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Microglia are resident immune cells in the central nervous system (CNS) that originate

frommyeloid progenitor cells in the embryonic yolk sac and are maintained independently

of circulating monocytes throughout life. In the healthy state, microglia are highly

dynamic and control the environment by rapidly extending and retracting their processes.

When the CNS is inflamed, microglia can give rise to macrophages, but the regulatory

mechanisms underlying this process have not been fully elucidated. Recent genetic

studies have suggested that microglial function is compromised in Alzheimer’s disease

(AD), and that environmental factors such as diet and brain injury also affect microglial

activation. In addition, studies of triggering receptor expressed on myeloid cells

2-deficiency in AD mice revealed heterogeneous microglial reactions at different disease

stages, complicating the therapeutic strategy for AD. In this paper, we describe the

relationship between genetic and environmental risk factors and the roles of microglia

in AD pathogenesis, based on studies performed in human patients and animal models.

We also discuss the mechanisms of inflammasomes and neurotransmitters in microglia,

which accelerate the development of amyloid-β and tau pathology.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disease. AD brains are
characterized by the combined presence of two structures: extracellular amyloid-β (Aβ) plaques
and intraneuronal neurofibrillary tangles. Aβ plaques create an environment that facilitates the
rapid amplification and spread of pathological tau into large aggregates, initially appearing as the
neuritic, phosphorylated, microtubule-associated protein tau. This is followed by the formation and
spread of neurofibrillary tangles and neuropil threads to other neurons (1).

Recent genetic studies have identified variants in immune-related genes that increase the risk
of developing AD (2), implicating the neuroinflammatory response in AD pathogenesis. Notably
in this regard, coding variants in the triggering receptor expressed on myeloid cells 2 (TREM2)
gene confer the highest AD risk, indicating that microglial neuroinflammation plays a critical role
in AD progression (3, 4). In accordance with these findings, a single-nucleotide polymorphism in
the gene encoding the microglial surface receptor CD33 reduces Aβ phagocytosis by peripheral
macrophages isolated from carriers of heterozygous and homozygous mutations (5–7) supporting
the hypothesis that microglial function is compromised.

The microglial phenotype may change drastically over the course of neurodegeneration, as
demonstrated by studies of TREM2 deficiency in amousemodel of AD (8). A recent comprehensive
survey of the transcriptome of hippocampal microglia over the course of progression from the
healthy to neurodegenerative state, performed at a single-cell resolution, revealed the remarkable
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phenotypic heterogeneity of microglia: the early response state
is characterized by marked proliferation, whereas the late
response state is associated with mounting immune responses
(9). In the latter state, two functionally distinct reactive
microglial phenotypes, typified by modules of co-regulated
type 1 and type 2 interferon response genes, have been
identified (9). These functional changes in microglia are also
influenced by environmental factors such as diet, brain injury, or
smoking.

Here, we review how genetics and environmental factors
influence microglial functions, and then illustrate the
therapeutic targets in AD, with special emphasis on microglial
inflammasomes and neurotransmitters.

AD RISK FACTORS AND MICROGLIA

Genetic Variants in TREM2
TREM2 is a type I transmembrane receptor expressed in a
subset of myeloid lineage cells including microglia, dendritic
cells, osteoclasts, monocytes, and tissue macrophages (10,
11). Homozygous mutations in TREM2 cause Nasu-Hakola
disease, and rare heterozygous variants are associated with
other neurodegenerative diseases such as late-onset AD (3,
4), frontotemporal dementia (12), and Parkinson’s disease
(13). Although the exact molecular mechanisms underlying
the development of neurodegeneration in the brain remain
unknown, abnormalities in TREM2 and its interacting partner
DNAX activating protein of 12 kDa (DAP12) appear to
cause dysregulation of microglial inflammatory responses and
neuronal debris clearance (14, 15). In addition, TREM2 affects
microglial survival in an AD mouse model, as TREM2-deficient
microglia are not able to sustain microgliosis and undergo
apoptosis rather than becoming activated (15). Transcriptome
analysis also revealed the role of TREM2 in chemotaxis,
migration, and mobility (16), as TREM2 deficiency results in
ineffective plaque encapsulation of Aβ and reduced plaque
compaction, which is associated with worsened axonal pathology.
Data from TREM2 knockout mice revealed that CCL2, IL-
1β, TNF-α, and secreted phosphoprotein 1 (SPP1) are the
direct targets of TREM2 signaling (16). Furthermore, TREM2
deficiency influences the microglial metabolic state through
the mammalian target of rapamycin pathway (17). Microglia
lacking TREM2 undergo global changes in their metabolism,
resulting in reduced ATP levels and signs of stress and death.
These observations imply that TREM2 is a critical regulator of
microglial phenotypes.

Interestingly, TREM2 plays distinct functional roles at
different stages: in a mouse model of AD, TREM2 deficiency
ameliorates amyloid pathology in the early disease stage, but
exacerbates the pathology as the disease progresses (8). One
possible explanation might be that TREM2 deficiency affects

Abbreviations: A2ARs, adenosine A2A receptors; ASC, apoptosis-associated

speck–like protein containing a caspase-recruitment domain; DAMPs, damage-

associated molecular patterns; NLRP3, nucleotide-binding oligomerization

domain-, leucine-rich repeat–and pyrin domain–containing 3, TBI; traumatic

brain injury; TREM2, triggering receptor expressed on myeloid cells 2.

different myeloid cell subsets at different stages of AD pathology.
TREM2 deficiency first affects CD45hi myeloid cells, where it is
primarily expressed, but subsequent loss of these CD45hi cells
also affects the function of CD45lo myeloid cells, decreasing
their proliferation and potentially altering other AD-related
phenotypes. Regarding the change in microglial phenotypes,
immune memory in microglia has been shown to modify Aβ

pathology in AD mice (18), in which repeated stimulation
shift from inflammatory to phagocytic microglia by differential
epigenetic reprogramming. The blocking of epigenetic factors
enhanced immune training in microglia, decreases Aβ levels and
improves memory in AD mice (19).

Recent studies reported that binding of apolipoproteins
including apolipoprotein E (APOE) with TREM2 facilitates
microglial uptake of Aβ (20) and that the TREM2-APOE pathway
was identified as the mechanism responsible for switching from
a homeostatic to a neurodegenerative microglial phenotype after
phagocytosis of apoptotic neurons (21) (Figure 1). Targeting the
TREM2-APOE pathway restored the homeostatic signature of
microglia in AD mouse models and prevented neuronal loss in
an acute model of neurodegeneration (21). Moreover, the APOE-
mediated neurodegenerative microglia lost their tolerogenic
function. These findings imply that the TREM2-APOE pathway
is a major regulator of the microglial functional phenotype
in neurodegenerative diseases. On the contrary, the transition
from homeostatic microglia expressing Cx3cr1, P2ry12, and
Tmem119 to the disease-associated microglia (DAM) state with
induction of ApoE was independent of TREM2 (22). Following
loss of homeostatic signature, microglia increase phagocytic and
lipid metabolism activity including upregulation of TREM2 and
lipoprotein lipase to be the full DAM, which depends on TREM2.
Moreover, loss of microglial CX3CR1 has opposing effects Aβ

and tau pathologies (23, 24). Further studies are needed to
uncover the precisemechanism of TREM2-APOE pathway in AD
pathology.

These studies were performed on animal models of Aβ-
related pathologies, but little is known regarding the role of
TREM2 in regulating intracellular tau pathology. Elevated levels
of soluble TREM2 in the cerebrospinal fluid (CSF) of AD
patients, as determined by mass spectrometry, are correlated
with levels of CSF total tau and phosphorylated-tau, but not
the level of CSF Aβ42 (25). Notably in this regard, CSF analysis
revealed that a recently reported rare variant in TREM2 (p.R47H,
rs75932628) is significantly associated with the risk of AD (26). In
addition, carriers of the risk allele exhibited similar phenotypes
(significantly elevated levels of CSF total tau, but not Aβ42, in
AD patients). In addition, our group has recently reported that
TREM2 deficiency leads to heightened tau pathology coupled
with widespread activation of neuronal stress kinases, including
ERK1/2 and JNK, in a mouse model of tauopathy (27). These
observations support the hypothesis that CSF TREM2 is a marker
for tau dysfunction in AD.

Traumatic Brain Injury (TBI)
TBI is associated with the development of neurodegenerative
conditions such as AD and chronic traumatic encephalopathy.
A prominent feature of TBI is the development of an
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FIGURE 1 | Implication of microglia in the development of Alzheimer’s disease. (A) Several conditions are associated with an increased risk of developing AD. For

example, variants in TREM2 ameliorate amyloid pathology in the early disease stage, but exacerbate pathology as the disease progresses. The TREM2-APOE

pathway is responsible for switching from a homeostatic to a neurodegenerative microglial phenotype after phagocytosis of apoptotic neurons. Environmental factors

also affect the microglial reaction to aggregated Aβ or phosphorylated tau. Head trauma also leads to a local increase in the levels of inflammatory mediators, which

may stimulate Aβ generation and restrict phagocytic clearance. Likewise, microbiota influenced by diabetes or diet may regulate microglial phenotypes. (B)

Aggregated Aβ or phosphorylated tau impairs synaptic functions, triggering the release of neurotoxic mediators from microglia. ATP, ADP, and adenosine activate

NLRP3 inflammasomes, followed by the release of IL-1β. Similarly, glutamate released from gap junction hemichannels lead to massive neuronal damage. APP,

amyloid precursor protein; PS, presenilin; ApoEε4, apolipoprotein Eε4; TREM2, triggering receptor expressed on myeloid cells 2; P2X(Y)R, purinergic receptor; A2ARs,

adenosine A2A receptors; AR, adenosine receptor; DAMPs, damage-associated molecular patterns; NLRP3, NACHT, LRR, and PYD domains-containing protein 3;

ASC, apoptosis-associated speck-like protein containing a caspase-recruitment domain.

inflammatory reaction within minutes of the injury event.
Damage-associated molecular patterns (DAMPs) (e.g., ATP,
reactive oxygen species, damaged mitochondria, and necrotic
cells) activate microglia and resident mononuclear phagocytes
in the CNS, which promote neuroprotection and repair through
the clearance of tissue debris and subsequent resolution of the
inflammatory response (28, 29). Unless properly controlled,
microglial activity leads to further neuronal damage through
secretion of pro-inflammatory cytokines and reactive species, as
well as, other mechanisms (29). Analysis of mRNA expression
in microglia/macrophages revealed a rapid rise and fall in
the protective phenotype (CD206, Arg1, Ym1/2, and TGF-β)
and a sustained rise in the inflammatory phenotype (iNOS,
CD11b, CD16, and CD86) after TBI (30). On the other hand,
blocking neural/microglial interaction via CX3CR1 deficiency
conferred neurological protection at early time points after TBI,

but caused appreciable impairments accompanied by persistent
neuronal death at later times (31, 32). In vivo imaging with
positron emission tomography for activated microglia in patients
revealed elevated microglial activation for several years after
TBI (33).

How, then, can microglia activated by TBI trigger rapid and
insidiously progressive AD-like pathological changes? Elevation
of the Aβ burden and phosphorylated tau has been observed
in patients within hours after TBI (34, 35). TBI-induced axonal
injury is among the first perturbations of tau that results
in dissociation from microtubules. Cis phosphorylated-tau (p-
tau) appears within hours after closed head injury and long
before other known pathogenic p-tau conformations, including
oligomers, pre-fibrillary tangles, and NFTs (36). In particular,
cis p-tau contributes to functional impairment in an animal
model of TBI, as well as, in humans (37). Murine microglia
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rapidly internalize and degrade hyperphosphorylated tau (38),
and expression of tau bymicroglia themselves also promotes their
activation (39). Thus, robust and persistent inflammation may be
sufficient to promote tauopathy.

Microglia may play a dual role in Aβ accumulation and
clearance. Increased expression of the gamma secretase complex
proteins on microglia and astrocytes have been observed in a
closed head injury model (40). On the other hand, microglia
containing Aβ have been found in association with plaques after
TBI (41), suggesting phagocytic clearance of Aβ by proteases such
as neprilysin and insulin-degrading enzyme (42). Suppression of
microglial activation is associated with decreases in TBI-induced
Aβ and restores depressed neurogenesis (43). It should be noted,
however, that no studies have conclusively determined whether
Aβ is the cause of microglial activation and inflammation
following TBI.

Given that recent clinicopathologic and biomarker studies
have failed to confirm the relationship between TBI and
development of AD dementia or pathologic changes (44–
46), it is possible that TBI exposure is a risk for late-life
neurodegeneration but not AD. Therefore, further investigation
is clearly needed to determine the relationship between TBI and
cognitive decline.

Gut-Brain Axis
Recent studies have revealed the relationship between the
gastrointestinal tract and the brain. Germ-free mice exhibit
global defects in microglia with altered cell proportions
and an immature phenotype, leading to impaired innate
immune responses. Limited microbiota complexity also
resulted in dramatic alterations in microglial properties (47).
In addition, short-chain fatty acids and microbiota-derived
bacterial fermentation products, have been demonstrated to
regulate microglia maturation and function (47). In AD mice,
perturbations inmicrobial diversity following antibiotic exposure
diminish amyloid pathology (48). Microglia, which lie at the
interface between environmental signals and brain circuitry
throughout embryonic and adult life, are prime candidates as
mediators of these effects.

Sleep
Lack of sleep is suggested as a risk for AD. Chronic lack of
sleep increases Aβ plaque deposition (49), and sleep promotes
efficient soluble Aβ clearance (50). Lack of sleep affects microglial
morphology, phagocytosis, and Aβ clearance (51, 52). A recent
study revealed that upregulation of complement C1q and C3
promotes synapse loss by microglial phagocytosis in AD (53).
Even a short period of sleep loss enhances the mouse cerebral
cortex expression level of complement C3 which activates
synapse loss by microglia, and impaired sleep-wake cycle
reduces microglial Aβ clearance (51). Moreover, chronic sleep
restriction, but not acute sleep deprivation, promotes microglial
phagocytosis without neuroinflammation (52). More detailed
studies are needed to clarify how sleep affects microglial function
and AD pathogenesis.

INFLAMMATORY CUES IN AD

Inflammasomes
Inflammasomes are a group of cytosolic protein complexes that

form to mediate host immune responses to microbial infection

and cellular damage (54). Assembly of an inflammasome triggers

proteolytic cleavage of dormant procaspase-1 into active caspase-

1, which converts IL-1 family cytokine precursors, pro-IL-1β,
and pro-IL-18, into mature and biologically active IL-1β and IL-

18, respectively (55). IL-1β and IL-18, in turn, initiate multiple

signaling pathways and drive inflammatory responses, which
results in neuronal injury or death (Figure 1).

Because IL-1β and IL-18 are key contributors to
the progression of chronic inflammation—associated
neurodegenerative diseases, including AD, inflammasomes are
considered to be major players in chronic neuroinflammation
(56, 57). The Aβ oligomer promotes the processing of pro-
IL-1β into mature IL-1β in microglia, which in turn enhances
microglial neurotoxicity (57). Levels of nucleotide-binding
oligomerization domain-, leucine-rich repeat-, and pyrin
domain-containing 3 (NLRP3) inflammasomes and caspase-1
are substantially elevated in the brains of AD patients (56, 58),
and elevated expression of IL-1β and IL-18 initiates inflammatory
processes in the brain of AD patients. Elevated expression of these
cytokines has also been detected in microglia and astrocytes,
as well as, in neurons, co-localized with both Aβ plaques and
tau deposition. Chronic inflammation may be responsible for
increases in Aβ accumulation and tau phosphorylation in the
brain (59). Halle et al. identified the NLRP3 inflammasome
as a sensor of Aβ in a process involving phagocytosis of Aβ

and subsequent lysosomal damage and release of cathepsin
B (60).

Damaged neurons injured by insoluble Aβ oligomers
and fibrils release DAMPs, which are sensed by NLRP3
inflammasomes, initiating a chain of events that leads to
the maturation of pro-IL-1β and pro-IL-18 and release of
their active forms (Figure 1) (60, 61). In addition, NLRP3
inflammasomes sense disease-associated extracellular amyloid
and unique protein aggregates caused by inappropriate
oligomerization or misfolding (62), likely as DAMPs within the
resident microglia/macrophages after engulfment in the brain.
Deficiency of NLRP3 or caspase-1 substantially attenuates spatial
memory impairment and enhances Aβ clearance in AD model
mice, indicating the importance of inflammasome-mediated
neuroinflammation in AD pathogenesis (56). Furthermore,
upon activation, microglia release ASC specks (63). These
bodies have a direct molecular link to classical hallmarks of
neurodegeneration: ASC specks bind to Aβ in the extracellular
space and promote its aggregation, thereby directly activating
innate immunity in association with the progression of AD
pathology. Lysates derived from APP/PS1;Asc−/− brains had a
reduced capacity to increase the Aβ load. Furthermore, a specific
anti-ASC antibody prevented Aβ aggregation (63). Given that
tau oligomers are known to spread to neighboring cells, their
relationship to inflammasome activation should be examined
further. Of interest, recent data emphasize that pathological tau
promotes IL-1β secretion by activating inflammasomes.
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Neurotransmitters
Microglia are closely associated with astrocytes and neurons,
particularly at synapses, and recent data indicate that
neurotransmitters play an important role in regulating the
morphology and function of surveying/resting microglia, which
express receptors for most known neurotransmitters (64, 65). In
particular, microglia express receptors for ATP and glutamate,
which regulate their motility. When Aβ induces ATP secretion
by neurons (66) and microglia (67), effector functions such as
phagocytosis and cytokine secretion are triggered.

Glutamate clearance and regulation at synaptic clefts is
primarily mediated by glial transporter 1, and that expression is
reduced in human AD hippocampal tissue (68). Consequently,
glutamate overload triggers synaptic and neuronal loss
influenced by AMPA receptors, which potentially contributes
to AD. Levels of AMPA receptor subunit GluA2 are reduced
in accordance with the Braak stages of AD (69). Lack of
GluA2 in microglia leads to Ca2+ permeability in response
to glutamate and may cause excess release of inflammatory
cytokines, thereby increasing glutamate toxicity to neurons.
Inhibition of glutamate receptor signaling has been proposed as
a therapeutic approach for several neurodegenerative diseases.
Because gap junctions/hemichannels are the main avenues
for release of excessive glutamate from neurotoxin-activated
microglia (70), their blockade by glycyrrhetinic acid derivatives
significantly prevents activated microglia/macrophage-mediated
neuronal death in rodent models of AD (71, 72). Moreover,
because gap junctions/hemichannels are the main source of ATP,
UTP, and glutamate, their blockade can halt the vicious cycle
of transmission and amplification of neuroinflammation, and
this also represents a promising therapeutic strategy for CNS
diseases (65).

Adenosine A2A receptors (A2ARs) expressed by astrocytes
and microglia are at the center of a neuromodulatory network
that interacts with and integrates several neurotransmitter
pathways. A2ARs modulate both glial activation and the
ability of glia to release inflammatory factors or take up

glutamate (73), and also mediates microglial process retraction
(74). Expression of A2AR in microglial cells is elevated in
the hippocampus and cerebral cortex of AD patients (75).
Interestingly, consumption of caffeine, a non-selective adenosine
A2ARs antagonist, reduces the risk of developing AD (76)
and mitigates both amyloid and tau burden in transgenic
mouse models (77, 78). Blockade of adenosine A2ARs decreases
both hippocampal tau phosphorylation and neuroinflammatory
response in a tauopathy mouse model (79), and also decreases
amyloid burden in the brain and improves cognitive performance
in an Aβ-injection model (80, 81). Therefore, regulation of
inflammatory responses by microglial transmitters may have
effects on AD.

CONCLUSIONS

Here, we briefly discussed the role of microglial functions in
the development of AD. Microglial reactions in neurological
disorders are complex and vary among disease stages; indeed,
pro-inflammatory and anti-inflammatory microglia co-exist in
some contexts. Newly emerging data reveal that microglia
are a unique cell-population, to which the simple M1/M2
classification does not fit. Further investigation focusing on
the microglial regulation will be required to develop new
therapeutic interventions targeting CNS neuroinflammatory
pathways.
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