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Abstract

The current management of colorectal cancer (CRC) would greatly
benefit from non-invasive prognostic biomarkers indicative of clinico-
pathological tumor characteristics. Here, we employed targeted
proteomic profiling of 80 glycoprotein biomarker candidates across
plasma samples of a well-annotated patient cohort with comprehen-
sive CRC characteristics. Clinical data included 8-year overall survival,
tumor staging, histological grading, regional localization, and molecu-
lar tumor characteristics. The acquired quantitative proteomic dataset
was subjected to the development of biomarker signatures predicting
prognostic clinical endpoints. Protein candidates were selected into
the signatures based on significance testing and a stepwise protein
selection, each within 10-fold cross-validation. A six-protein biomarker
signature of patient outcome could predict survival beyond clinical
stage and was able to stratify patients into groups of better and worse
prognosis. We further evaluated the performance of the signature on
the mRNA level and assessed its prognostic value in the context of
previously published transcriptional signatures. Additional signatures
predicting regional tumor localization and disease dissemination were
also identified. The integration of rich clinical data, quantitative
proteomic technologies, and tailored computational modeling facilitated
the characterization of these signatures in patient circulation. These
findings highlight the value of a simultaneous assessment of important
prognostic disease characteristics within a single measurement.
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Introduction

Oncomarkers used in the clinic have a major impact on cancer detec-

tion, stratification into distinct subtypes, effective therapy selection,

or outcome prediction. Reliable and easily measurable biomarkers

are intensely sought after to enable a more personalized patient

management (Ludwig & Weinstein, 2005; Surinova et al, 2011). Prog-

nostic biomarkers are associated with survival that is independent of

the therapeutic effect (Cunningham et al, 2010). Carcinoembryonic

antigen (CEA)—the only FDA-approved biomarker in colorectal

cancer (CRC)—is the marker of choice for monitoring the response of

conventional therapy and detecting disease recurrence (Locker et al,

2006; Duffy et al, 2007). Additional and alternative prognostic and

predictive biomarkers are urgently needed to improve the current

clinical procedures in CRC. Stage at diagnosis, as determined by the

TNM (tumor, node, metastases) classification system, is the most

important prognostic factor. Patients diagnosed with localized disease

(stages I and II) have an excellent 5-year survival rate of 90.1%.

However, prognosis worsens rapidly with advancing stage where

patients diagnosed with a regional spread (stage III) and metastatic

disease (stage IV) have a 5-year survival rate of 69.2 and 11.7%,

respectively (Siegel et al, 2012). Therapy selection is mainly driven

by stage, yet groups of patients that do not benefit from the given

therapies remain. One of the key clinical questions in CRC therapy is

which patients to treat with chemotherapy among the stage II and III

patients because some, but not all, will benefit from the aggressive

and costly treatment (Brenner et al, 2014). In this area, added predic-

tive value for survival beyond stage could be particularly beneficial.

An improved prognostic stratification could thus offer more tailored

therapeutic decisions for these patients. Hence, a non-invasive assess-

ment of prognostic tumor characteristics together with an improved

outcome prediction at diagnosis represents an important clinical goal

toward a more effective management of CRC patients.
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Large-scale genomic and proteomic profiling platforms are key

technologies that allow us to comprehensively map molecular alter-

ations associated with distinct clinical features and disease

subtypes. For example, a recent integrated proteogenomic study of

CRC tumors provided a functional context to previously reported

genomic profiles (Cancer Genome Atlas, 2012), and proposed

protein-driven subtyping of patient tumors, by prioritizing genomic

alterations with the largest effects on the protein level (Zhang et al,

2014). The study produced a discovery-driven catalogue of protein-

level alterations, and a functional characterization of the tumor

biology of CRC.

This manuscript presents a complementary approach, which

examined the prognostic significance of biomarker candidates in the

circulation with respect to the patient’s clinical records. By using

mass spectrometry-based discovery proteomic analysis, we discov-

ered 303 glycoproteins that changed in abundance between tumor

and adjacent normal epithelia of CRC patients (Surinova et al,

2015). Furthermore, using targeted mass spectrometry, we deter-

mined that 80 of these protein biomarker candidates could be repro-

ducibly quantified in plasma of these patients (Surinova et al,

2015). This list of initially proposed biomarker candidates in plasma

was used to quantify the respective proteins in suitable patient

cohorts. The results were used for the generation of predictors of

5-year overall survival, and other clinicopathological characteristics

that influence disease outcome. We discovered a six-protein

biomarker signature for the prediction of patient outcome. With this

signature, we were able to stratify prognosis beyond clinical stage

and identified groups of patients with a high and low risk of the

disease. The outcome signature was also found to correlate well

with the corresponding transcript level profiles in additional inde-

pendent cohorts of patients. Further, we evaluated the predictive

ability of the signature in the context of other transcriptional signa-

tures that recently attempted to redefine CRC subtypes and associ-

ated these subtypes with prognosis. Here again, our signature was

able to predict these subtypes and rank them according to their

prognosis.

Additionally, we explored whether the plasma protein data could

be used for the prediction of other clinically relevant characteristics

of CRC and found biomarker signatures predicting regional disease

localization and metastatic dissemination. These predictions were

further evaluated in independent cohorts, where feasible, on the

protein level and, in both cases, on the transcript level. Interest-

ingly, shared proteins between the biomarker signatures were

observed, such as between the outcome and the metastasis signa-

tures, suggesting that different prognostic CRC characteristics may

be functionally interlinked at the molecular level. The newly identi-

fied biomarker signatures propose potential non-invasive blood-

based alternatives to the current tissue biopsy-based methodologies

and their performance warrants their further clinical evaluation in a

prospective cohort of subjects with CRC.

Results

To identify novel prognostic biomarkers measurable non-invasively

in the blood circulation of CRC patients, we designed a clinical

cohort to reflect the major clinical and disease characteristics of the

target population (Table 1). In total, 202 patients were selected. The

cohort roughly comprised an equal number of cases per clinical

stage (stage I: n = 43, stage II: n = 58, stage III: n = 49, stage IV:

n = 52). The clinical and molecular features of the cohort repre-

sented an inherent distribution that is typical for CRC. This cohort

comprehensively characterized CRC, in that it included patients with

a broad spectrum of regional localizations of cancer, TNM stages,

and histological grading, and was annotated with overall survival

with a follow-up of 8 years (Fig 1A).

We used targeted mass spectrometry based on selected reaction

monitoring (SRM) to profile biomarker candidates (Appendix

Table S1) in plasma with the goal to identify biomarker signatures

(i.e. combination of multiple proteins) associated with and able to

predict the above outlined clinical endpoints of CRC. Details of

candidate biomarker identification and their high-throughput quan-

titative profiling across clinical cohorts are described in Surinova

et al (2015). Briefly, 88-plex candidate measurements were

performed simultaneously on the plasma N-glycoproteome of the

CRC patients. These high-throughput measurements lead to the

generation of a dataset in which 88 proteins were quantified over

202 CRC patients (Fig 1A).

This quantitative dataset was deployed to discover associated

biomarker signatures with clinical records that hold prognostic

value of disease outcome. Overall survival was our primary clinical

endpoint. We also considered several additional endpoints: regional

localization, histological grading, and TNM staging (individual

stages and metastatic state).

The discovery of biomarker signatures was performed using Cox

proportional hazard regression (for the survival endpoint), logistic

regression (for binary endpoints, e.g. regional localization), and

proportional odds regression (for endpoints with multiple ordered

categories, e.g. grading). For each endpoint, the selection of a

subset of proteins with predictive ability was done by 10-fold cross-

validation (Fig 1B). For each 9/10th of the patients, the eighty

quantified protein candidates were first tested for significant

differential abundance between groups. Proteins meeting this initial

criterion within the fold were then employed as candidate predictors

and used for a further stepwise protein selection into a predictive

model within the same fold. The predictive ability of the selected

model was evaluated using the remaining 1/10th of the patients. The

same procedure was repeated 10 times, by systematically selecting

different 9/10th and 1/10th of the patients. Finally, a consensus

model was formed from the most frequently selected proteins in all

folds, that is, proteins selected in at least five of the ten folds.

We evaluated the predictive ability of the models as follows. For

the overall survival endpoint, the sensitivity and specificity of

predictors were summarized in a ROC curve based on the Cox

model (Heagerty & Zheng, 2005). For the binary endpoints, the

sensitivity and specificity of predictions were summarized in single

ROC curves (Fawcett, 2006). For the endpoints with multiple cate-

gories, the sensitivity and specificity of predictors were summarized

in individual ROC curves of all possible category pairs. For each of

the methods, first, the summaries were obtained for the ten models

discovered in each of the ten folds, using the patients in the left-out

validation subset. These estimates are unbiased, and approximate

the real-life performance of the selected consensus model. The

predictive ability is summarized with AUCmedian, and calculated as a

pseudomedian over the left-out datasets in all the folds. Second,

these summaries were obtained for the consensus model on the full
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dataset. Since a large proportion of these samples participated in

selecting the predictive proteins, these results are optimistic and can

be viewed as an upper bound of the true performance. The predic-

tive ability is summarized with AUCfull. Third, to check the robust-

ness of the results to the partition of the patients into the folds, the

procedure was repeated using eight-fold cross-validation, and this

led to the selection of a similar subset of proteins with comparable

performance characteristics (Appendix Tables S3, S5 and S9).

Fourth, we evaluated the association of clinical factors, such as age,

gender, and TNM stage, with the clinical endpoints studied. The

clinical factors were included in the predictive models by forced

inclusion. With the exception of the survival endpoint, where clini-

cal factors are known outcome predictors, proteins selected into all

other predictive models were reproducible with the biomarker

candidates selected into models without clinical factors, as was the

performance of both sets of models, suggesting that these clinical

factors do not play a substantial role for the clinical endpoints in

our cohort (Appendix Table S10).

Survival and patient outcome

Clinical factors—age, gender, and especially stage—are currently

employed in the clinic to assess patient prognosis. A predictor of

patients’ outcome that combines biomarker candidates with

known clinical factors is expected to enhance the discrimination

between patients with a better or worse prognosis, and to thus

assist in their clinical management. We therefore examined the

association of biomarker candidates with patient survival, and

generated models predicting patient outcome. The best signature

for the prediction of 5-year overall survival consisted of the clini-

cal factors (age, gender, stage), and of six biomarker candidates

(HLA-A, CFH, CD44, PTPRJ, HP, and CDH5) (Fig 2A, Appendix

Table S2). The outcome of more than 70% of patients was

accurately predicted. The areas under the ROC curve were

AUCfull = 0.72 for the full dataset, and AUCmedian = 0.75 for the

cross-validated pseudomedian.

To assess the benefit of the proposed outcome signature as

compared to the clinical outcome prediction standard (i.e. a model

comprised from the clinical factors alone), the predictive ability of

these two models was compared. The outcome model that included

the signature proteins adjusted by the clinical factors explained the

survival of patients better than the model that included the clinical

factors alone (likelihood-ratio test, P < 0.0033). To inspect the

contribution of the signature proteins to the predictive ability, we

employed all the collected survival spanning more than 8 years

of observations and visualized the model-based predictions of

Table 1. Clinical and molecular characteristics of the colorectal cancer cohort.

Total

TNM stage

I II III IV

n 202 41 58 51 52

Gender Female/male 89/113 20/21 28/30 19/32 22/30

Median age at DG in years (25–75% quantiles) 67 (59–74.75) 64 (59–73) 68.5 (62.25–75) 66 (54–74) 65.5 (57.75–73.25)

OS Median OS in years 8.8 (6.3–n.a.) n.a. n.a. 8.9 (n.a.) 2.0 (1.2–2.9)

RFS Median RFS in years n.a. n.a. n.a. n.a. 2.3 (1.1–4.3)

KRAS mut/wt 64/117 13/22 16/41 18/32 17/22

Microsatellite stability MSI-high posit/total 25/173 5/33 9/56 7/48 4/36

MSI-low posit/total 42/173 5/33 7/56 18/48 12/36

MSS posit/total 106/173 23/33 40/56 23/48 20/36

Grading G1 32 11 8 4 9

G2 132 26 37 35 34

G3 30 4 12 9 5

T 1 13 13 0 0 0

2 39 28 0 5 6

3 118 0 58 41 19

4 9 0 0 5 4

N 0 104 41 58 0 5

1 73 0 0 51 22

M 0 150 7 6 7 0

1 52 0 0 0 52

RG DG C18 + C19 131 19 41 31 40

C20 71 22 17 20 12

DG, diagnosis; OS, overall survival; RFS, relapse-free survival; mut, mutated; wt, wild-type; MSI, microsatellite instability; MSS, microsatellite stability; posit,
positive; G, grade; T, tumor; N, node; M, metastasis; RG DG, regional diagnosis.
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probability of survival for each stage independently. These predic-

tions were obtained with the following models: (i) the Cox model

with fixed stage to I, II, or III, age and gender to median; and (ii) the

Cox model with fixed stage to I, II, or III, age and gender to median,

and a linear combination of the signature proteins. The predicted

survival was inspected for the model without signature proteins

(Fig 2B, see Pseudocode of predictive analyses in Appendix for

analysis details and Appendix Table S2C for model parameters) and

the model including the signature proteins (Fig 2C–E). A large

separation of the predicted survival was observed for all stages

pointing to an added value of signature proteins for outcome predic-

tion and stratification of patients into prognostic groups. In addition

to predicted survival, a stratified-survival visualization using

Kaplan–Meier plots was also performed. Patients were stratified as

above, into groups by stage alone (Appendix Fig S1A) or by the

combination of stage and the signature proteins (Appendix Fig S1B–D).

Again, a large separation of patients was observed and this was

especially prominent for stage II and III CRC.
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P
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 mass spectrometry

B

- Significance testing of differential abundance

- Fitting of models (logistic regression, proportional
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by stepwise selection

- Independent 
testing on left
out samples

Stage I

Stage II

Stage III

Stage IV

Grade 1

Grade 2

Grade 3

Colon tumors

Rectal tumors

NA

Clinical data set

Training samples Left-out samples

Training samplesLeft-out samples

Step 1

Fold 1

Fold 10

Step 2 Fitting of consensus model on the full data set

Step 3 Evaluation

Upper 
predictive

level

Unbiased 
estimate of
predictive

ability

Staging Grading Localization

Regional
localization

I    II    III   IV

TNM staging

Histological
grading CRC

prognosis

Figure 1. The development of biomarker signatures for the prognosis of CRC.

A Comprehensive clinicopathological features of CRC included regional disease localization within the colorectum, histological grading, and TNM staging classification.
Five-year overall survival was used as the main indicator of CRC prognosis. Targeted mass spectrometry based on selected reaction monitoring (SRM) was used to
monitor CRC biomarker candidates in plasma and lead to the generation of a quantitative protein dataset. Subjects were ordered by similarity of their protein profiles
and annotated with clinical data.

B The dataset was deployed for the development of biomarker signatures able to predict the respective clinical endpoints. Biomarker candidates were selected into the
signatures within 10-fold cross-validation. Within each fold, the two criteria for selection were differential protein abundance between clinical groups and their
subsequent stepwise selection into predictive models. Subjects were then classified and the procedure was evaluated on the left out samples. The procedure was
repeated for each fold, and a consensus model was derived from the most frequently selected proteins across all the folds. An unbiased performance is derived from
the pseudomedian fold of the cross-validation (i.e. between fold median) and 25th and 75th percentile bounds are also reported. An upper level of performance is
reported for the consensus model on the full dataset.
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The discovered biomarker signature holds prognostic promise

for newly diagnosed patients, because it can be measured non-

invasively in blood plasma, and because it is associated with the

survival. Notably, the added predictive value for survival beyond

stage presents a potentially relevant substratification for treatment

decisions.

Transcriptional regulation of the outcome signature

To further characterize and evaluate the plasma protein outcome

signature, its predictive ability was assessed on the transcriptional

level. Two previously published independent datasets of adequate

scope and scale were employed for this analysis. The first dataset

GSE17536 from Smith et al (2010) contained 138 patients of TNM

stages I–III, and overall survival (OS) was available with a follow-

up of 12 years. The second dataset GSE14333 from Jorissen et al

(2009) contained 139 patients of Dukes stages A–C, which roughly

correspond to non-metastatic stages I–III of the TNM classification.

Moreover, this cohort was associated with 5-year disease-free

survival (DFS) with a follow-up of 12 years (as opposed to the over-

all survival used in our study). Even though the staging classifica-

tion and the endpoint were somewhat different in this study, this

cohort contained relevant prognostic associations for the evaluation

of the outcome signature. Both datasets were acquired from tumor

tissue samples of CRC patients on the HG-U133Plus2.0 platform,

and both contained the transcripts coding for all six signature
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Figure 2. Biomarker signature of CRC outcome.

A Biomarker signature containing clinical factors and biomarker candidates predicting 5-year overall survival. The summary statistics obtained on the cross-validated
pseudomedian validation fold (i.e. between fold median; labeled in red), corresponding 25th (in magenta) and 75th (in orange) percentile bounds, and on the full
dataset for the consensus model (i.e. biomarker signature; labeled in black). SE was calculated by bootstrap (see methods) for full dataset and from the ten folds for
the pseudomedian. SE, standard error; spec., specificity; sens., sensitivity; accur., accuracy.

B–E All collected survival data were used to plot predicted survival based on the Cox model fitted with the following: (B) stage I, II, or III (Cox model: 0.018*age –
0.006*gender(1 = male, 0 = female) + 0.368*stage; fixed parameters: age = 68, gender = male, stage = I or II or III); (C) stage I and signature proteins; (D) stage II
and signature proteins; and (E) stage III and signature proteins. The signature proteins represent a linear combination of protein intensities (0.739*HLA-A –
1.143*CFH + 0.811*CD44 + 0.334*PTPRJ + 0.398*HP – 0.869*CDH5). The cutoff of �0.037 used for prediction is the median of individual predictions for all patients
in stages I+II+III. HIGHprot represents a high-risk group of patients with individual predictions ≥ cutoff and LOWprot represents a low-risk group of patients with
individual predictions < cutoff. The Cox model used in (C–E): 0.018*age – 0.006*gender (1 = male, 0 = female) + 0.368*stage – 1.735*LOWprot; fixed parameters:
age = 68, gender = male, stage = I or II or III; and LOWprot versus HIGHprot is plotted.
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proteins. The transcript expression was employed as an indirect

proxy of protein abundance. In both datasets, a Cox proportional

hazards model was fit, using as predictors the transcripts corre-

sponding to the signature proteins, and adjusted by the clinical

factors. The parameters of the model were estimated by cross-vali-

dation, and the ability of the prognostic signature to predict OS or

DFS was evaluated for the respective datasets. The resulting classifi-

cations were in the range of performance for the protein data

(Appendix Figs S2A and S3A). Interestingly, a somewhat higher

performance was obtained for DFS as compared to OS. To examine

the performance of the signature genes individually, the parameters

of a Cox model which used the transcripts as predictors (one predic-

tor at a time) were estimated and the performance was reported for

the full data and within cross-validation. The same procedure was

also performed for the individual signature proteins in our

proteomic dataset. When examining the areas under the ROC curves

of individual proteins and genes, only CD44 and PTPRJ on the

protein level and CFH on the transcript level (both for OS and DFS)

showed higher AUCfull and AUCmedian values than 0.6 (Appendix

Table S11). This suggested that the two proteins and the CFH gene

were the most important individual predictors of outcome. The

enhanced multivariate prediction ability for DFS was not observed

for the individual genes.

To evaluate outcome prediction beyond the current clinical stan-

dard on the transcript level, survival curves were plotted for individ-

ual stages predicted by clinical factors alone and by clinical factors

and the signature genes. This has been done by analogy with the

analysis performed on the proteomic data (as in Fig 2B–E). Similar

to the results on the protein level described above, there was a sepa-

ration of patients into low- and high-risk groups for all stages, but

this separation was more pronounced for stages II and III. This

pattern was consistently observed for both transcriptomic datasets

(Appendix Figs S2C–E and S3C–E), which supported the repro-

ducibility of the improved patient stratification with the means of

the outcome signature. These analyses determined that the outcome

signature holds prognostic value also on the mRNA level.

The outcome signature in the context of other
prognostic signatures

Recent evidence from large-scale tumor tissue gene expression

profiling suggests that classification of patients into subtype-specific

groups helps to redefine prognostic signatures in CRC and can

improve our understanding of CRC prognosis. Specifically, De Sousa

et al (2013) characterized three molecularly distinct colon cancer

subtypes (CCSs) in a cohort of stage II patients. Patients predicted to

represent the CCS3 subtype demonstrated an especially poor prog-

nosis. Another study by Sadanandam et al (2013) used a similar

approach to discover five subtypes related to cellular phenotypes.

Two of these subtypes (transit-amplifying and goblet-like subtype)

showed good prognosis, two subtypes (inflammatory and enterocyte

subtype) showed an intermediate prognosis, and the stem-like

subtype demonstrated the worst prognosis. In both cases, gene

expression signatures were proposed to predict these prognostic

subtypes. We examined the overlap between signature transcripts

identified in the two transcriptional signatures, and the proteins in

the outcome signature presented here. Given that the gene expres-

sion profiling was carried out in tissue specimens, a large overlap

between the transcript signatures and signatures derived from

secreted glycoproteins detected in the circulation was not antici-

pated. The comparative analysis showed that CFH was the only

molecular entity out of the six signature proteins that was also

found in the 146-gene CCS signature. The 30-gene signature linked

to distinct cellular subtypes had no overlap with our signature. This

signature for the former comprised of 786 subtype-specific signature

genes and was later condensed into the smaller 30-gene signature.

When examining this initial gene set, CFH was again included in the

signature. The occurrence of CFH in both transcriptional signatures

further supports its regulation on the mRNA level, as was already

suggested by CFH having the highest individual performance of all

the signature genes on the transcript level (Appendix Table S11).

Next, we examined to what extent our outcome signature is able

to predict the prognostic subtypes defined transcriptionally. For this

analysis, the data used by the two respective studies were assem-

bled and related to the protein data. De Sousa et al (2011) employed

the GSE33113 dataset that was comprised of 90 stage II patients and

the prognosis was associated with DFS. Sadanandam et al employed

two datasets: GSE13294 (Jorissen et al, 2008) with 135 patients and

GSE14333 (Jorissen et al, 2009) with 152 patients. Only GSE14333

data were annotated with prognostic data, that is, DFS.

The predictive ability of the transcripts corresponding to the

plasma protein signature was examined with respect to the three

molecularly distinct colon cancer subtypes (CCSs) defined by De

Sousa et al The GSE33113 dataset was used to estimate the parame-

ters of a proportional odds model with the six gene proxies from our

signature as predictors, and the 90 patients were classified within

10-fold cross-validation. The outcome signature was able to accu-

rately predict 75% of the CCS1 cases, 33% of the CCS2 cases, and

83% of the CCS3 cases (Fig 3A, see Appendix Table S12 for predic-

tion tables from cross-validation). The results represent median

percentages over the cross-validation folds. When plotting the
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Figure 3. Prediction of transcriptional CRC subtypes.

A, B Proteins from the outcome biomarker signature were used to predict (A)
three colon cancer subtypes (CCSs) in the GSE33113 dataset, and (B) five
cellular phenotype subtypes in the GSE33113 and GSE14333 datasets.
Kaplan–Meier curves were plotted for the respective subtypes based on
the classification of the signature proteins. TA, transit-amplifying.
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Kaplan–Meier curves for patients belonging to the three subtypes as

predicted by our classification, the obtained survival curves

(Fig 3A) were highly similar to the original curves obtained by De

Sousa et al These results show that our outcome signature can

predict a good prognosis and bad prognosis of CRC patients, that is,

subtype CCS1 and CCS3, particularly well and that this prediction

can be achieved using a minimally invasive procedure from the

circulation by measuring six proteins.

Similarly, to predict the five prognostic subtypes related to cellu-

lar phenotypes defined by Sadanandam et al with the outcome

signature, the parameters of a proportional odds model were

retrained with the six gene proxies from our signature as predictors

using cross-validation and classified the patient samples from the

two datasets described above. The subtype that could be classified

most accurately in both datasets was the transit-amplifying (i.e.

good prognosis) subtype (Fig 3B, see Appendix Table S13 for

prediction tables from cross-validation). Additionally, in the

GSE14333 dataset, the stem-like (i.e. bad prognosis) subtype could

be predicted with a median correct classification percentage of 67%.

Since GSE14333 contained DFS follow-up, the Kaplan–Meier

survival curves were plotted again as predicted by the outcome

signature and reproduced the outcome ranking (i.e. best to worst

survival time) for all five subtypes.

The above analyses demonstrate that the outcome signature

comprised from six proteins is able to predict, using non-invasive

plasma protein measurements, transcriptionally defined prognostic

subgroups recently characterized by two gene expression

signatures.

Regional tumor localization

Since CRC and its prognosis are influenced by a range of tumor

characteristics, we next explored which other clinically relevant

endpoints, in addition to outcome, could be predicted from our

in-depth molecular data and assessed non-invasively.

The anatomical tumor localization in CRC is traditionally segre-

gated in three basic anatomical sites: the colon (C18), the rectosig-

moid junction (C19), and the rectum (C20). Other classification

systems proposed alternative segmentation into proximal colon

(i.e. right-sided colon proximal to the splenic flexure; C18.0-4),

distal colon (i.e. left-sided colon distal to the flexure; C18.5-7+C19),

and the rectum (C20) (Li & Lai, 2009). Patients with tumors from

the different anatomic sites have been shown to have different

patterns of survival, and generally, prognosis was better for colon

than for rectal cancers. Moreover, colon and rectal cancers are

also viewed as distinctive therapeutic entities. These differences

were proposed to be due to their heterogeneity in accessibility,

differential embryological origin, different functionality of the

segments, and differences in molecular pathways driving these

cancers (Li & Lai, 2009).

Non-invasive indicators of cancer localization within these

segments may be clinically valuable as they can influence the

sequence of interventions a gastroenterologist needs to perform to

localize a tumor. We examined predictors for regional subtypes of

CRC and also for colon and rectal cancers. The best predictor was

obtained for the localization of colon (C18+19) and rectal (C20)

tumors. The biomarker signature was comprised of seven proteins

(CADM1, LGALS3BP, HYOU1, FN1, VTN, LRG1, and MRC2) (Fig 4A,

Appendix Table S4) that could predict the localization of rectal

tumors especially well (86% of subjects with rectal cancer). The

lower prediction accuracy of the colon tumor class (C18+19) may be

attributed to the heterogeneity brought by having colon tumors as

well as tumors at the rectosigmoid junction in the same group.

Next, we used an external proteomic dataset acquired by Zhang

et al (2014) on 90 tumor tissue samples from the TCGA cohort

(Cancer Genome Atlas N, 2012) for independent validation of this

signature. Of these, 88 samples were annotated by regional localiza-

tion (colon, n = 58, and rectal, n = 30, tumors). All seven signature

proteins were also quantified by Zhang et al (2014). This dataset

was obtained by data-dependent mass spectrometry and semi-

quantification by spectral counting. Since the nature of spectral

counting data is different from intensity-based SRM data, the

parameters of the logistic regression model, which used the seven

proteins as predictors, had to be estimated again in these data. The

predictive ability of our signature to classify colon and rectal

localization obtained on this new dataset was highly in accordance

with the performance obtained in our data (Appendix Fig S4A).

Since the TCGA cohort had also RNA-seq measurements where

transcripts corresponding to all signature proteins were measured,

the level of concordance between the tissue transcriptomic and

tissue proteomic classifications of the same patients could be

directly examined. The parameters of the logistic regression model

which used as predictors the genes corresponding to the signature

proteins were estimated, and the ability of the localization signature

to predict colon versus rectal cancer was evaluated. The obtained

transcript classifications were similar but less accurate than those

obtained on the protein level (Appendix Fig S4B). This trend was

further confirmed on the complete TCGA cohort of 270 patients with

196 colon and 74 rectal tumors (Appendix Fig S4C).
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Figure 4. Biomarker signatures of additional prognostic CRC
characteristics.

A, B Signatures for the prediction of (A) regional disease localization of colon
(n = 131) and rectal (n = 71) tumors, and (B) localized (n = 150) and
metastatic (n = 52) disease were also obtained. Summary statistics are
represented as in Fig 2, and for model parameters, see the Appendix.
SE, standard error; spec., specificity; sens., sensitivity; accur., accuracy.
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With these results, the localization signature was validated on

the protein level in an independent prospectively collected cohort of

CRC subjects. Furthermore, an inferior performance was observed

at the transcript level as compared to the protein level, proposing

that the signature proteins are regulated to some degree posttransla-

tionally. To investigate this suggestion for the individual signature

proteins, the predictions were compared per protein in our dataset

and in the complete TCGA cohort on the mRNA level, and

confirmed that the classifications were more accurate on the protein

than on the transcript level for six out of the seven proteins (FN1

showed a similar performance between the two platforms; Appendix

Table S14).

Histological grading

Tumor grade is a measure of cellular differentiation of tumor cells

as compared to the normal cells in the tissue of origin. Histological

grade is an important prognostic factor, independent of TNM stage.

We attempted to identify proteins associated with histological grad-

ing. The proteins that were selected into predictive models within

cross-validation varied markedly between the individual folds, and

so did their predictive ability (Appendix Table S6). The observed

performance may indicate that grading is a system too complex to

be predicted with a handful of proteins or that molecularly diverse

tumors are not identically classified, especially since the current

grading system suffers from a significant inter-observer variability

(Chandler & Houlston, 2008).

Clinical stage and disseminated disease

Tumor assessment based on the TNM staging classification informs

about the extent of the disease in terms of primary tumor invasive-

ness, regional lymph node spread, and the presence of distant metas-

tases. At present, in the clinic an extensive and highly invasive

procedure is used to develop patients’ treatment strategies and predict

their prognosis. Being able to predict some of the aspects of the TNM

system non-invasively would provide patients with a more acceptable

solution. Based on the levels of secreted biomarker candidates, we

searched for proteins that were able to predict TNM components.

Initially, we searched for a predictor of individual TNM stages

(I, II, III, IV). More proteins were selected by differential testing and

stepwise selection as compared to the other features. The final model

included fifteen proteins (Appendix Table S7), nearly a double of the

number of proteins selected into other biomarker signatures. The

fact that the TNM system focuses on tumor invasiveness rather than

size could have a major impact on the amount of biomarker secreted

into the circulation and therefore may as well preclude an optimal

predictor of TNM stage. An analogous observation was seen for

stage-stratified CRC diagnosis (Surinova et al, 2015).

Next, we examined the prediction of disseminated disease (TNM

stages I–III versus IV), as localized and metastatic diseases require

different treatment strategies, and a non-invasive prediction of

disease spread could be beneficial for the management of patients at

diagnosis. A nine-protein signature (PTPRJ, PIGR, CFH, F5, FGG,

VTN, IGHG2, ITIH4, and FETUB) was discovered and could predict

the presence of metastatic or localized disease with an upper predic-

tive level of AUC = 0.90 and with an unbiased predictive level of

AUC = 0.82 (Fig 4B, Appendix Table S8).

We further aimed to evaluate the dissemination signature on the

set of TCGA samples that were measured by both proteomics and

transcriptomics. Unfortunately, the metastatic group of samples was

too small and precluded the reliability of the evaluation results.

Hence, we examined the performance of the transcript proxies for

our plasma protein signature directly on the full TCGA cohort with

224 localized and 40 metastatic tumor samples. The logistic regres-

sion model was retrained with all signature genes as above. The

obtained classification results showed that on the mRNA level, the

predictive ability of the signature was much lower than on the

protein level (Appendix Fig S5). The metastatic signature is thus

regulated to a smaller extent transcriptionally and to a much larger

extent posttranslationally (as quantified by our data, Fig 4B).

Functional interplay between biomarker signatures of CRC

In summary, our results document measurable perturbations of CRC

in the plasma proteome of patients and provide a concise list of

proteins that are highly relevant for CRC due to their potential as

prognostic biomarkers. We observed that the biomarker signatures

of different endpoints often share one or two proteins (Fig 5A). The

graphical representation included the diagnostic signature from

Surinova et al (2015). Although these proteins were not selected for

their prognostic ability, we wanted to assess any overlap with the

prognostic proteins. Indeed, LRG1 was observed as shared between

the diagnostic and the regional localization signatures.

Next, we examined whether proteins selected into the signatures

were previously linked to cancer. For this analysis, associations of

diseases with the signature proteins were searched in the Ingenuity

Knowledge Base. Surprisingly, 22 of the 23 proteins that were part

of at least one of the signatures developed in this study were linked

to cancer (Fig 5A, green protein nodes) and 12 of these were also

associated with CRC (Fig 5A, green protein nodes with a highlighted

border).

To examine the functional interplay of proteins in more detail,

the individual proteins were annotated with gene ontology (GO)

biological process terms and the major associated processes were

examined (Appendix Table S15). The identified processes were

grouped into four categories: (i) cell adhesion, migration, angiogen-

esis, proliferation, apoptosis, (and maintenance of the gastrointesti-

nal epithelium), (ii) signal transduction, transport, (and metabolic

process), (iii) immune system process, inflammatory response, (and

complement activation), and (iv) proteolysis, endopeptidase activ-

ity, (and peroxidase activity) (Fig 5B). The processes in parentheses

are applicable for specifically labeled proteins in Fig 5B. The

annotated processes are typically affected in cancer, which supports

the functional involvement of the selected proteins in the biomarker

signatures of CRC.

Discussion

The present study was designed to develop plasma biomarker signa-

tures for prognostic stratification of CRC, which would be comprised

of a handful of proteins to facilitate their measurement with mini-

mal invasiveness in a clinical setting. By focusing on the subpro-

teome of glycoproteins, we identified biomarker candidates that

were found in the circulation and could be reproducibly profiled
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with sensitive and multiplexed mass spectrometry-based methods

using the targeting mass spectrometry technique SRM. The profiling

of these candidates over a large clinical cohort led to the generation

of a rich data source from which candidates associated with CRC

endpoints could be extracted and used for their prediction. The clini-

cal promise of biomarkers able to predict important clinical

endpoints non-invasively is readily apparent, especially in the era

where increasing efforts are directed toward tailored and preventive

medicine.

A further promise of circulating as compared to tissue-based

biomarkers comes from the nature of the tested material. In biopsy-

reliant measurements, the biomarker refers to the respective small

tissue area sampled from a larger tumor environment. In certain

cases, a biopsy is taken from an area that contains more infiltrating

immune cells than cancer cells, and a biomarker testing for a partic-

ular mutation will test negative for the sample, even if the cancer

cells hold a mutation in the gene of interest. Given new insights

from tumor heterogeneity analyses where not all lesions within a

tumor were found to be identical (Gerlinger et al, 2012), it is impor-

tant to sample several specimens or to employ an alternative

readout that offers a summarized patient-level result from the

circulation. This is especially relevant in CRC where numerous

precursors (e.g. polyps) can be transformed into multiple malignant

lesions. In the present work, the choice of profiling secreted proteins

was guided by the aim to translate protein biomarkers from tissue

to the blood circulation, and to facilitate non-invasive prognostic

testing where a small set of markers is assayed from a blood

sample.

Here, we report three biomarker signatures predicting CRC

endpoints commonly assessed in the clinic by mainly invasive

methodologies in tissue samples (i.e. colonoscopy and histology).

These prognostic signatures were identified computationally

employing cross-validation on the proteomic dataset to discover

and evaluate their performance. To reach a real-life performance

measure for multiple endpoints, it is particularly important to have

cohorts with a large number of subjects, and ideally independent

cohorts as were employed for the development of the diagnostic

signature (Surinova et al, 2015). Such cohorts are difficult to obtain

not only due to large experimental costs, but also because of the

time it takes to attain a well-annotated cohort with clinical charac-

teristics (especially survival data). Since this requires long-term

planning, many cohorts lack such data. We report the predictive

ability of the signatures on a large cohort with two readouts. First,

an unbiased predictive performance is provided and is based on

the untouched portion of the data during cross-validation of predic-

tive models. This measure is independent of the signature discov-

ery process and allows for an objective performance testing.

Second, an upper predictive performance is reported for the

consensus models of the biomarker signatures on the full data,

which can be regarded as an optimistic approximation of the real-

life predictive ability. Together, these two obtained performance

readouts of the newly developed biomarker signatures warrant

their prospective clinical evaluation in an independent clinical

cohort. In the present work, the localization signature was exter-

nally validated on a prospectively collected cohort with proteomic

measurements.

By far the clinically most relevant finding is the prognostic

signature of outcome prediction. Currently, stage at diagnosis is the

most important prognostic factor for CRC outcome. Although stage

provides valuable prognostic information and guides therapy selec-

tion, the response and outcome of individual patients to a therapy

is not predicted. With the prognostic biomarker signature, we high-

lighted an improved survival prediction and stratification of

patients with a better or worse outcome, as compared to the analy-

sis with stage alone. This was especially striking for stage II and III

CRC. The patients with a high risk of death may likely represent

individuals that ought to be treated as compared to the patients

with a low risk of death that may not necessarily benefit from the

given treatment. The prognostic signature and the improved infor-

mative markers therein could thus help to identify patients at high
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risk of relapse who might benefit from adjuvant therapy. From the

six signature proteins (HLA-A, CFH, CD44, PTPRJ, HP, and CDH5),

only CD44 has been previously associated with CRC prognosis in

tumor specimens from 74 patients that were assayed by immuno-

histochemistry (Huh et al, 2009). Prognostic data for CD44 on the

protein level measured in plasma across a sizeable cohort have not

been shown before. However, our data indicate that the multivari-

ate nature of the proposed signature contributes greatly to its

performance as compared to the performance of an individual

protein.

We have further evaluated the outcome signature on the tran-

scriptional level in two independent datasets of adequate size

(n = 138 and n = 139) that were associated with 12 years of

survival follow-up data. Here, we used the transcript expression as

an indirect proxy of protein abundance to estimate the predictive

ability of the signature. Interestingly, the obtained predictions for

the signature on the transcript level were in the range of the protein

predictions. On the single gene level, we found that CFH held the

highest accuracy as compared to the other genes individually. Its

prognostic value in CRC may be related to recent reports, where

complement factor H was found to be highly expressed in cutaneous

squamous cell carcinoma (cSCC) (Riihila et al, 2014) and non-small

cell lung cancer (NSCLC) (Cui et al, 2011) cells, and where it was

associated with progression in cSCC and prognosis in NSCLC. In

CRC, it was found to be part of a gene expression and pre-mRNA

splicing signature that marks the adenoma-adenocarcinoma progres-

sion (Pesson et al, 2014) and in the recent transcriptional signatures

defining new CRC subtypes (De Sousa et al, 2013; Sadanandam

et al, 2013). We have also predicted overall survival and disease-

free survival on the two mentioned transcriptomic datasets and

were able to reproduce the large separation of patients into low- and

high-risk outcome groups for stage II and III CRC.

Our findings are further in line with recent evidence from large-

scale gene expression profiling, which suggests that classification of

patients into subtype-specific groups can improve the understanding

of CRC prognosis. Specifically, De Sousa et al defined an especially

poor prognosis CRC subtype that is largely microsatellite stable

(MSS) and contains relatively more CpG island methylator pheno-

type-positive carcinomas. Furthermore, this molecular subtype is

refractory to anti-EGFR therapy (De Sousa et al, 2013). Highly simi-

lar gene expression profiles of these tumors facilitated the identifica-

tion of this especially malignant CRC subtype, which could not be

identified by characteristic mutations. Sadanandam et al used a

similar approach to discover five subtypes associated with a differ-

ential response to classic chemotherapy and targeted therapies

(Sadanandam et al, 2013). These subtypes could be related to differ-

ent cells of origin in the colonic crypt, and gene expression signa-

tures were proposed to identify these phenotypic subtypes. We have

employed our outcome signature proteins to predict these respective

subtypes on the transcript level in three different datasets and could

classify especially well the subtypes of good (CCS1 & transit-ampli-

fying subtype) and poor (CCS3 & stem-like subtype) prognoses.

With this evaluation, we demonstrate that the outcome signature

proteins hold value for indirect prognosis assessment based on

newly defined CRC subtypes. The ultimate promise of reliable gene

or protein signatures of prognosis comes from a subtype-specific

patient stratification that may lead to a more effective management

of this diverse disease.

Materials and Methods

Study population

The study was approved by the Ethics Committee of the University

Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky

University, Olomouc, and all individuals have signed an informed

consent document. Patients with colorectal cancer were selected

consecutively at diagnosis. The sample cohort includes 202 patients

(stage I: n = 43, stage II: n = 58, stage III: n = 49, stage IV: n = 52).

Blood collection and plasma preparation

Blood was drawn prior to surgery from the cubital vein and

collected into tubes processed with EDTA. Blood was directly centri-

fuged at 6,067 g for 3 min at 4°C. Plasma was collected into a new

tube, frozen at �20°C, and stored at �80°C.

Glycoprotein enrichment from plasma

Glycoproteins were isolated in a 96-well plate format as described in

Surinova et al (2015). Briefly, glycoproteins were oxidized, and

immobilized on resin, and non-bound proteins were thoroughly

washed away with urea buffer (8 M urea, 100 mM ammonium

bicarbonate, 0.1% SDS, 5 mM EDTA). Proteins were reduced with

5 mM dithiothreitol (DTT) at 25°C for 30 min and alkylated with

25 mM iodoacetamide (IAA) at 25°C for 45 min in the dark.

Samples were diluted to 2 M urea, 0.025% SDS, 1.25 mM EDTA,

and 100 mM ammonium bicarbonate and proteolyzed with

sequencing grade porcine trypsin (Promega) at a protease to

substrate ratio of 1:100, at 37°C for 15 h. N-linked glycosylated

peptides were enzymatically released with N-glycosidase F at 37°C

(PNGase F; Roche and New England Biolabs). Formerly glycosylated

peptides were desalted in 96-well MacroSpin column plates filled

with Vydac C18 silica (The Nest Group Inc.).

Targeted LC-SRM analysis of plasma N-glycosites

Samples were analyzed as described in Surinova et al (2015) on a

hybrid triple quadrupole/ion trap (4000 QTrap, ABI/MDS Sciex)

equipped with a nanoelectrospray ion source and a Tempo NanoLC

system (ABI/MDS Sciex) coupled to a 15-cm fused silica emitter,

75 lm diameter, packed in-house with a Magic C18 AQ 5-lm resin

(Michrom BioResources). Peptides were separated over a linear gradi-

ent from 5% to 35% acetonitrile/0.1% formic acid over 35 min, at a

flow rate of 300 nl/min. The instrument was operated in scheduled

SRM mode (retention time window of 300 s, target scan time of 3 s),

at a unit resolution (0.7 m/z half maximum peak width) of both Q1

and Q3 analyzers. SRM assays were retrieved from the N-glycosite

SRM atlas (http://www.srmatlas.org/) (Hüttenhain et al, 2013),

reanalyzed to select the best transitions for endogenous detection in

plasma, and used to optimize a single SRM method. Internal standard

peptides labeled with heavy isotopes at the C-terminal lysine or argi-

nine, +8 or +10 Da, respectively, (Thermo Scientific, Sigma-Aldrich,

or JPT Peptide Technology) were used to validate peptide identity by

analogy of chromatographic and fragmentation properties to the

reference. Raw data and SRM transition files can be accessed,

queried, and downloaded via PASSEL (Farrah et al, 2012) from the
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SRMAtlas by following this link (https://db.systemsbiology.net/

sbeams/cgi/PeptideAtlas/GetSELTransitions?SBEAMSentrycode=Cr

cpass2013) and selecting the validation dataset from the drop down

menu of SRM experiments (Surinova_CRC_Biomarker_Plasma_

Validation_Dataset, CRC).

Relative quantification and statistical analysis of
plasma N-glycosites

Raw data were processed as described in Surinova et al (2015).

Briefly, files uploaded to MultiQuant 1.2 (Applied Biosystems) to

perform automatic SRM peak integration and quantitative data were

analyzed with MSstats (v.2.3.5) (Choi et al, 2014). Normalization

was performed as described in Surinova et al (2015). Missing values

were imputed for a given protein with a minimum summarization

representing its limit of detection.

Predictive analysis

Ten-fold cross-validation was used to find the most discriminative

proteins. For each endpoint, subjects were divided into ten folds

with equivalent proportions of a given endpoint as in the whole

cohort. For each fold and for each endpoint, tests of differential

abundance were conducted using MSstats (Choi et al, 2014), under

the same settings as in Surinova et al (2015). For the survival

endpoint, subjects alive at 5 years were compared to subjects with

death up to 5 years, and censored subjects (n = 12) were ignored

from testing analysis. Proteins with significantly differential abun-

dance between groups were selected at FDR < 0.05 and fold change

cutoff � 1.1. MSstats was used to calculate the abundances of the

proteins in each sample, on a relative log2-transformed scale that is

comparable between runs. The relative abundances were used as

input variables to logistic regression model (in the case of two

groups), proportional odds model (in the case of more than 2

groups), and Cox regression model (in the case of survival data). In

the case of Cox regression modeling, patients of stages I, II, and III

were involved and the regression model was adjusted with clinical

factors (age, gender, and stage). The best model for each fold in the

training set was chosen by stepwise selection, which repetitively

added or dropped proteins until minimizing Akaike information

criterion (AIC). This best model was applied on the validation set in

each fold. A final consensus model was derived for each endpoint

from the ten respective models obtained within cross-validation and

was comprised of proteins which were selected in at least five of the

ten folds. To obtain the upper level for the predictive accuracy of

the selected consensus proteins, the final model was fit to the full

dataset and the predictive accuracy was quantified using the area

under the ROC curve, sensitivity, specificity, and accuracy. Standard

errors of these characteristics were derived from 2,000 bootstrap

replicates. Moreover, an unbiased estimate of the predictive ability

of the selected proteins was obtained by the pseudomedian fold of

the cross-validation step, which corresponds to the 5th largest AUC

value out of the ten folds. Finally, an estimate of variability associ-

ated with the ROC curve was obtained by plotting the 25th and the

75th quantile of the sensitivities for each value of 1-specificity over

ten folds.

To evaluate the stability of the final models, eight-fold cross-

validation was used. Applying the identical methodology to the

10-fold procedure (except that the final consensus model for each

endpoint comprised proteins selected more than four times among

the eight folds), the obtained 8-fold final models consisted of similar

protein signatures and performances showed similar properties to

the 10-fold ones. Likelihood-ratio test was applied to compare the

consensus Cox model and Cox model with clinical factors only. To

determine the added value of the consensus model (i.e. outcome

biomarker signature), survival curves were visualized in two ways.

First, the Cox model was fitted with stage alone or with stage and

the linear protein combination, and survival was predicted. Age and

gender were kept fixed. Second, survival was stratified by stage

alone or with stage and the linear protein combination, and the

survival curves were drawn for the respected groups of subjects.

Age and gender were unaccounted for. Pseudocode of predictive

analyses is available in the Appendix. The pROC and survi-

valROC packages in R were used to draw ROCs and to calculate

AUCs and other performances (i.e. sensitivity, specificity, and accu-

racy). For bootstrap analysis, the boot package was used. The

survival R package was used to perform the Cox analyses and

survival comparisons.

Validation with external proteomic and transcriptomic datasets

All published data were used as originally normalized and trans-

formed by the authors.

Functional analysis of signature proteins

Ingenuity Pathway Analysis (version 18488943, www.ingenuity.

com) was employed to associate disease annotations stored in the

Ingenuity Knowledge Base to the signature proteins. A “functional

analysis” was used to identify the disease categories associated with

the proteins. The association significance was calculated with the

right-tailed Fisher’s exact test. Results were filtered under the

“disease & functions” tab for the high-level (i.e. primary) category:

cancer. Low-level (i.e. secondary) categories “cancer” and “colorec-

tal cancer” were used to view the associated genes. Proteins were

further annotated with gene ontology (GO) biological process terms.

Protein accessions were loaded in Panther 9.0 Classification System

where “Functional classification viewed in gene list” analysis was

performed. GO biological process terms were further grouped into

four major categories and proteins were linked to their category

graphically in Cytoscape v3.0.2 to illustrate the overlap between

biological terms.

Expanded View for this article is available online:

http://embomolmed.embopress.org
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The management of colorectal cancer (CRC) patients would greatly
benefit from non-invasive and easily accessible prognostic indicators
able to reliably predict patient’s outcome and facilitate stratification
into prognostic groups at diagnosis.

Results
Targeted mass spectrometry-based proteomics was used to simultane-
ously profile 88 biomarker candidates across a cohort of 202 CRC
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