluted cell-free supernatant every two hours against fungal indicator strain Aspergillus fumigatus and

data were shown in bar plots.

https://doi.org/10.1371/journal.pone.0266470.g006

Table 4. Antifungal activity of heat-treated and protease-treated purified products of Bacillus velezensis isolates

against food-isolated Aspergillus fumigatus.

Treatment Bacillus velezensis WRB-ZX-001 Bacillus velezensis WRB-ZX-002

Control 800 AU/mL 800 AU/mL

121˚C, 15 min 400 AU/mL 800 AU/mL

Pronase E 800 AU/mL 800 AU/mL

Chymotrypsin 800 AU/mL 800 AU/mL

Pepsin 800 AU/mL 400 AU/mL

Trypsin 800 AU/mL 800 AU/mL

https://doi.org/10.1371/journal.pone.0266470.t004
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synthetases (NRPSs) and independent of messenger RNA. NRPs usually go through extensive

modifications, including glycosylation, acylation, and hydroxylation. Due to these modifica-

tions, some NRPs are amphiphilic and able to insert into cell membrane to form pores, like

gramicidin, surfactin, fengycin, iturin, and other lipopeptides. Pore formation in cell mem-

brane will lead to ion leakage and cell death [35, 36]. Some NRPs target closely related cells

while others have broad spectrum. Taking account of the results from LC-MS (Fig 3) and sec-

ondary metabolite genome mining pipeline (BAGEL4 and antiSMASH) (Table 3), we deter-

mined that the major broad-spectrum antifungal compound produced by our B. velezensis
isolates was a nonribosomal lipopeptide, iturin A.

The iturin A operon was demonstrated to contain four open reading frames (ORFs): ituD,

ituA, ituB, and ituC. ituD encodes a putative malomyl coenzyme A transacylase, while ituA,

ituB, and ituC encode iturin synthetases [37]. Iturin A production is regulated by the promoter

on the upstream of ituD [37]. All four ORFs as well as the promoter Pitu were present in the

genome of our two B. velezensis isolates based on BLAST search, with an identity of 98.6% to

itu operon complete CDS. The iturin family is a group of cyclic lipopeptides with hydrophilic

C-terminal heptapeptides and characteristic hydrophobic N-terminal β-amino fatty acids. The

aliphatic chain of iturin contains between 14 to 17 carbons and the peptide chain has a chiral

sequence of LDDLLDL [38]. The iturin family primarily has broad-spectrum antifungal activ-

ity, with limited antibacterial activity [39]. In our study, iturin-producing B. velezensis strains

showed broad spectrum antifungal activities, with antagonistic ability against Aspergillus, Cla-
dosporium, Syncephalastrum (Table 1), and Candida albicans (results not shown). The pro-

posed antifungal mechanism for the iturin family is that they can interact with sterol

components on the surface of fungal membrane and increase potassium permeability [40].

Previous studies showed that iturin A can form ion-conducting pores on bimolecular lipid

membranes and cholesterol can facilitate the pore-formation by expanding the open-state life-

span [35, 36, 41]. Additionally, iturin is able to self-associate and interact with lipid mem-

branes by forming a stoichiometric complex with cholesterol on the membrane surface [40].

Furthermore, iturins with longer acyl chains have stronger antifungal properties due to their

ability to form oligomers and insert deeply into target membranes to form ion-conducting

pores [42]. The pore-forming and membrane permeabilizing abilities of iturin A is concentra-

tion dependent. At high concentrations, iturin A showed higher antagonistic activity against

fungal cells and higher hemolytic activity [43].

In previous studies, Bacillus species have been demonstrated to be able to produce antifun-

gal lipopeptides including members from iturin family. In a study by Pathak and Keharia

(2014), iturin isomers and surfactin families were isolated from crude extract of B. subtilis.
Iturin A2 and Iturin A3/A4/A5 were found to have broad spectrum antifungal activities

against Aspergillus, Fusarium, Chrysosporium, Candida albicans, Trichosporium, Alternaria,

and Cladosporium [26]. One of the iturin A homologues in their study had a mass of 1057.5,

the same as the iturin isolated from our study. Similar to the results from our research, Gong

et al. (2006) identified antifungal lipopeptides from B. subtilis strain PY-1 that was temperature

stable and protease resistant. By using ESI-TOF MS, FAB-MS/MS CID spectrometry and

NMR, they identified the antifungal compounds as iturin A isomers and determined that the

(M+H)+ ions at m/z 1057 were iturin A3 and A4 (C17 aliphatic chain) [44]. Moreover, another

group of researchers isolated B. amyloliquefaciens S76-3 from wheat spikes, which produced

antifungal lipopeptides active against Fusarium graminearum. These lipopeptides were identi-

fied through RP-HPLC and ESI-MS, with iturin A and plipastatin A being the most abundant

molecules. The m/z value of iturin A with C-14 acyl acid chain was 1043.35. Fluorescence

microscopy analyses and transmission electron microscopy (TEM) analyses of lipopeptide-

treated Fusarium graminearum conidia and hyphae showed damages to cell wall and plasma
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membrane, which was consistent with the proposed antifungal mechanism of iturin family

[45]. Overall, itu operon is common in B. subtilis group and B. amyloliquefaciens group, and

our B. velezensis isolates were demonstrated to possess itu operon and produce C14-15 iturin A.

The production of iturin and other lipopeptides by Bacillus species is dependent on the

environment factors, including temperature, pH, carbon source, and oxygen availability. Iturin

is mainly produced at temperature between 25˚C and 37˚C under aerobic conditions [46]. In

our study, the optimum temperature for the production of iturin A by B. velezensis strains was

30˚C. A neutral pH is generally favorable for the production of lipopeptides [43]. In our study,

iturin production was optimized by adjusting the pH of BHI broth to 7.4. In a recent study by

Dang et al (2019), the optimal condition for the iturin A production by B. amyloliquefaciens
LL3 derivative strain was thoroughly investigated using single factor optimization and

response surface methodology. It was determined that inulin was the best carbon source and

L-sodium glutamate was the best nitrogen source. The optimal production condition was

determined to be pH 7.0 and 27˚C with 7, 15 and 0.5 g/L of inulin, L-sodium glutamate and

MgSO4 [47]. In our future studies, this condition will be validated to optimize the production

of iturin by our B. velezensis isolates.

Compared to conventional synthetic fungicides, which raise concerns regarding chemical

residues and antibiotic resistance, biocontrol agents synthesized by living organisms are rela-

tively more environmentally friendly for agricultural applications [48, 49]. Lipopeptides, like

iturin, are considered safe, biodegradable, and eco-friendly. Some previous studies have dem-

onstrated their potential application. Lipopeptides produced by B. subtilis RB14, containing

iturin A and surfactin, were effective at suppressing the damping-off of tomato seedings cause

by Rhizoctonia solani. A mutant of B. subtilis RB14 that cannot produce iturin A or surfactin

failed to inhibit R. solani. Restoration of the gene successfully reinstated the suppressibility

toward the fungal disease [50]. Another study constructed a mutant of B. subtilis ATCC6633

by replacing native promoter with constitutive promoter to increase the production of myco-

subtilin. The mutant strain was able to reduce Pythium infection in tomato seedlings and

increase germination rate [51]. Romero et al (2007) showed in their study that direct applica-

tion of lipopeptide-producing B. subtilis cells or cell-free filtrate to leaf surface can prevent

powdery mildew caused by Podosphaera fusca. Furthermore, by using site-directed mutagene-

sis, they demonstrated that bacterial mutants that lost the ability to produce bacillomycin, fen-

gycin or iturin A were not able to control the powdery mildew disease [52]. Antifungal

lipopeptides produced by Bacillus species could have additional applications. These lipopep-

tides possess the ability to change biofilm formation, motility, and virulence gene expression

of various microorganisms. It is also associated with plant root colonization, plant defense,

and plant growth promotion [53]. With the increased need for biopesticides that have high

specificity, low environmental persistence, and low toxicity, industrial exploitation of these

chemicals or compounds derived from natural products as food preservatives and crop protec-

tion agents is continuously expanding [54]. Iturin A, a biopesticide produced by food-isolated

Bacillus spp. and naturally present in food systems, can be exploited for industrial applications.

The safety of the producer strains and their products need to be evaluated to achieve

broader application of iturin A produced by Bacillus species. One of the major producer

strains for iturin A, B. subtilis, has Qualified Presumption of Safety (QPS) status according to

European Food Standards Authority (EFSA), which indicates that this strain does not harbor

acquired antimicrobial resistance (AMR) genes or exhibit toxigenic activity [34]. B. velezensis
FZB42 type strain, which is closely related to our isolates, was also evaluated by US Environ-

mental Protection Agency (EPA) and considered not toxic, pathogenic, or infective. Therefore,

a tolerance exemption for residues of B. velezensis FZB42 in food commodities was established.

As for the surface-active agents produced by these strains, including surfactin, iturin and other

PLOS ONE Honey isolate Bacillus velezensis produces antifungal lipopeptide

PLOS ONE | https://doi.org/10.1371/journal.pone.0266470 April 6, 2022 12 / 21

https://doi.org/10.1371/journal.pone.0266470


detergents, they can penetrate cell membrane but are not necessarily cytotoxic. Toxicity assays

need to be developed to determine their cytotoxicity specifically. For now, current safety mea-

sures taken by the industry, including historical safety data and routine testing of the strains

and products, are sufficient to ensure the safe usage of strains from the B. subtilis and B. amylo-
liquefaciens group as enzyme production workhorse [34]. Regarding the safety of iturin A, the

acute and subacute toxicity was previously evaluated in mouse models. Preliminary toxicology

study showed that iturin A can induce hepatotoxicity and was deposited in liver, lung, and

spleen. However, organ-specific toxicity of iturin A was reversible after discontinuation of

treatment, which indicated that medical application is still possible [55]. On the other hand, in

a study by Zhao et al (2018), iturin produced by B. subtilis was intragastrically administrated to

mouse models. In acute (7-day) and subacute (28-day) toxicity tests under concentration of

5000 mg/kg and 2000 mg/kg, respectively, iturin was deemed safe and non-toxic, with no sig-

nificant damage to liver, kidney, or small intestines [56]. Overall, rigorous and large scale in
vivo and clinical studies are still needed to fully understand the potential toxicity of iturin A.

A large portion of recent publications on antifungal lipopeptides produced by Bacillus spe-

cies and other gram-positive bacteria focused on partially purified mixtures with varying anti-

fungal activities. The chemical identities of these semi-purified compounds remain

uncharacterized, and the biological implications of these studies remain unclear, which poses

barriers to future studies. Moreover, with the increased availability and popularity of next-gen-

eration sequencing (NGS) and genome mining tools, more recent studies are using these tools

to evaluate the secondary metabolites produced by Bacillus species. However, chemical confir-

mation of those potential metabolites is falling behind. Future studies need to combine genetic

and genomic methods with traditional chemical identification methods to properly identify,

classify, and characterize these potential secondary metabolites. As for the future of iturin fam-

ily, additional studies are necessary to improve the production efficiency and evaluate the

resistance development in fungal model systems.

Materials and methods

Antifungal isolates selection

Raw clover honey and orange blossom honey were purchased from a local honey shop (Dun-

dee, NY). Honey samples were diluted with 0.1% peptone water, and 100 μL of 10−1 and 10−2

dilutions were spread plated on tryptic soy agar (TSA) (BD Difco, Franklin Lakes, NJ). Plates

were incubated at 30˚C for 24 hours. Visually distinct colonies were selected to test their anti-

fungal activity. Eight fungal strains isolated from commercially processed food products were

used as antifungal activity indicators [57]. Food-isolated fungal strains were incubated at ambi-

ent temperature on potato dextrose agar (PDA, BD Difco, Franklin Lakes, NJ) for at least 4

weeks prior to harvest. Fungal spores were harvested by flooding the surface of fully grown

plates with 10 mL 0.1% Tween 80 (Sigma, St. Lois, MO). Spore suspension was filtered with

several layers of sterile cheese cloth to remove debris and stored at -80˚C.

Antifungal assays

Antifungal activities of bacterial isolates were determined by deferred overlay inhibition assay:

fungal spore suspensions were mixed with 10 mL 0.75% soft TSA and overlaid on PDA plates.

Bacterial isolates were spotted with sterile toothpicks on the surface of solidified soft agar with

fungal indicators. Plates were incubated at ambient temperature for 48 to 72 hours and inhibi-

tion zones were recorded. Bacterial colonies that showed antifungal properties were selected

for further analysis. Bacterial isolates were stored in 20% glycerol at -80˚C.
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Bacterial classification through 16S rRNA gene sequencing

Bacterial isolates exhibiting strong inhibition toward fungal indicators were initially identified

by 16S rRNA gene sequencing. DNA was obtained using the Genomic DNA extraction kit

(Qiagen, Germantown, MD) and 16S rRNA genes were amplified through polymerase chain

reaction (PCR). A set of primers (IDT, Coralville, IA) were used to amplify the conserved

region in bacteria. 16S forward primer sequence: 5’-AGAGTTTGATCCTGGCTCAG-3’. 16S

reverse primer sequence: 5’- AAGGAGGTGATCCAGCC-3’. PCR procedures were as follows:

3 μL DNA template, 1 μL forward primer and 1 μL reverse primer, 0.3 μL GoTaq Flexi DNA

polymerase (Promega, Madison, WI), 10 μL 5X Colorless GoTaq Flexi buffer (Promega,

Madison, WI), 4 μL 25 mM MgCl2 (Promega, Madison, WI), 2 μL 10 mM dNTP (New

England Biolabs, Ipswich, MA), 29 μL dH2O. Total volume was 50 μL per PCR tube. Thermal

cycling conditions were as follows: 1 cycle of 94˚C for 5 minutes, 35 cycles of 94˚C for 30 sec-

onds, 50˚C for 1 minute, 72˚C for 2 minutes, 1 cycle of 72˚C for 10 minutes. PCR products

were purified by QIAquick PCR purification kit (Qiagen, Germantown, MD). Purified DNA

products were sent to Cornell University Biotechnology Resource Center (Ithaca, NY) for

Sanger sequencing. The sequencing data were analyzed using NCBI Nucleotide Blast homol-

ogy search to determine the species of those antifungal bacterial isolates [58].

Optimized production of antifungal compounds

Different growth conditions were tested to optimize antifungal production by the honey iso-

lates. Four media were selected for growth optimization: tryptic soy broth (TSB) (BD Difco,

Franklin Lakes, NJ), brain-heart infusion (BHI) (BD Difco, Franklin Lakes, NJ) broth, 1.5%

casamino acids (CAA) (BD Difco, Franklin Lakes, NJ) with 0.5% yeast extract (BD Difco,

Franklin Lakes, NJ) broth, and potato dextrose broth (PDB) (BD Difco, Franklin Lakes, NJ).

Selected growth times were 24 hours or 48 hours, and selected incubation temperature and

shaking speed combinations were 37˚C at 250 rpm or 30˚C at 150 rpm. Following the growth

of each strain under each condition, the cell-free supernatant was tested for antifungal activity.

Cultivated media was first centrifuged at 4˚C, 13000 x g for 10 minutes. Supernatant was then

filtered through a 0.22 μm polyethersulfone (PES) bottle top filter (250 mL, Celltreat, Pepper-

ell, MA). The cell-free filtrate was tested for antifungal activity using a well diffusion overlay

inhibition assay. Wells were made on 25 mL PDA plates using the wide end of sterile 1000 μL

pipette tips (diameter: 8.8 mm). A total volume of 600 μL filtrate was added to each well and

dried in a biosafety cabinet. Fungal spores were suspended and mixed with 10 mL 0.75% soft

TSA and poured onto PDA plates. Plates were incubated at ambient temperature for 48–72

hours, until the complete growth of fungi or the inhibition zone could be visualized. Clear

inhibition zones were observed and recorded.

Purification of antifungal proteinaceous compounds

Two bacterial isolates WRB-ZX-001 and WRB-ZX-002 that showed the ability to excrete anti-

fungal compounds into the broth media were selected for purification. Supernatant of the cell

culture grown at optimized condition was treated with ammonium sulfate to precipitate pro-

teins. Solid ammonium sulfate was added to the supernatant at 4˚C to reach saturation of 20%,

40%, 60%, 80% and 100%. Ammonium sulfate precipitates of each percentage saturation were

collected separately by centrifugation at 13000 x g, 4˚C for 20 min and re-dissolved in sterile

Milli-Q H2O. Precipitates were tested against fungal indicator strain A. fumigatus and fractions

showed antifungal activity were further purified by reversed-phase solid phase extraction

(SPE) using a C18 sorbent cartridge (Sep-Pak Classic, Waters, Milford, MA) with acetonitrile

as solvent. Acetonitrile with gradient concentrations from 0% to 100% with an increment of
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10% was added to eluate the antifungal compounds. All fractions were tested against fungal

indicator strain A. fumigatus through the well diffusion overlay inhibition assay as described

before. Antifungal fractions from SPE were purified via high-performance liquid chromatog-

raphy (HPLC, Agilent 1200 Series Gradient System, Santa Clara, CA). The following HPLC

elution condition was used: 0–10 min mobile phase A (0.05% TFA in dH2O); 10–40 min a gra-

dient of 0–100% mobile phase B (0.05% TFA in acetonitrile); and 40–50 min mobile phase B,

with a flow rate of 1 mL/min. Fraction collection from HPLC was performed every 1.5 min.

The active fractions were re-injected onto HPLC with the same elution condition to confirm

its purity. The antifungal activity of HPLC collected fractions was determined by well diffusion

overlay inhibition assay as mentioned previously. Antifungal activity units (AU/mL) of active

ammonium sulfate precipitate, SPE fractions and HPLC collected fractions, defined as the

reciprocal of the highest dilution yielding a clear inhibition zone, were calculated.

Growth curve and antifungal production

The growth curves of two selected bacterial isolates, WRB-ZX-001 and WRB-ZX-002, and

their antifungal production over time were determined. These two isolates were pre-grown in

5 mL BHI broth at 30˚C, 150 rpm for 12 hours. Pre-growth cell culture (500 μL) was inoculated

into 50 mL BHI broth. Samples were taken every two hours from 0 h to 96 h for cell density

and antifungal activity measurement. The absorbance of the samples was measured at 600 nm

using a spectrophotometer (Spectronic 20D+, Thermo Scientific, Waltham, MA); absorbance

values were used to plot growth curves for the two isolates. Antifungal activity was tested by

well diffusion overlay inhibition assay of sterile-filtered supernatant against fungal indicator

strain A. fumigatus. Cell-free supernatants were diluted two-fold and antifungal activity units

were calculated as the reciprocal of the highest dilution showing a clear inhibition zone. Bio-

logical duplicates were performed. Data was analyzed and visualized in R version 4.0.2. R pack-

age growthcurver 0.3.0 was used to fit the microbial growth data to a standard form of logistic

equation [59].

Heat stability and protease stability test

To measure the heat stability and protease stability of the antifungal compounds produced by

WRB-ZX-001 and WRB-ZX-002, active antifungal fractions of ammonium sulfate precipitate

were selected for testing. For heat stability, samples were treated by steam sterilization at

121˚C for 15 min in an autoclave. Antifungal activity was measured by deferred overlay inhibi-

tion assay of 10 μL 2-fold diluted heat-treated samples. The protease stability was tested by

incubating the samples individually with 100 μg of pronase E (10 mg/mL, Sigma, St. Lois,

MO), α-chymotrypsin (25 mg/mL, Sigma, St. Lois, MO), pepsin (20 mg/mL, Sigma, St. Lois,

MO), and trypsin (2.5%, Sigma, St. Lois, MO) at 37˚C for 30 min. Antifungal activity was mea-

sured by deferred overlay inhibition assay of 10 μL 2-fold diluted protease-treated samples.

Antifungal activity units of heat-treated and protease-treated samples were calculated.

Protein molecular weight determination via mass spectrometry

Active fractions from SPE were analyzed with direct-infusion mass spectrometry (DIMS) to

determine the molecular weight of the antifungal compounds. DIMS was performed on a Tri-

versa Nanomate nanospray direct infusion robot (Advion, Ithaca, NY) attached to a Orbitrap

Fusion Lumos Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA). Samples were

diluted in 50 mM ammonium formate followed by centrifugation prior to direct infusion.

Spectra were acquired in positive ion mode with a resolution setting of 500,000 (at m/z 200).

Active fractions collected from HPLC were analyzed by liquid chromatography-mass
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spectrometry (LC-MS) to measure accurate mass of intact protein. Each sample was diluted

with 0.1% formic acid and analyzed by LC-MS with a Dionex RSLCnano HPLC coupled to an

OrbiTrap Fusion Lumos (Thermo Fisher Scientific, Waltham, MA) mass spectrometer using a

60 min gradient (2–90% acetonitrile). Sample was resolved using a 75 μm x 150 cm PepMap

C4 column (Thermo Scientific, Waltham, MA). MS spectra of protein ions of different charge-

states were acquired in positive ion mode with a resolution setting of 120,000 (at m/z 200) and

accurate mass was deconvoluted using Xcalibur (Thermo Scientific, Waltham, MA). DIMS

and LC-MS analyses were performed at Donald Danforth Plant Science Center, Proteomics &

Mass Spectrometry Facility (St. Louis, MO).

Whole genome sequencing and genome analysis

Cell pellets from overnight BHI culture of the isolates were treated with lysozyme (20 mg/mL,

Millipore Sigma, St. Lois, MO) and RNase A (Qiagen, Germantown, MD). Genomic DNA was

extracted using QiaAMP DNA Minikit (Qiagen, Germantown, MD). Library preparation,

quality control, and sequencing were conducted by Cornell University Biotechnology

Resource Center (Ithaca, NY) using Nextera XT DNA library preparation and indexing kits

(Illumina, San Diego, CA). Illumina MiSeq (Illumina, San Diego, CA) was used to obtain

2 × 250 bp paired-end reads. Reads were trimmed using Trimmomatic (version 0.39) and de
novo assembled with SPAdes (version 3.13.1) using the default k-mer settings for bacterial

genome assembly [60, 61]. Scaffolds less than 500 bp were trimmed and assembly quality was

assessed using QUAST (version 4.0) [62]. Average genome coverage was determined using

BBmap (version 38.45) and SAMtools (version 1.11) [63]. Genome assemblies of B. amyloli-
quefaciens group type strains were downloaded from the National Center for Biotechnology

Information (NCBI) assembly database and average nucleotide identity (ANI) analysis of the

isolates was conducted via the OrthoANI method using OAT (version 1.40) with BLAST+

(version 2.9.0) [31]. The draft genomes of B. velezensis WRB-ZX-001 and WRB-ZX-002

sequenced in this study, the complete genome of B. subtilis 168 as an outgroup, and other 42

genomes of B. amyloliquefaciens group extracted from NCBI were used to construct a SNP-

based phylogeny. The program kSNP v3.0 was used with a k-mer size of 19 as determined by

Kchooser [64]. The core SNPs were used to build the maximum likelihood phylogeny in

RAxML v8.2.12 under general time-reversible model with gamma distributed sites

(GTRGAMMA) and 1000 bootstrap repetitions [65]. The phylogenetic tree was edited in Fig-

Tree v1.4.4 and deposited on Figshare (https://doi.org/10.6084/m9.figshare.16688839). The

absolute core SNP distance matrix was calculated using Geneious v2020.2.4. Rapid annotation

of the genomes was performed using prokka v1.12 [66]. Functional annotation of the predicted

proteins was performed with BLAST2GO v1.4.4 [67]. Additionally, genome annotation was

performed by the NCBI using the Prokaryotic Genome Annotation Pipeline (PGAP) database

[68]. Putative bacteriocin genes were identified using BAGEL4 [69]. Secondary metabolite

genome mining pipeline (antiSMASH) was used to identify potential secondary metabolite

synthesis gene clusters [70]. Genome alignment between our isolates and the most closely

related type strains was performed using BRIG (version 0.95) [71]. Assembled genomes of B.

velezensis WRB-ZX-001 and WRB-ZX-002 were submitted to Sequence Read Archive (SRA)

and GenBank under the BioProject ID PRJNA580475 and PRJNA596478. SRA accession num-

bers are SRR10397796 and SRR10729003.
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