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Abstract

The swift rise of omics-approaches allows for investigating microbial diversity and plant-

microbe interactions across diverse ecological communities and spatio-temporal scales.

The environment, however, is rapidly changing. The introduction of invasive species and the

effects of climate change have particular impact on emerging plant diseases and managing

current epidemics. It is critical, therefore, to take a holistic approach to understand how and

why pathogenesis occurs in order to effectively manage for diseases given the synergies of

changing environmental conditions. A multi-omics approach allows for a detailed picture of

plant-microbial interactions and can ultimately allow us to build predictive models for how

microbes and plants will respond to stress under environmental change. This article is

designed as a primer for those interested in integrating -omic approaches into their plant dis-

ease research. We review -omics technologies salient to pathology including metabolomics,

genomics, metagenomics, volatilomics, and spectranomics, and present cases where multi-

omics have been successfully used for plant disease ecology. We then discuss additional

limitations and pitfalls to be wary of prior to conducting an integrated research project as

well as provide information about promising future directions.

Introduction

Plant disease ecology is inherently interdisciplinary and relies on the disparate fields of micro-

bial ecology, epidemiology, plant physiology, and genetics to inform a critical observation:

plants get sick. For more than a century, plant pathologists have observed that virulent

microbes (e.g. bacteria, fungi, viruses, oomycetes) drive disease dynamics in susceptible plants

given the right environmental conditions [1]. In natural systems, many plant pathogens have

co-evolved antagonistic relationships with their hosts, and thus plant disease acts as an impor-

tant force to regulate plant populations [2–4]. In managed systems, such as forest plantations

or agro-ecosystems, plant health is important for maintaining yield and actively managing for

plant diseases is a priority among land managers and farmers alike. Understanding and man-

aging the ecology of these systems, however, has traditionally relied on a reductionist approach
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to research individual components (e.g., single or few microbe-plant interactions) related to

specific disease pathologies rather than the complex ecological interactions between communi-

ties of microbes, hosts, and the environment.

Technological advances over the last few decades have enabled a new, more comprehensive

approach to plant disease ecology allowing a holistic approach to identifying pathogenesis and

its underlying mechanisms. Among these technologies are -omics tools that allow for the com-

prehensive examination of plant and microbial characteristics along the genotype-phenotype

spectrum (Fig 1). Understanding these characteristics in a comprehensive fashion has facili-

tated discovery of mechanisms driving the ecology of plant defense and development of more

effective management strategies ranging from improvements in plant breeding to field prac-

tices curtailing spread of plant pathogens.

These developments in omics-approaches to plant disease ecology have been particularly

important in light of the current, rapidly changing environment. As increasing biotic and abi-

otic stressors impact plant health, adapting to and mitigating the effects of these stressors is

critical for maintaining both healthy terrestrial ecosystems and productive agricultural sys-

tems. For example, globalization and the movement of people, plants, and microbes around

the world can drastically change the composition and ecology of habitats. Invasive microbial

pathogens and/or soilborne pathogens, especially those with broad host ranges, can cause the

death of, in some cases, thousands of trees across a landscape [5, 6]. Both ecological invasions

[7] and climate change are changing microbes and their environment [8]. For instance, shift-

ing temperatures and the frequency and duration of weather conditions over time, result in

phenomena such as the rapid evolution of microbial pathogens or environmental stress which

can weaken plant hosts [8].

Fig 1. Multi-omics approaches inform the genotype to phenotype cascade. Omics approaches from the genotype

(top left) to the phenotype (bottom right) inform plant disease ecology in a holistic manner and can shed light on

microbial communities above and belowground. Red arrow on plant symbolizes dynamic intra-plant communication

in the metabolome affecting the microbial community through released volatiles. Yellow check is light for

spectranomics with multiple bands of sensing (below leaf).

https://doi.org/10.1371/journal.pone.0237975.g001
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While some benefits from more holistic approaches have been realized, further opportuni-

ties exist through increasing integration of -omics technologies and platforms. Insights from

genetics approaches can be tied to transcriptomics, metabolomics, and spectranomics to link

multiple steps in the -omics cascade from genotype to phenotype. This integration, while still

in its early stages, holds vast potential for unlocking fundamental and applied insights in

microbial plant disease ecology. Understanding the genetic basis for plant pathogen suscepti-

bility, how the plant microbial community influences expression, the cascading metabolomic

and volatilomic pathways resulting from infection, and the spectranomic characteristics of

foliage present numerous opportunities for intervention that can be tuned and optimized for

plant disease management situations.

In this review, we discuss exactly these opportunities by beginning with an overview of

-omics technologies including the unique challenges that each field faces. Next, we present

recent case studies that highlight integration of multi-omics insights. We then offer additional

opportunities and considerations for integrating these technologies and touch briefly on

expected benefits resulting from this integration. These opportunities and considerations will

be discussed in light of our principal goal: driving the development of healthy plants and their

microbial communities in a constantly changing environment.

The omics

Genomics

The field of genomics, the study of the complete genetic makeup of organisms, has grown

exponentially in the past 20 years since the milestone publication of the first draft of the

human genome in 2001 [9, 10]. Although the word ‘genomics’ is somewhat recent [11], its ori-

gin dates back to the early 1900s when Johannsen introduced the concept of the gene and later

when Hans Winkler coined the term genome in 1920. The first genomes sequenced were

microbial, heralding an era of tool development and exponential generation of whole genome

sequences: the bacterium Haemophilus influenzae, the first free-living organisms to have its

whole genome sequenced via shotgun sequencing [12]; the fungus Saccharomyces cerevisiae,
first eukaryote to have its whole genome sequenced [13]; and the nematode Caenorhabditis
elegans, the first multicellular eukaryote [14]. Further development of Next Generation

Sequencing (NGS) technologies has drastically reduced sequencing costs and accelerated the

availability of whole genome sequences, de novo sequence assemblies and resequencing of

multiple strains of a single species.

Microbial genomics is an interdisciplinary field that focuses on the structure, function, evo-

lution, mapping, and editing of genomes for bacteria, fungi, archaea, viruses, and other micro-

scopic organisms. Integration of genomics questions and tools can aid ecological questions,

especially those that involve environmental change. For example, it is critical to understand

the evolutionary history of the genome to understand if certain elements may change quickly

under changing temperatures (rapid evolution). Sometimes, it may be necessary to draw com-

parisons across genomes to understand microbial functions in related species, or delve into

transcriptomics and other –omics. Coupled with transcriptomics and proteomics, functional

genomics uses genomic data to study gene and protein expression and function on a genome-

wide or system-wide scale. The integration of genomics and transcriptomics has resulted in an

increased understanding of various aspects related to plant pathogen biology, plant-pathogen

interactions, and plant health [15, 16].

In investigations of plant disease ecology and plant health, it can be helpful to consider two

main groups of microbial genomics. Structural genomics, focused on assigning and mapping

genes and markers to individual chromosomes, results in a physical map of the whole genome.
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Functional genomics integrates genome sequences with an organism’s transcriptome (tran-

scripts produced by a given organism) and proteome (encoded proteins) to describe gene

functions and interactions [17, 18]. The combination of genome data and NGS-based RNA

sequencing has significantly improved gene annotation and gene prediction [19]. However,

there are many more “types” of genomics to be considered depending on the focus and context

of research being done in contemporary plant disease ecology.

Comparative genomics aims to identify structural and functional genomic elements con-

served within species or across different species [20]. Using this approach, we now know that

the genome architecture of many fungal plant pathogens is highly diverse and dynamic, com-

prising regions of rapid evolution that can range from transposon-rich chromosome compart-

ments to entire accessory chromosomes [21]. For example, by comparing the genomes of four

Fusarium species clear genomic compartmentalization has been identified at both structural

and functional levels: a core component of the genome that encodes functions necessary for

growth and survival and is shared among Fusarium species, and an accessory component [22,

23]. The accessory genome comprises a variable number of small (<2Mb), supernumerary or

conditionally dispensable chromosomes that are enriched for transposable elements, and carry

what seem to be horizontally-transferred genes, some of which are known to be involved in

plant pathogenicity. Similarly, Verticillium genomes differ in four regions of approximately

300–350 kb each, which are present in V. dahliae Ls.17 and absent in V. alfalfae Ms.102. These

four regions contain genes that seem to vary considerably between strains and have functions

putatively involved in pathogenicity and virulence of the pathogens [24, 25]. As more genomes

are available and compared, we realize that these chromosomal dynamics are prevalent in

many other plant pathogenic fungi [26–28].

In addition to elucidating genomic architecture, phylogenomics and population genomics

address similar questions, but at different biological scales: relationships among species, and

individuals and populations within species, respectively. The types of questions addressed

include genome-wide evolutionary and demographic processes affecting population structure,

evolutionary processes affecting speciation and the divergence of closely related taxa, and

locus-specific effects, acting on specific genes or chromosomes that affect adaptation or

defined phenotypes [26, 29, 30]. Such data provide a foundation for understanding the evolu-

tionary potential of plant pathogens. One of the challenges we face with microbial genomics is

the difficulty to establish and define species boundaries and population communities given the

complexity of genome dynamics and the amount of observed horizontal gene transfer [31–34].

How these dynamics are affected by a changing environment in which we may see more host

jumps and extreme environments is unpredictable [22, 33, 35].

Metagenomics

Metagenomics builds on the tools and theories from molecular genomics to investigate DNA

that is sourced directly from the environment. This field involves the extraction and amplifica-

tion of microbial DNA targets from soil, water, air, plants and animals [36]. Although it is

estimated that microbes are ubiquitous and found in every ecosystem on the planet, only

approximately 1% of all microorganisms are culturable and identifiable using traditional first-

generation, Sanger sequencing technologies [37]. The field of metagenomics grew out of the

need for understanding the diversity and functional role of unculturable microbes. Microbiol-

ogists and plant pathologists first pioneered the techniques and tools in the late 1990s [38, 39].

Today the field has evolved to answer questions related to the ecological dynamics of micro-

bial communities, multi-species regulation, mechanisms for microbe-microbe and host-

microbe interactions, community coevolution [40]. The term metagenomics itself is
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comprised of the Greek prefix meta- which means to ‘transcend’ and describes how this disci-

pline goes beyond traditional genomic techniques to identify the genomic diversity and gene

function of microbes of what some scientists have coined unculturable microbial ‘dark matter’

[37]. With recent advances in high throughput DNA sequencing techniques, we are able to

sequence either partial or the entire genome of microorganisms to answer questions such as

microbial species composition, structure, phylogenetic relatedness, and function on the scale

of entire microbial communities [41]. Today, a typical metagenomic pipeline involves the ini-

tial collection and processing of environmental DNA, the bioinformatic pre-processing of

DNA sequence reads, determining the taxonomic profile as well as any functional or genomic

elements of interest, statistical analyses, data validation, and finally visualization and commu-

nication of the results [42].

A major challenge in metagenomics is defining the microbial species concept itself. The

biological species concept works well with more derived taxa (such as ourselves, Homo sapiens)
where reproductive boundaries and barriers are strongly delineated. Bacteria, on the other

hand, are currently assigned to a common species if their reciprocal, pairwise DNA re-associa-

tion values are� 70% during DNA hybridization experiments [43]. The common issue of

microbial vertical transmission of DNA can complicate matters even further. Traditionally

speaking, strains within a species must possess a certain degree of phenotypic consistency and

species descriptions should be based on more than one type strain, such as a genetic variant or

subtype. A microbial species name should technically only be assigned if its members can be

distinguished from other species by at least one diagnostic phenotypic trait [43]. Of course it is

difficult to assign microbial phenotypes to unculturable taxa. Another limitation for assigning

taxonomic monikers is because of the lack of comprehensive public sequence databases avail-

able to map genetic reads to. Current databases such as GenBank and others such as Green-

genes for bacteria and UNITE are great start, but still lack genomic information about the vast

diversity of microbes still undiscovered on the planet.

In the case of plant health, metagenomic studies have revolved around two major categories

to date. The first is for promoting plant growth through understanding endophytic microbes

either within the shoots or roots communities [44]. The vast majority of these studies are still

conducted with model plant organisms, such as maize, and there is a need to expand to other

crops and into more natural systems. Others have ventured beyond the root into the rhizo-

plane and rhizosphere and use metagenomics to explore the role of functional genes for plant

and soil health [45]. The second type of plant health research involves understanding how soil

microbes suppress plant pathogens [46]. Again, the few studies conducted here are in crop

pathosystems and there is a need to study the phenomenon of suppressive soils in other ecosys-

tems, for example, managed and unmanaged forests and grasslands.

Metabolomics

Metabolomics, the comprehensive profiling of all small molecules within an organism, is at the

phenotypic end of the -omics spectrum and captures the results of the information cascade

beginning with the genome and progressing through the transcriptome and proteome [47]

(Fig 1). While metabolomics is firmly rooted in the chemical analysis of individual constituent

compounds, the field has rapidly progressed in the past two decades to the ability to rapidly

and exhaustively assess metabolites in multiple spatial and temporal dimensions [48–50].

While there are still limitations to attaining a complete understanding of the vast diversity of

metabolites within a given organism or plant, targeted and untargeted approaches provide

deep insights that, when coupled with complementary omics approaches, can yield an abun-

dance of insights [51–53].
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Metabolomics began in the 1970s with the expansion of medical analyses of compounds of

interest using gas chromatography-mass spectrometry [54]. As technologies improved, medi-

cal profiling of human metabolites continued to expand for diagnostics and drug development.

Applications of these profiling techniques in plants began in the 1990s with investigations into

herbicide mode of action [55]. Linking functional genomics with metabolomics began in the

late 1990s and has expanded in line with increasing technological capabilities in chromatogra-

phy, mass spectrometry, and imaging technologies [54, 56]. Current metabolomics technology

—typically ultra-high-pressure liquid chromatography coupled with high-resolution mass

spectrometry or nuclear magnetic resonance spectroscopy—provides incredible resolution

into the chemical phenotypes of study organisms able to capture and profile information on

thousands of compounds [57–59].

These advances are not without limitations, however. A key challenge in metabolomics is

the sheer diversity of potential metabolites present in any given sample. In contrast to micro-

organisms or animals producing on the order of 1,500 and 2,500 unique metabolites respec-

tively, a single plant species can produce upwards of 5,000 unique compounds [52]. All told,

an estimated 200,000 unique metabolites are present in the plant kingdom [52, 60].

Targeted metabolomics approaches address these challenges by constraining profiling to a

known set of annotated compounds [61]. Precise quantitative analysis of these compounds

becomes possible through comparison to known libraries of analytical standards [62, 63].

While necessarily less than comprehensive, targeted approaches nonetheless can yield detailed

information on a wide array of compounds numbering in the hundreds depending on the

techniques used [62, 63]. Targeted metabolomics approaches are particularly useful for

examining known processes and responses and allow for methodological optimization and

improved resolution into biological processes of known importance.

Untargeted metabolomics approaches, in contrast, provide insight into unknowns [64].

Approaching the ideal of truly global metabolomics, untargeted metabolomics seeks to profile

vast numbers of compounds present in biological samples through comparison of relative

intensities [64]. In some cases, these compounds may be annotated and putatively identified

[65]. Eschewing constraints allows broad comparisons to be made within and between experi-

mental units for discovery of pathways and compounds driving biological processes [53].

Particularly important for multi-omics approaches, untargeted metabolomics facilitates con-

nection discovery linking genomic, metagenomic, volatilomic, and spectromic approaches

[52, 53].

Volatilomics

Strictly speaking, volatilomics could be considered a subset of metabolomics [66]. However,

the comprehensive profiling of high vapor pressure compounds released from organisms,

volatilomics is much more than just a subset of metabolomics [67]. Where metabolomics seeks

comprehensive profiling of predominantly intra-organisms compounds, volatilomics assesses

those compounds released by an organism: the key components of chemically mediated inter-

organismal communication [68]. Because volatilomics is concerned primarily with communi-

cation, it presents unique opportunities for understanding community dynamics in conjunc-

tion with a multi-omics approach.

As with metabolomics, plants use an astonishing array of compounds for communication

ranging from plant hormones, terpenoids, green leaf volatiles, and volatiles produced and

released upon attack from pests (herbivore-induced plant volatiles) [69]. These volatile com-

pounds play numerous roles: influencing plant pollination, dispersal, herbivory and providing

defenses against abiotic and biotic stress such as plant pathogens [68]. To date, it is estimated
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that plants alone release on the order of 30,000 different volatiles into both the atmosphere and

rhizosphere [69]. Indeed, volatile communication is potentially even more important below-

ground where plant volatiles mediate everything from plant-pathogen interactions to plant-

herbivore-natural enemy interactions in an environment where visual information processing

is absent [70, 71].

The field of volatilomics grew out of the field of metabolomics as advances in gas chroma-

tography coupled with mass spectrometry allowed for more in-depth profiling of gaseous vola-

tile compounds [66]. Critical to the development of volatilomics as a field has been advances

in collection methods of volatile organic compounds. To retain volatile compounds used in

plant communication, headspace collection or sorptive materials are often used to capture

volatiles in preparation for introduction to analysis by GC/MS [67]. These more modern

approaches have begun to be used in high-throughput phenotyping were rapid assessment

of plant volatilomic profiles are connected with gene by environment interactions in a non-

destructive multi-omics approach [72]. Extending this approach to the plant-related micro-

biome holds the potential for discovery of new opportunities for identifying and controlling

pests and pathogens [73, 74].

Spectranomics

Foliar functional trait characterization has emerged in terrestrial ecology as a unifying concept

to better understand both natural variability in vegetation function and variability in response

to environmental change and stress. The idea of foliar functional traits has been enthusiasti-

cally embraced by the remote sensing community as many traits shown to strongly correlate

with natural and stress-induced variation in plant function [75] can be detected and quantified

from remotely sensed imagery [76–79]. Non-destructive, proximal and remote sensing of

foliar functional traits with spectroscopy offers the capacity to fill gaps in space and time

between labor intensive field measurements, reducing uncertainty in downstream analyses

and decision making, as well as offering the ability to better evaluate hypotheses about plant

function in response to abiotic and biotic stress. The use of spectroscopy combined with chem-

istry, taxonomy, and community ecology has been coined by leaders in the field as “spectra-

nomics,” [80, 81]. The foundational components of the spectranomics approach is that 1)

plants have chemical fingerprints that become increasingly unique when additional constitu-

ents are incorporated [77] and 2) spectroscopic signatures determine a portfolio of chemicals

found in plants [82].

Only recently have plant pathologists begun to take advantage of the spectranomics trail

blazed by terrestrial ecologists. Recent studies have helped establish in-situ (or foliar) and

imaging spectroscopy (also known as “hyperspectral imaging”) as effective tools for early, non-

destructive, and scalable biotic stress detection in natural and agroecosystems [83–86]. Both

beneficial [87] and parasitic plant-microbe interactions [88] impact a variety of plant traits

that can be non-destructively sensed. Microbes both directly and indirectly damage, impair,

and/or alter foliar function, thus changing the chemical composition, such as through produc-

tion of systemic effectors or secondary metabolites, or by physical presence of pathogen struc-

tures, such as hyphae and spores [89]. By taking a statistical approach to spectral data analysis,

the sum total of the changes microbes impart to plant health can quantified with proximal and

remote spectroscopy [83, 84]. This approach has been successful in increasing efficiency and

accuracy in agronomic crop breeding pipelines [90–92]. Thus, spectral quantification of foliar

functional traits allows us to detect, map, and model the biochemical and physiological patho-

system processes that engender our capacity to use spectroscopy for plant-microbe interaction

sensing [86, 93–99].
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Broadband and multispectral methods relying primarily on visible (VIS) and near-infrared

(NIR) reflectance indices, such as normalized difference vegetation index (NDVI), have been

used to sense late stage plant disease since the 1980s [100–103]. Changes in continuous, short

wave infrared wavelengths (SWIR) have proved valuable for plant-microbe interaction sensing

due to SWIR sensitivity to a range of foliar traits [104], including nutrient content [79, 105–

107], water [108], photosynthetic capacity [109], physiology [110], phenolics and secondary

metabolites [94, 111, 112], that are all impacted by plant microbe interactions. The advent of

VSWIR (400-2500nm) sensing has reinvigorated the discipline of plant-microbe interaction

sensing with its newly established capacity for robust pre-visual disease detection [94–99, 111,

113–116].

Case studies in plant disease ecology under changing

environments

Multi-omics in plant defense: The salicylic acid pathway

Plant defence pathways mediate plant microbial interactions in changing environments regu-

lating responses to abiotic and biotic stressors above and belowground [117–119]. A compre-

hensive understanding of the mechanisms underlying this ability and the nature of plant-

mediated effects on microbial communities necessitates an integrated multi-omics approach.

Nowhere is this as apparent as with the role of the salicylic acid (SA) signaling pathway. While

there are many important plant defence pathways involving other critical plant hormones

such as abscisic acid and jasmonic acid, for example, the SA pathway plays a critical role in reg-

ulating plant disease ecology with regulation of plant systemic acquired resistance and media-

tion of the interactions between members of plant microbial communities [120].

Understanding SA signaling began with early molecular studies as realization dawned that

this phenolic secondary metabolite was nearly ubiquitous in the plant kingdom and involved

in everything from plant reproduction and photosynthesis to mediating responses to abiotic

and biotic stresses [121, 122]. These approaches began with metabolomics; interest in this sig-

naling molecule drove research into networks of plant metabolites related to salicylic acid and

their role as chemical signals [123, 124]. Initially, biochemical pathways involved in the pro-

duction of SA were established picking up where the shikimic acid pathway left off and further

developing through parallel isochorismate synthase and phenylalanine ammonia lyase path-

ways to production of the actual SA molecule which can be further modified downstream

through addition of molecular tags such as methylation, glucosylatation, and conjugation with

amino acids [123–125].

Following pathway elucidation, modern targeted and untargeted metabolomics approaches

have characterized SA signaling cascades from plant stressors [126–128]. These metabolomics

approaches have shed light not only on the manner in which plant responses are induced and

effected, but also on SA induction cascades within the plant to affect other metabolic processes

including cross-talk and regulation of other plant hormones [129, 130]. Particularly relevant

for understanding microbial changes in the rhizosphere, metabolomics approaches are begin-

ning to resolve how plant-microbe communication can shape microbial communities in

changing environments [71]. Specifically, in the context of defense against plant pathogens, SA

plays a role mediating pattern and effector triggered immune responses, producing of specific

defense compounds ranging from anti-microbial peptides to terpenoids, programming death

of infected and affected cells, and inducing systemic acquired resistance (SAR) [131–136].

While understanding of the SA pathway may have begun with metabolomics, it quickly

progressed to inquiries into the genetic basis for observed phenoma, particularly related to

systemic acquired resistance (SAR)—the ability of plants to acquire long-term resistance to
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pathogenic microbes [136, 137]. Genomic studies identified critical nonexpressor of pathogen-

esis (NPR) genes involved in SAR and how these genes can be systemically and transcription-

ally programmed in situations where resistance is induced [138–140]. In addition to these

NPR genes, attack by microbial pathogens and induction of the SA pathway can influence a

wide range of gene expression regulating transcription networks that control plant defense

responses involved in systemic acquired resistance [141, 142]. These genomics studies hold

particular importance for plant breeding where desired genes encoding for SAR against patho-

gens could be bred into plants to ensure advantageous manipulation of microbial communities

[143–145].

The SA signaling pathway and systemic acquired resistance not only affects the plant patho-

gen microbial community, but also a whole host of other organisms [120]. To do so, mobile

volatile signals are used such as the methylated form of SA, methyl salicylate (MeSA) [146].

Volatilomics approaches to SA signaling have revealed that volatile profiles of plants change

upon induction of the SA defense pathway [120]. These changes in volatile profiles can result

in the induction of SA responses in neighboring plants and recruitment of natural enemies

aboveground and belowground in the rhizosphere [147–150]. Exogenous induction of SA

responses in perennial and annual plants can recruit entomopathogenic nematode natural

enemies over long distances altering community structure and relationships with other nema-

todes and nematode microbial predators [151].

Multi-omics for plant stress detection

The story of how these aspects of SA-regulated plant disease ecology were discovered is inextri-

cably intertwined with the early history of multi-omics approaches. As integrated multi-omics

has emerged, our resolution of the processes underlying SA plant defense signaling has

improved and, with it, our ability to use this knowledge for positive intervention in managed

natural systems. Early vegetative spectroscopic studies addressing the retrieval of foliar bio-

chemicals primarily targeted pigments, nitrogen, protein, structural elements (cellulose and

lignin) and mineral compounds [152, 153]. Soon after, this capacity was expanded to include

phenolics and other classes of secondary metabolites associated with defense and the salicylic

acid pathway [94, 111, 112]. In the past five years the boundaries of specificity in the character-

izable trait range has expanded significantly to includes specific parameters related to photo-

synthesis such as maximum carboxylation and photosynthetic rates, sucrose, starch, fructose

and free amino acids in leaves [91, 110, 154].

Spectroscopic methods such as fluorescence spectroscopy, Fourier-transform infrared spec-

troscopy, and chemometrics are used to better assess and understand plant-microbe interac-

tions, but these methods require sampling and processing [155, 156]. The ability to quantify

and predict plant metabolites from passive monitoring with vegetative spectroscopy, especially

under field conditions, would enable in vivo metabolomics and thus opening the door to a

new generation of plant, and plant-microbe, phenotyping approaches. In vivo metabolomics,

with understandably less specificity than traditional metabolomics, with hyperspectral sensing

and its value to precision agriculture has been hypothesized by multiple sub-groups in the

plant sciences, and most recently by Martins et. al [157]. Pioneering work by Vergara-Diaz

et al. [158] showed for the first time, the ability of hyperspectral field-sensors to non-destruc-

tively estimate foliar metabolite profiles. This work found that about one-quarter of metabo-

lites detected in wheat leaves and ear bracts by GC-MS profiling could be satisfactorily

predicted with hyperspectral data with validation accuracy over 50%. Many of the metabolites

they could predict included sugars, amino acids and organic acids that play a central role in

primary and secondary metabolism. Vergara-Diaz found the blue region proved to be the
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most relevant waveband for metabolite prediction regardless of the metabolite examined in

both plant organs studied (leaf and ear). Likewise, these authors found consistency in their

canopy models: the 1300–1400 and 2200–2400 nm regions were always the best determinants

for metabolite prediction, and coincident with absorption bands known to be associated with

sugars and nitrogen compounds.

Combining spectranomics and metabolomics would not be without its challenges: the

assessment of plant biochemical traits at the canopy scale still faces considerable limitations

from complexities related to canopy structure/density and the subsequent impact on light

reflectance. Additionally, historical knowledge of the VIS-NIR-SWIR spectral features (spec-

tral signals in plant reflectance) associated with plant metabolites is limited because typically

other approaches have been used such as UV, MIR, X-ray, Raman or FTIR spectroscopy [155].

These more sensitive approaches can far more precisely quantify isolated metabolite concen-

trations, but do not account for how plant macro- and micro-physical properties impact how

light interacts with these bonds. Prior knowledge of VIS-NIR-SWIR spectral features, such as

those outlined in Curran [104] and Carter & Knapp [159], greatly aids in transferability and

scaling, allowing us to make better sense of spectral data and the information it provides about

underlying plant processes. Spectroscopic approaches sense genuine yet subtle changes to

plant biochemistry, physiology, and morphology, all of which are impacted by plant-microbe

interactions, and engender the origins our ability to use spectroscopic methods for plant

sensing.

Multi-omics in suppressive soils for plant disease management

The observation that soils have the capacity to suppress plant disease has been known for

decades, some would argue for almost a century or longer in agricultural settings [160]. Yet

understanding the specific soil biota involved, in what combination and under which environ-

mental conditions elicit a suppressive response has eluded microbial ecologists [161]. Recently,

with the advent of -omics approaches, we are beginning to better understand the ecology

behind the suppressive effect [162]. Disease suppressive soils hold a subset of microbes, typi-

cally bacteria, that prevent the infection of a root by a plant pathogen or the development

of the disease. Suppressive soils can act in either a general or specific manner. Broad soil sup-

pression occurs when the supressive capabilities of broad microbial communities are har-

nessed, versus specific biocontrol which can occur using a single microbial taxon or a few

taxa [163]. Understanding which taxa are involved in soil suppression using a metagenomics

approach could reveal their various functions and shed light on the biological mechanism of

suppression.

In order to apply basic knowledge of the soil microbial community identities and functions

to address problems in the applied plant sciences such as conservation, restoration, forestry,

and agriculture, it is essential to consider a multi-pronged approach. For instance, plant nutri-

ent deficiencies have long been known to affect both crop yield, but also overall defense against

pathogens. Using Arabidopsis as a model, researchers were able to tease apart the relationship

between plant nutrient levels and host defense [164]. The authors found that the phosphate

starvation response (PSR) plays an important role in shaping the root microbiome. The tools

used to come to this result were a mix of amplicon-based sequencing to identify the host asso-

ciated microbiome bacteria (16S) as well as genomic modeling and finally various metage-

nomic tests to reveal the functions of specific genes that modulated the response for the

defense process [164]. The authors were able to conclude that certain beneficial microbial

communities that help with plant defense against pathogens are shaped by the PSR.
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Another application of a multi-omics approach is identifying more specific microbes that

could be involved as biological control agents (BCA) against soilborne plant diseases and the

creation of synthetic communities. Biocontrol research has typically taken a targeted approach

that focuses on using a single or a few microbes to to suppress pathogenicity. With the devel-

opment of high throughput sequencing techniques, such as amplicon-based sequencing, entire

microbiomes were and are continuing to be identified. There is now need to shift away from

community description toward functional understanding of these microbial communities in

their capacity to not only suppress disease, but potentially have one microbe or a suite of

microbes elicit antagonistic interactions to hinder plant disease [165, 166].

What is still needed for understanding the microbial ecology of soil suppression and the

potential for biological applications to suppress plant disease are studies that seek predictive

patterns and results. Specifically the spatial-temporal distribution of soil suppression and

whether certain pathogens are consistently suppressed by specific taxa or functional groups of

soil microbes. For instance certain sustainable land management practices such as the use of

cover crops [167], organic cultivation [168, 169], or the use of diversified crop systems rather

monocultures [170] have all been found to suppress plant diseases at varying levels of success

depending on the crop pathogen, season, and climate. Decoupling microbial identity, function,

pathogen identity, function, and environment are the next challenges for microbial ecologists

—and doing so outside the lab and greenhouse to account for environmental factors is sorely

needed.

Frontiers in multi-omics for plant disease ecology

A promising area of -omics research is understanding the role of endophytes in plant disease.

Endophytes are microbial organisms that live within plant tissue without causing visible symp-

toms and are essential to plant health and well being [171]. There is evidence for the critical

role endophytes play in reducing herbivory both above and below ground [172], modulating

plant immune response pathways and in some cases, systemic plant disease resistance [173],

protecting from oxidative bursts and reduced gene expressions and remediating of abiotic and

biotic plant through the specific downregulation of abscisic acid (ABA). Most research to date

focuses on the function of one or a handful of endophytes rather than entire communities.

One excellent study focused on the singular potato endophyte Burkholderia phytofirmans PsJN

which should how various extra-cytoplasmatic functional group elements (sigma factors,

group IV) were critical in facilitating other bacteria to sense changes in their surrounding envi-

ronment such as temperature or moisture and shift their metabolic activity to survive the

change. This paper used a dual -omic approach, by using high throughput sequencing to iden-

tify both the key player, Burkholderia, other bacteria, and basic metabolomics [174]. More

recently, studies have been conducted to understand the diversity and structure of foliar endo-

phytic fungi in forest ecosystems [175], however, there is still much to be understood about

endophyte ecology in other systems and at the biome scale [176].

An additional promising frontier is the integration of spectranomics with genomics to con-

struct multi-dimensional phylogenies that capture the evolutionary dynamics of leaf chemis-

try, structure, and more. Recent work by Meireles et al. showed that spectroscopy is capable of

robustly capturing phylogenetic signals and that broad plant groups, orders, and families can

be identified from reflectance spectra [177]. Using evolutionary models they found that differ-

ent spectral regions evolved at different rates and under different constraint levels, mirroring

the evolution of the underlying traits they correspond to. This breakthrough finding estab-

lishes that spectroscopy and spectranomics can provide novel insights into leaf evolution and

plant phylogenetic diversity at scale. This approach could be applied to plant disease ecology to
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better understand the evolutionary dynamics of and history of beneficial plant microbe rela-

tionships as well as antagonistic.

Promise, limitations & future directions

Integrating multi-omic approaches can help us understand who are the microbial players in

the system, how they disperse and are distributed across time and space, and what are their

individual and combined functions. As detailed in the case studies for this review, -omics can

provide a richer picture of the mechanisms behind fundamental topics in plant disease ecology

such as plant defence, stress response, and the potential for disease suppression. This is espe-

cially the case when compared to simply utilizing one -omic alone. These approaches, when

integrated correctly at the right scale and for the right research question, promise to reveal a

multi-dimensional view of plant disease. However, there are still many pitfalls and limitations

toward integrating and using these approaches that researchers must be aware of before

designing a research proposal and project. Below, we outline some of the promises as well as

the pitfalls of -omics driven studies, as well as future directions for using these approaches for

plant disease research.

When designing projects that could benefit from multi-omic approaches, there is a need to

move away from strictly observational research questions to those that are hypothesis driven.

Although the number of published research articles has grown exponentially in the past decade

to reflect breakthroughs in high throughput sequencing, few have been applied to questions

within the fields of environmental and conservation genomics that ask experimental questions

[178]. A shift from hypotheses that measure correlation to those that decipher an underlying

causation for an ecological phenomena would benefit the field of plant disease ecology. For

example, there is a dire need to design hypothesis-based studies that test ecological theory in

order to understand how microbial diversity and dynamics shift under a changing environ-

ment. There is merit for observational studies that describe the microbial players in a system;

these studies allow a researcher to hone their ideas and questions once they explore the taxa

present and certain environmental covariates. These initial studies often use predominately

amplicon-based sequencing tools. While using amplicon-based sequencing to identify taxa is a

valiant first-pass into defining the taxonomic and correlative boundaries of a system, descrip-

tive studies can not reveal underlying mechanisms or drivers for the patterns observed. For

instance, conducting ordinal statistical analyses to find patterns in microbial similarity in plant

roots that are drought stressed versus those that are not can allow us to gain a better picture

about microbial taxonomic presence or absence under environmental stress. Understanding

why we see these patterns can not be gauged from strict observation. It is critical to understand

the processes that drive the patterns we see with amplicon data, namely through designing and

developing field, greenhouse, and laboratory experimental designs that elucidate community

functional roles and dynamics and at different spatio-temporal scales [179, 180].

Another major limitation to conducting multi-omics are taxonomic or chemical compound

databases that are currently in their nascent phases as more microbes are sequenced and dis-

covered worldwide. Still, a handful of databases do exist that are well curated and are the stan-

dard for conducting -omics research. For both amplicon-based studies and metagenomic

studies, open-source databases include RDP [181], Silva [182], Greengenes [183], and UNITE

[184]. A Python-based tool that can be used to parse fungal operational taxonomic units

(OTUs) by ecological guild independent of sequencing platform or analysis is FUNGuild

[185]. FunFun is a novel database for fungal functional traits which is able to interface with

other databases to explore and predict how fungal functional diversity varies by taxa, guild,

and other evolutionary or ecological groups [186]. Common databases used in metabolomics
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and volatilomics studies include MassBank [187], Metabolomics Workbench [188], among

other more specific databases [189]. Limitations in the scope and ability to use them as true

reference databases for compound matching persist, however, with many researchers main-

taining private instrument-specific libraries. Spectroscopy (spectranomics) databases are

ecosml.org (Ecological Spectral Model Library) and ecosis.org (Ecological Spectral Informa-

tion System) which are useful for finding spectral models and data on leaf nutrients, cellulose,

and other physiological parameters.

Additional limitations to integrating multi-omics approaches in plant disease ecology

include cost-per-sample (especially when considering multiple evaluation techniques) and dif-

ficulties in integrating disparate data-sets. -Omics information inherently comes in different

formats with different means of preprocessing, analyzing, and interpreting the final results.

Integrating those results across the genotype-phenotype spectrum can be challenging.

Addressing these limitations and realizing the potential of multi-omics research necessitates

collaboration. Indeed, the motivation for writing this review was to spark such collaborations.

No one person can be an expert across multi-omics domains; effectively conducting multi-

omics research necessitates a integration of expertise just as it necessitates integration of data-

sets. This aspect of collaboration is perhaps the most promising feature of multi-omics

research. Integrating a diversity of disciplines engenders an integration of perspectives. The

challenges apparent in one discipline will likely benefit from fresh perspectives from another.

Integrating these approaches will allow research collaborations to answer questions and

address intractable problems that were previously not possible.

A multi-omics approach to solving problems in plant disease ecology has already led to

breakthroughs in understanding plant defense, detecting plant stress, and managing disease

with suppressive soils. This approach also seems poised to create breakthroughs in our under-

standing of endophytes. The promise of multi-omics in plant disease ecology extends beyond

these areas, however, and looks to create breakthroughs in our understanding of how micro-

bial communities respond in a changing environment for years to come [190].
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