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Background: The aim of this study was to construct and validate a simple-to-use model

to predict the survival of patients with acute respiratory distress syndrome.

Methods: A total of 197 patients with acute respiratory distress syndrome were selected

from the Dryad Digital Repository. All eligible individuals were randomly stratified into

the training set (n=133) and the validation set (n=64) as 2: 1 ratio. LASSO regression

analysis was used to select the optimal predictors, and receiver operating characteristic

and calibration curves were used to evaluate accuracy and discrimination of the model.

Clinical usefulness of the model was also assessed using decision curve analysis and

Kaplan-Meier analysis.

Results: Age, albumin, platelet count, PaO2/FiO2, lactate dehydrogenase,

high-resolution computed tomography score, and etiology were identified as

independent prognostic factors based on LASSO regression analysis; these factors were

integrated for the construction of the nomogram. Results of calibration plots, decision

curve analysis, and receiver operating characteristic analysis showed that this model

has good predictive ability of patient survival in acute respiratory distress syndrome.

Moreover, a significant difference in the 28-day survival was shown between the patients

stratified into different risk groups (P < 0.001). For convenient application, we also

established a web-based calculator (https://huangl.shinyapps.io/ARDSprognosis/).

Conclusions: We satisfactorily constructed a simple-to-use model based on

seven relevant factors to predict survival and prognosis of patients with acute

respiratory distress syndrome. This model can aid personalized treatment and

clinical decision-making.

Keywords: acute respiratory distress syndrome, LASSO regression, nomogram, model, survival

INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a clinically and pathophysiologically complex
syndrome characterized by rapid progression and devastating hypoxemic respiratory failure (1).
Many risk factors, such as sepsis, pneumonia, pancreatitis, and major trauma, are associated with
the development of ARDS (2). Although there has been some progress in ARDS treatment in the
last several decades, the prognosis of patients with ARDS are still not satisfactory. The in-hospital
mortality rate of ARDS patients remains between 34 and 60% (3). At present, the treatment of
ARDS predominantly includes mechanical ventilation therapy (4). Therefore, identification of
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TABLE 1 | Baseline characteristics of included patients in training and

validation sets.

Characteristic Entire

cohort

(n = 197)

Training set

(n = 133)

Validation set

(n = 64)

P-value

Age, years 73.94 ±

11.92

74.41 ± 11.95 72.97 ± 11.90 0.427

Sex 0.647

Female 74(37.6%) 48(36.1%) 26(40.6%)

Male 123(62.4%) 85(63.9%) 38(59.4%)

Alb, g/Dl 2.84 ± 0.58 2.81 ± 0.58 2.90 ± 0.59 0.317

PLT, per mm3 19.23 ±

10.56

19.18 ± 10.50 19.32 ± 10.75 0.927

WBC, per mm3 11010.66 ±

7255.91

10600.75 ±

7076.02

11862.50 ±

7602.22

0.254

CRP, mg/dl 17.42 ±

10.66

16.77 ± 10.83 18.77 ± 10.26 0.219

SOFA score 7.71 ± 3.47 8.09 ± 3.63 6.91 ± 2.98 0.024

McCabe score 0.474

1 174 (88.3%) 115 (86.5%) 59 (92.2%)

2 11 (5.6%) 9 (6.8%) 2 (3.1%)

3 12 (6.1%) 9 (6.8%) 3 (4.7%)

PaO2/FiO2 116.11 ±

50.96

117.66 ±

50.57

112.89 ±

52.01

0.540

LDH, IU/L 390.57 ±

231.73

386.68 ±

199.63

398.64 ±

288.90

0.735

HRCT score 236.69 ±

66.70

233.46 ±

64.94

243.41 ±

70.27

0.328

PEEP, cmH2O 10.40 ± 5.23 10.14 ± 5.22 10.92 ± 5.25 0.329

ARDS etiology 0.036

DARDS 170(86.3%) 120(90.2%) 50(78.1%)

Non-DARDS 27(13.7%) 13(9.8%) 14(21.9%)

Vital status 0.212

Living 128(65.0%) 82(61.7%) 46(71.9%)

Deceased 69(35.0%) 51(38.3%) 18(28.1%)

Alb, albumin; PLT, platelet count; WBC, white cell count; CRP, C reactive protein; SOFA,

sequential organ failure assessment; LDH, lactate dehydrogenase; HRCT, high-resolution

computed tomography; DARDS, drug-associated ARDS.

novel and effective treatment strategies is crucial for patients with
ARDS. Moreover, a simple-to-use clinical prediction model is
also required to provide adequate care to patients with ARDS.

The severity of ARDS is often assessed using the PaO2/FiO2

ratio, although this variable has a low-to-moderate prognostic
value (5). Recently, several biomarkers including inflammation
cytokines, epithelial or endothelial damage, and coagulation
have been established to evaluated prognosis and therapeutic
response of patients with ARDS. For example, a meta-analysis
reported that elevated plasma levels of angiopoietin-2 strongly
correlate with diagnosis and mortality in populations at high
risk of ARDS (6). Moreover, various clinical biomarkers

Abbreviations: Alb, albumin; PLT, platelet count; WBC, white cell count; CRP,

C reactive protein; SOFA, sequential organ failure assessment; APACHE, acute

physiology and chronic health evaluation; LDH, lactate dehydrogenase; HRCT,

high-resolution computed tomography; DARDS, drug-associated ARDS.

including lung inflammatory mediators (soluble suppression of
tumorigenicity-2 and interleukin-6) (7) and products of epithelial
and endothelial injury (the soluble form of the receptor for
advanced glycation end products) (8, 9) were developed to
monitor pathophysiologic changes and outcomes of ARDS.
Unfortunately, although several lung-specific biomarkers have
been validated to assess ARDS; however, none of them have been
applied into clinical practice. Currently, there is no favorable
prognosis prediction model for ARDS.

Nomograms (visualized graphs of a predictive model) are
widely applied for prognosis and prediction of various diseases
(10, 11). To date, no nomogram and corresponding web-based
calculator has been developed to predict the prognosis of ARDS
patients. Therefore, a refined model is needed to predict the
prognosis of ARDS and guide clinical treatment. In this study, we
aimed to construct a web-based calculator to predict the 28-day
survival of patients with ARDS using several clinical parameters
that are routinely used and readily available. This simple-to-use
calculator might serve as an early warning and prediction system
for patients with ARDS.

METHODS

Patients
A total of 197 patients with ARDS were extracted from the
Dryad Digital Repository (http://www.datadryad.org/), which
was shared by Anan et al. (12). All ARDS patients were diagnosed
according to the Berlin definition (5). Patients with chronic
interstitial lung disease (idiopathic pulmonary fibrosis), vasculitis
or alveolar hemorrhage, hypersensitivity pneumonitis were
excluded. All eligible patients were randomly stratified into two
groups in a 2:1 ratio (training set and validation set, respectively).
The extracted clinical data included age, gender, white cell count
(WBC), C-reactive protein (CRP), lactate dehydrogenase (LDH),
albumin (Alb), platelet count (PLT), PEEP, SOFA score, high-
resolution computed tomography (HRCT) score, McCabe score,
PaO2/FiO2, ARDS etiology, survival time, and survival status.
Institutional ethical approval was not necessary because all the
data were obtained from an online database.

Development of the Nomogram
To obtain the subset of predictors, the LASSO regression analysis
was used to select the optimal predictors from the risk factors
in the training cohort. The “glmnet” package was used to
perform the LASSO regression analysis (13, 14). Finally, using the
selected predictors from the LASSO regression, a nomogram was
developed using the “rms,” “survival,” “foreign,” and “openxlsx”
R packages (15–18). A dynamic web-based calculator was
constructed using “DynNom” package (19).

Validation of the Nomogram
To validate the constructed nomogram, the corresponding
calibration map and receiver operating characteristic (ROC)
analysis were performed in the training and validation sets to
assess the prognostic accuracy of the nomogram by using the
“rms,” “survival,” “foreign,” and “timeROC” R packages (20).
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FIGURE 1 | Parameter selection using LASSO regression. (A) LASSO coefficient profiles of the 13 features. A coefficient profile plot is produced against the log(λ)

sequence. (B) Variables selected through LASSO with 10-fold cross-validation. (C) Distribution of the risk score. (D) Relationships between survival status and survival

times of ARDS patients ranked by risk score. The black dotted line represents the optimum cut-off point dividing patients into low- and high-risk groups. LASSO, least

absolute shrinkage and selection operator.

In addition, decision curve analysis (DCA) was performed to
quantify the clinical applicability of the nomogram.

Statistical Analysis
The raw data were expressed as mean± standard deviation when
normally distributed, while expressed as median (interquartile
range) when non-normally distributed. Differences between two
groups were analyzed using chi-square tests for categorical
variables and t-tests for continuous variables. The Kaplan–Meier
method and the log-rank test were used to estimate survival. All
statistical analyses were performed using R software (Version
3.6.2; http://www.Rproject.org). A two-sided P-value < 0.05 was
considered to indicate statistical significance.

RESULTS

Baseline Characteristics
In total, 197 eligible ARDS patients with integrated information
were randomly stratified into two independent cohorts (training

set, n = 133; validation set, n = 64). Patients’ baseline clinical
characteristics are shown in Table 1. A total of 123 male
patients and 74 female patients were enrolled in this study. The
average age of the patients was 73.94 ± 11.92 years. After 28
days of follow-up, 69 (35.0%) patients died during the entire
study population.

Construction of the Model
A total of 13 parameters were used for LASSO regression,
and seven parameters were selected as the optimal predictors
by LASSO (Figures 1A,B). The seven retained variables were
then used to construct the predictive model. The risk-score for
each individual was calculated based on the model coefficients
combined with the corresponding value of the identified seven
clinical parameters. Thereafter, the patients were classified into
low- and high-risk groups in both cohorts according to the
median risk-score. Figures 1C,D show the risk-score distribution
and the survival status of individual in the high- and low-
risk cluster. The variables including Age, Alb, PLT, PaO2/FiO2,
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FIGURE 2 | Construction of a nomogram with clinical indices to predict ARDS-related survival (based on the training set). The score for each value is assigned by

drawing a line upward to the points line, and the sum of the seven scores is plotted on the Total points line. ARDS, acute respiratory distress syndrome.

FIGURE 3 | A dynamic web-based calculator to predict ARDS-related survival (https://huangl.shinyapps.io/ARDSprognosis/). (A) Web survival rate calculator. (B)

95% confidence interval of the web survival rate calculator.
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FIGURE 4 | Assessment of the model in the training set. (A) Kaplan–Meier survival analysis between the high- and low-risk groups. (B) ROC curves of predictive

models at 28 days. (C) Calibration plot for the training set that show the predicted and observed (with 95% confidence intervals) overall survival rates at 28 days.

Model performance is shown by the plot, relative to the 45-degree line, which represents perfect prediction. (D) Decision curve of the model. The gray line represents

the treat-all-patients scheme. The dotted line represents the treat-none scheme. The red line represents prediction nomogram scheme in training dataset. The X axis

represents threshold probability. The Y axis represents net benefit. ROC, receiver operator characteristic.

LDH, HRCT, and etiology were incorporated into the nomogram
(Figure 2). To facilitate the clinical application of our findings,
we developed a web-based calculator (https://huangl.shinyapps.
io/ARDSprognosis/) to predict prognosis of ARDS patients
according to the nomogram (Figures 3A,B). The estimated
28-day survival probabilities could be obtained by drawing a
perpendicular line from the total point axis to the outcome axis.

Performance of the Model
The Kaplan–Meier survival curves revealed significantly poor
overall survival in the high-risk group (p = 3.872e-04;
Figure 4A). Thereafter, we performed ROC analysis to assess the
discriminability of the model. The area under the ROC curve
(AUC) indicative of the 28-day survival prediction was 0.75
(Figure 4B), which implied an efficacious performance of the

model to predict prognosis. The calibration plots based on the
training set showed that the model could accurately predict the
28-day survival (Figure 4C). The results of DCA also exhibited
that the model could help clinicians to obtain maximum benefit
when making clinical decisions (Figure 4D).

To further study the predictive value of each parameter
included in the model, we performed ROC analysis for each
of them (Figures 5A–G). The AUC values of all parameters
were lower than that of the complete nomogram model. These
results demonstrated that the model had superior predictive
performance and clinical value than any single factor.

Performance Validation of the Model
To verify the reliability of the constructed novel model, risk-
scores were calculated in the validation set with the same formula
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FIGURE 5 | Predictive value of the seven parameters included in the model from the training set. ROC analysis of (A) Age, (B) Alb, (C) PLT, (D) PaO2/FiO2, (E) LDH,

(F) HRCT score, and (G) ARDS etiology. ROC, receiver operator characteristic; Alb, albumin; PLT, platelet; LDH, lactate dehydrogenase; HRCT, high-resolution

computed tomography; ARDS, acute respiratory distress syndrome.

that was used for calculating the risk-scores of patients in the
training set. In the validation set, the distribution of risk-scores
and the survival status (Figures 6A,B) had a trend similar to
that in the training set between high- and low-risk groups. Also,
survival analysis indicated that low-risk patients had significantly
favor prognosis than high-risk patients (Figure 6C). ROC curves
were used to assess the prognostic value of the risk-scores; the
analysis results suggested that risk-scores could accurately predict
the survival rate in patients (AUC = 0.776, Figure 6D). The
calibration plot in the validation set also showed that the model
could accurately predict the 28-day survival (Figure 6E).

DISCUSSION

ARDS, one of the main critical diseases encountered in intensive
care units, is a clinically and pathophysiologically complex
syndrome of acute lung inflammation. Despite substantial
progress in respiratory support strategies for critically ill patients,
including the incorporation of a small tidal volume (21),
high positive end-expiratory pressure (22), prone position
ventilation (23), lung recruitment (24), use of neuromuscular
blockers (25), high-frequency oscillatory ventilation (26, 27), and
extracorporeal membrane oxygenation (28, 29), the mortality
rate among patients with ARDS remains unacceptably high (30).
However, to our knowledge, no study has previously developed a
nomogram to predict the prognosis of patients with ARDS.

Herein, we first developed a nomogram using simple
and easily available variables to evaluate the 28-day survival

probabilities of ARDS patients whose information were extracted
from an online database. Thereafter, we tested the performance
of the nomogram in training and validation cohorts. Seven
risk factors were identified in this model: age, Alb, PLT,
PaO2/FiO2, LDH, CT score, and ARDS etiologies. Additionally,
our results showed that PaO2/FiO2, and CT score could, albeit
less accurately, predict the survival probability of ARDS patients
compared to our novel model. These results suggest that the
nomogram could be used as a cost-effective tool to predict the
prognosis of ARDS and assist with clinical decision-making.

In 2012, the Berlin ARDS Society defined the severity of
ARDS according to the oxygenation index (5). The oxygenation
index (PaO2/FiO2) was helpful to categorize ARDS patients with
different severity, and the mortality was reported to be higher
in more severe stages of ARDS (mild, moderate, or severe) (5,
31). However, these severity categories have a low-to-moderate
prognostic value to predict respiratory failure (32). Kamo and
colleagues (33) reported that the severity stratification of the
Berlin ARDS criteria may have a low capacity to differentiate
between mild and moderate ARDS. In this study, the results of
ROC curve analysis also indicated that the oxygenation index had
low prognostic power (AUC, 55.3204%), which was consistent
with previous studies.

CT or other lung imaging techniques have been used as
diagnostic tools to optimize lung assessment and ventilator
management in patients with ARDS; however, it is still
controversial whether CT findings can predict ARDS outcomes
(34–36). HRCT scores have been reported to correlate with
the pathological stage of diffuse alveolar damage (37). Ichikado
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FIGURE 6 | Verification of the model in the validation set. (A) Distribution of the risk score. (B) Relationships between survival status and survival times of ARDS

patients ranked by risk score. The black dotted line represents the optimum cut-off point dividing patients into low- and high-risk groups. (C) Kaplan–Meier survival

analysis between high- and low-risk groups. (D) ROC curves of predictive models at 28 days. (E) Calibration plot for the training set that show the predicted and

observed (with 95% confidence intervals) overall survival rates at 28 days. Model performance is shown by the plot, relative to the 45-degree line, which represents

perfect prediction. ROC, receiver operator characteristic.

and colleagues (38) noted that HRCT score was one of the
independent predictors of death and ventilator dependency
in ARDS patients. Simultaneously, HRCT score was also
found to be associated with multiorgan failure and ventilator-
associated complications (38). In the present study, to increase
model accuracy, HRCT score was incorporated into the
nomogram. To evaluate the performance of HRCT score as
a prognostic biomarker for the survival of ARDS patients,
we performed ROC analysis. Our results showed that the

model fit was significantly better than that of the one-factor
HRCT model.

APACHE II score can be used as indicators to evaluate the
prognosis among critically ill patients; it has been used worldwide
to measure ICU performance (39). As APACHE II score included
age and other factors in the calculation process, and repeated
operations would be generated if the model was built again,
APACHE II was not included in the LASSO regression analysis.
The APACHE II score is calculated based on acute physiological
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parameters and chronic health conditions, all of which have
significant effects on the predictive prognosis of ICU patients
(40). Hwang and colleagues (41) revealed that APACHE II
score was a mortality predictor for ARDS patients, but that the
accuracy was not high. Lesur and colleagues (42) reported that
APACHE II score may be less predictive value when applied
for ARDS patients, and that in those patients, it might be less
accurate than other indicators, such as age. In the present study,
it was also found that the prediction accuracy of this model was
better than APACHE II score when compared to the results of
precious study (AUC= 0.623) (41).

Certain drugs have also been reported to have the potential to
cause ARDS. It has been proved that molecular targeted therapy,
such as methotrexate and certain herbal medicines, can cause
severe respiratory failure or ARDS (43–45). However, only few
studies have focused on the prognostic role of different etiologies
of ARDS. In the present study, our results indicated that there is
a lower risk of death if ARDS is caused by drugs. However, these
discrepancies may be partly related to differences in the dose and
duration of drug treatments.

Our study has some limitations. Firstly, the model was
developed mainly based on the seven variables. As these
factors were unstable throughout the whole follow-up period,
which may partly influence the precision of the model.
Secondly, only 197 patients were included in this study;
further studies with bigger sample sizes are needed. Thirdly,
the lack of external validation may limit the extrapolation of
the nomogram.

To summarize, we identified eight variables and developed a
novel model to predict prognosis in patients with ARDS. These
results may help to further improve clinical decision-making
and individualized treatment of ARDS patients. Also, this model

could distinguish patients with high-risk of ARDS, and further
help to perform a careful follow-up among those patients.
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