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Abstract: Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of
neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to
achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of
the common and severe complication of neurodegenerative disease is cognitive impairment, which is
said to be closely associated with spine pathologies viz., decreased in spine density, spine length,
spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve
the spine structure and distribution. However, concise data on the various modulators of dendritic
spines are imperative and a need of the hour. Hence, in this review we made an attempt to consol-
idate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic,
adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions,
enriched environment, yoga and meditation) on dendritic spines structure and functions. These
data suggest that both the pharmacological and non-pharmacological modulators produced signifi-
cant improvement in dendritic spine structure and functions and in turn reversing the pathologies
underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to
improve intellectual performances both in preclinical and clinical platforms, but still more technology-
based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and
non-pharmacological intervention may restore cognitive performance synergistically via improving
dendritic spine number and functions in various neurological disorders.

Keywords: dendritic spines; pharmacological modulators; modulators; yoga and meditation;
enriched environment; diet

1. Introduction

Small, thin, special hair-like protrusions found on the dendritic processes of neurons
are known as dendritic spines. Typically, dendritic spines receive inputs from excitatory
synapse in brain [1]. Spines act as independent compartments providing rapid-large-
amplitude Ca2+ signals and are involved in achieving synaptic plasticity [2]. Based on the
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morphological features, spines are categorized into stubby, mushroom, thin, and filopodial
spines [3]. A significant difference between them is observed across the type of neurons,
age, diseased states, dendritic locations, and laminar positions [2]. Thin and stubby spines
represent initial stages of spine formation while mushroom spines represent matured and
stable types [4]. Spine shape influences local Ca2++ concentration and cyclic adenosine
monophosphate (cAMP)-regulated signaling proteins which are involved in synaptic
plasticity [5–7]. Structural changes in spines contribute to the induction of long-term
potentiation (LTP) or long-term depression (LTD), which plays a crucial role in synaptic
transmissions. De novo spine growth also occurs in response to various triggers like LTP,
two-photon glutamate uncaging or altered sensory experiences leading to new functional
synapse formation [6,8–10]. LTP-induced changes in spines such as enlargement of spine
head and shortening of the neck are widely evidenced from many experimental studies,
explaining close association between the synaptic plasticity and spine morphology [11].
Likewise, as the magnitude of LTP induction increases in hippocampal cornu ammonis-1
(CA1) region there was a subsequent increase in the spine density, due to enhanced F-actin
content, cofilin enrichment, and stabilization of F-actin content etc., [12–14]. Conversely,
induction of long-term depression (LTD), glutamate uncaging, optogenetic stimulations
reported to cause shrinkage of spine head and increased spine numbers loss [9,15–18].
Further, recent research explains the drawbacks in traditional way of dendritic spine
classifications like the spine head area correlated to PSD may not, be applicable for thin
and stubby spines. Hence to overcome such drawbacks a newer approach of clusterization
of spines has been developed. This approach automatically groups spines into similar
structural classes based on selected algorithm without a prior input. Each spine will be
represented as set of value of parameters reflecting its morphology from neck and head
size to complex geometrical parameters [19].

2. Dendritic Spines Biosynthesis

Dendritic spines exhibit a spectrum of structural reorganizations with respect to forma-
tion, maturation, and elimination, including subtle changes in size and shape modulated
by neuronal activities and developmental age [20]. Current theories suggest that dendritic
spines possess a chemical and electrical signaling domain that is discrete from their parent
dendritic domain [21]. Most of the developing neurons form long, thin, and headless
filopodia, which gets stabilized through generation of calcium transients. As filopodia
are highly motile, only 10–20% of them transform to spines [22]. Filopodia formation
is primarily dependent on synaptic interactions involving Rho GTPase effector P21 acti-
vated kinases (PAK). Thus, filopodia acts as precursors for spine development in the early
stages [23]. Molecules like calcium/calmodulin-dependent protein kinase II (CaMKII),
syndecan-2 via enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) pathway [24],
and paralemmin-1 [25] enhance filopodia formation and maturation of spines. While
dendritic-associated adhesion molecule like telencephalin (TLCN) slows down the spine
maturation by promoting filopodia formation and negatively regulating filopodia to spine
transition [26]. However newly formed spines (thin and elongated) acquire post synaptic
density (PSD) leading to enlargement of the head to become classical mushroom-shaped
spines. Increase in the spine volume is associated with the accumulation of additional
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and reorganiza-
tion of actin cytoskeleton [27]. Cytoskeleton determines the shape of the spines, and actin
is the major cytoskeletal protein in dendritic spines which polymerizes to filamentous actin
(F-actin) through complex interactions with actin binding proteins (ABPs). Due to the polar
nature, one end of actin filament grows rapidly than the other until adenosine-triphosphate
(ATP) bound to the actin filament hydrolyses to adenosine-diphosphate (ADP), promoting
the disassembly of pointed end by cofilin [28]. In addition to this treadmilling process
complexes like actin-related proteins 2/3 (Arp2/3) induces branching of filaments [29]. The
variation in the locations and turnover rates of the F-actin pools at the tip, base, and head
regions of the spines contribute to the differences in the spine volume. Variations in the
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spine volume or enlargement is also linked to the destabilization of PSD, increased dynam-
ics of PSD proteins like PSD-95, SHANK2, and phosphorylation of CaMKII [30]. Matrix
metalloproteinases-9 (MMP-9) contributes to spine enlargement through beta-1 integrin
receptor, cofilin phosphorylation, and actin polymerization. Further, the signaling path-
ways mediated by N-cadherin involving scaffolding proteins AF6/afadin, the Rho GTPase
exchange factor Kalirin-7, Rac1, and PAKs regulate the size of spine head [31]. Rho GTPases
like Rac1 or Cdc42 play important role in spine remodeling through signaling complexes
including protein kinases like CaMKK and CaMKI associated with GTPase exchange factor
beta-Pix or calcium/calmodulin serine protein kinase CASK [20]. Rate of elimination of
spine is two-folds higher than that of spine formation between adolescence and adulthood,
leading to net spine loss termed as pruning of existing connections [32]. Spine addition
and elimination is related to net gain and loss of excitatory synapses over lifetime and
is influenced by factors like PSD recruitment, sensory stimulation etc., [33]. Semaphorin
3F-induced activation of Tiam 1-Rac1-3-LIMK1/2-Cofilin1 and RhoA-ROCK1/2-Myosin II
in dendritic spines regulates pruning of spines [34].

Pathological changes of spines are categorized into pathologies of distribution and
structural pathologies [35]. Increase or decrease in the spine density [36], morphological
changes viz reduction in size [15], alteration in shape [19,37], dendritic beading with loss
of spines [38] and sprouting of spines (text Box 1) [39] are pathologies of distribution [40].
While structural pathologies include the changes observed with single spine like densifica-
tion of cytoplasm [41,42], hypertrophy of organelles, decreased spine volume [43,44], and
formation of aberrant synapse-like connections.

Alterations in spine structure and function negatively impacts learning and mem-
ory [45,46]. Majority of the neurodegenerative diseases (such as Alzheimer’s disease (ad),
Parkinson’s disease (pd), Huntington’s disease (hd)) and neuropsychiatric disorders (such
as depression, autism, schizophrenia,) are linked to spine dysfunction [47,48]. Mounting
evidence from experimental and clinical reports indicate that the therapeutic intervention
restores spine pathologies which in turn is reflected by improved learning and memory.
On the other hand, non-pharmacological approaches like dietary modifications, practice of
yoga and meditation, and enriched environment habitation are shown to improve memory,
but very few clinical reports explain the direct effects of non-pharmacological treatments
on spines structure and distribution.

Reduced synaptic plasticity, altered dendritic spine’s structure and distribution and
memory impairment are key features of neurodegeneration and underlying diseases,
which has been explored extensively in the past two decades. But recent evidence suggest
that targeting genes, signaling molecules, and proteins involved in the biosynthesis of
dendritic spines have direct effect on the synaptic plasticity and enhancement in learning
and memory. Despite of extensive research there is no clear delineation on the modulators
of dendritic spines, as most of the research was focused either on the disease modification
or the underpinning signaling cascade. Thus, in this review, we made an attempt to
summarize the effects of pharmacological (such as cholinergic agents, glutamatergic agents,
GABAergic agents, serotonergic agents, adrenergic agents and dopaminergic) and non-
pharmacological modulators (such as dietary modifications, enriched environment, yoga
and meditation) of dendritic spines and synaptic plasticity in various conditions affecting
learning and memory. An online search was conducted in PubMed, MEDLINE, Scopus,
Web of Science, and Google Scholar for the published articles either experimental or
reviews effecting structure and functions of dendritic spines. The data collected were then
categorized into pharmacological and non-pharmacological modulators.

3. Effects of Pharmacological Interventions on Dendritic Spines
3.1. Cholinergic System Modulators

Synaptic plasticity and cognition are significantly connected to cholinergic system in
the brain [49]. Genetic disruption of muscarinic and nicotinic receptors affects learning and
memory [50]. Acetylcholine and other nicotinic receptor agonists are reported morphogens
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exhibiting potential effects on dendritic arborization [51]. In a rat model of myocardial
ischemia/reperfusion (I/R) injury, a significant loss of dendritic spine is corroborated to
decreased cholinergic activity [52]. Administration of donepezil, a acetyl cholinesterase
inhibitor, in rats subjected to I/R injury, increased the spine numbers [53]. Similarly, admin-
istration of donepezil produced significant increase in spine numbers in prefrontal cortex
pyramidal neurons of aged rats [54]. LM11A-3, a small molecule ligand for neurotrophin
receptor p75 (p75NTR), reversed cholinergic neurites dystrophy, and prevented spine loss
through activation of RhoA receptors [55].

Brahmi Nei, a poly herbal Siddha formulation (text Box 1), reversed cognitive decline
along with increase in the dendritic length and number of mushroom-shaped spines in
rodent model of scopolamine-induced dementia. The improvement in LTP is attributed to
the anti-cholinesterase activity of the herbs in the formulation [56]. Phenserine tartarate
(Phen), a novel acetylcholine esterase inhibitor, reversed mild traumatic brain injury (mTBI)-
induced downregulation of PSD-95, and spine loss in wild type mice. Also, Phen reversed
mTBI-induced loss of synaptophysin in both wild type and transgenic mouse model of AD
(APP/PSEN1) [57]. Similarly, treatment with Huperzine A, a potent acetylcholinesterase
inhibitor (AChEI), improved dendritic spine density and synaptotagmin levels in the cortex
and hippocampus of severe model of AD (APPswe/presenilin-1) thus improved spine
density is linked to reduction in amyloid plaque burden and oligomeric beta amyloid
levels [58].

Manipulation of nicotinic receptors either by chrna5 deletion or by chronic exposure
to nicotine during developmental stages significantly reduced apical spine density in long
neurons and basal spine density in short neurons of the prefrontal L6 pyramidal neurons
in mice [59]. On the similar lines, exposure of cultured hippocampal neurons to nicotine
produced spine enlargement and responsiveness mediated through glutamergic trans-
mission via α4β2 nicotinic acetylcholine receptors(nAChRs) [60]. Moreover, mice lacking
β2-nAChRs showed scarcer dendritic spines when compared to the age matched wild type
mice, which indicates that β2-nAChRs play a crucial role in the restoration of dendritic
spine density [61]. Studies also revealed the evidence of cholinergic system modulating
structural plasticity at the sub-spine level, wherein muscarinic receptor activation led to
induction of fine filopodia from spine heads in the CA1 pyramidal cells of the hippocampus.
The formations of spine head filopodia represents novel structural form of sub-spine plas-
ticity which occur due to interaction between presynaptic buttons and dendritic spines [62].
Overall, increase in both basal and apical spine numbers, increased spine density, enhanced
dendritic length, alterations at sub-spine level (formation of fine filopodia), and increased
synaptotagmine levels in various brain regions are regulated by the cholinergic system.
Thus, cholinergic system either through activation of muscarinic or nicotinic receptors or
through inhibition of acetyl choline esterase makes significant impact on the formation and
functions of dendritic spines.

3.2. Effect of Glutamatergic Modulators on Dendritic Spines

Glutamate being an important excitatory neurotransmitter in the central nervous
system plays a crucial role in learning and memory and synaptic plasticity. Researchers
have demonstrated that the dendritic spines also receive the glutamergic input directly
from the presynaptic terminals. A study demonstrated that, application of shorter pulses
of glutamate resulted in elongation of spines while long pulses led to shrinkage of the
same set of spines. This explains that the differential responses exerted by glutamate
depends mainly on the intensity and duration of application. [63]. Calcium released from
internal stores significantly changes the spine shape of the dendritic spines (elongation
of spine neck) in cultured hippocampal neurons [64]. Activation of group 1 metabotropic
glutamate receptors (mGLUR1) induces release of calcium from internal stores triggering
dendritic protein synthesis, thereby contributing to increased spine length [65]. Further-
more, increase in the spine length and sprouting of spines is correlated to increased synaptic
activation of N-methyl-D-aspartate (NMDA)-glutamate receptors [66]. In contrast, NMDA
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receptor overactivation also results in spine retraction [67]. Spines formed initially in
response to NMDA receptor activation are further stabilized through activation of α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Activation of AMPA
receptors blocks further growth of spines and helps stabilizing spines through post synaptic
membrane depolarization and calcium influx via voltage-activated calcium channels [68].
Multiple reports demonstrate the beneficial role of glutamate and its modulators in achiev-
ing growth and maintenance of the dendritic spines and its alteration in few pathological
conditions. Ageing-related cognitive decline is attributed to diminished spine clustering
and density in the CA1 region of hippocampus. Treatment with riluzole, a presynaptic
NMDA receptor antagonist, increased thin spine density and non-linear thin spine cluster-
ing by increasing the glutamate uptake via glial transporters (EAAC1) and thus increases
the synaptic glutamergic activity [69]. Moreover, positive (3-cyano-N-(1,3-diphenyl-1H-
pyrazol-5-yl) benzamide) and negative (1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4Himidazol-
2-yl) urea) allosteric modulators of mGLuR5, differentially increased spine density in the
pyramidal cells of medial prefrontal cortex [70]. Similarly, Gamma-aminobutyric acid
(GABAergic) striatal spiny projection neurons co-cultured with glutamatergic cortical
neurons showed increased LTP, spine numbers, and GluA1 cluster densities on NMDA
activation. These data demonstrate the necessity of NMDA receptor activation to drive
glutamatergic structural plasticity in striatal spiny projections [71].

Ketamine, an NMDA receptor antagonist, improved dendritic spine numbers by
enhancing Ca2+ levels in dendritic spines of prefrontal cortex [72]. LY341495, a group II
metabotropic glutamate 2/3 receptor (mGlu2/3) antagonist, acts at mammalian target of
rapamycin complex 1 (mTORC1) and AMPA receptors, restored dexamethasone-induced
decrease in dendritic outgrowth and spine density [73]. Thus, from the above reports it
is implicated that, calcium-driven activation of NMDA-glutamate receptors and gluta-
mate agonists is shown to increase spine length, sprouting of spines, spine density, spine
clustering, and dendritic outgrowth.

3.3. Effect of GABAergic Agents on Dendritic Spines

GABA, a major inhibitory neurotransmitter, causes membrane hyperpolarization in
adult neurons through opening of chloride (Cl−) channels. However, during embryonic
development GABA receptor activation in the motor neurons of the spinal cord causes
membrane depolarization due to increased intracellular concentration of CI−, mediated
through a bumetanide-sensitive Na+/K+/2CI− cotransporter (NKCC1). Disruption of
GABA receptor activation by bicuculline in vivo (chicken embryos) significantly reduced
the dendritic outgrowth in terms of change in the number of branch points and number
of ends at different dendritic orders [74]. Pharmacological blockade of GABAA receptors
resulted in profound increase in the elimination of pre-existing spines persisting for first
4 postnatal months, without affecting new spine formation, also, resulted in structural
stability of mature circuits. This demonstrates the role of GABAA receptors in preventing
over-pruning of spines during spine refinement in the mouse cortex [75]. Thus, maturation
of dendritic morphology and modulation of spine turnover in developing neurons is
attributed to the excitatory GABA-driven activity. However, lowering the concentration
of intracellular CI− (due to lowered expression of chloride exporter KCC2) shifts the
excitatory effect of GABA to inhibitory effect in matured neurons. The switch in GABAA
transmission from developmental depolarizing to hyperpolarizing was recapitulated in
organotypic hippocampal slice cultures.

Studies have demonstrated that the application of GABAA antagonists to organotypic
hippocampal neuronal cultures showed marked loss of spines. Upon administration of
bicuculline, a GABAA receptor antagonist decreased spine density, explains that absence of
hyperpolarizing GABAA transmission resulted in the spine loss [76]. Activation of GABA
receptors suppressed overall cytosolic calcium concentration promoting spine shrinkage
and elimination in CA1 region of rat hippocampus. However, observed local spread of
spine shrinkage was attributed to induction of calcineurin and actin depolymerizing factor,
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i.e., ADF/cofilin (dephosphorylated) signaling cascade [16]. Mutations in alpha 1 subunit
of GABAA receptor, specifically GABRA1 missense mutation (alpha1- A322D) resulted in
significant increase in the number of mushroom-like spines and spine density in pyramidal
cells. A322D expression on the GABAergic cells increased perisomatic bouton density [77].
Activation of GABAB receptors in a single dendritic spine of layer 5 pyramidal neurons
inhibited NMDA receptors, said to be mediated through downregulation of cAMP and
PKA, explaining the mechanism of establishment of neuromodulatory microdomains in
the subcellular compartments like dendritic spines [78]. Blockade of GABA synthesis in
cultured hippocampal neurons by mercaptopropionic acid resulted in a significant increase
in the dendritic spine density. It is also proved that stressful experience promotes contex-
tual fear memory and enhanced spine density, however administration of midazolam, a
positive modulator of GABAA sites, prevented the influence of stress on both fear retention
and hippocampal dendritic spine modelling in the basolateral amygdala complex (BLA)
and dorsal hippocampus [79]. Together these studies demonstrate that the GABAergic
agents modulate dendritic spine structure and functions differentially during embryonic
development and in adult neurons.

3.4. Effect of Serotonergic Agents on Dendritic Spines

Several studies have indicated that 5-hydroxy tryptamine (5-HT) is synthesized in the
fetus early in the embryonic development [80]. In addition to the endogenous 5-HT, the
brain of the fetus also receives 5-HT from the mother through placenta, emphasizing its
significance in the early embryonic development including brain [81]. Establishment of
cortical circuits, neuronal migration, and dendritic differentiation are few of the crucial
cellular processes mediated by 5-HT system [82]. In mammalian brain, serotonergic neu-
rons execute their functions through 20 subtypes of receptors belonging to 7 subclasses.
Stimulation of 5-HT7R/Gα12 signaling pathway in one-month-old mice hippocampus has
shown to increase the formation of dendritic spines [83]. In addition to the role of 5-HT in
the embryonic and early post-natal life, experiments performed on adult mice by admin-
istering LP-211, a potent 5-HT7 agonist, showed significant increase in the total number
and density of dendritic spines in striatal neurons. Binding of LP-211 to 5-HT7R activates
downstream small GTPases like Cdk5 and Cdc42 leading to actin polymerization in turn
spinogenesis (Figure 1) [84]. It was also found that 5-HT7R stimulation enhances local
matrix metallopeptidase-9 (MMP-9) activity in the mouse brain, triggering dendritic spine
remodeling and synaptic pruning, leading to the cleavage of CD44 followed by Cdc42 acti-
vation [85]. In an experimental model of neuroblastoma cells, activation of 5-HT4R boosts
phosphorylation of cofilin and maturation of dendritic spines via RhoA-dependent control
of F-actin. It was found that postnatal expression of 5-HT4R and 5-HT7R in hippocampus
is differently regulated. In the early postnatal stages, 5-HT7R activation is responsible
for arborization of dendritic trees and spinogenesis, while in the later developmental
stages, 5-HT4R is involved in the maturation and stabilization of spines [83]. Exposure of
5-HT2 agonist, DOI to cultured cortical neurons induced transient increase in dendritic
spine size as well as spine remodeling by phosphorylating PAK, a downstream target of
neuronal Rac guanine nucleotide exchange factor (RacGEF) kalirin-7 [86]. Studies have
also shown that short-term regulation of dendritic spines occurs through acute stimulation
of 5-HT2A/2C receptors by activating phospholipase-C (PLC) which induces downstream
Ca2+-dependent TGase activation catalyzing G proteins of Rho family and thus, activating
Rac1 and Cdc42. Rac1 and Cdc42 in turn regulate the dynamics of actin cytoskeleton lead-
ing to transient dendritic spine enlargement, and thus, contributing to spine plasticity. But
chronic treatment with olanzapine, 5-HT2A receptor antagonist, increased expression of
Nrg1 gene, which promotes spine maturation via JAK2/STAT3 pathway [87]. Vortioxetine,
agonist at 5-HT1A and 5-HT1B receptors induced spine enlargement contributing to more
functional synaptic contacts in rat hippocampus [88].
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Figure 1. 5-HT7R activates downstream small molecule GTPase’s Cdk5 and Cdc42 leading to
actin polymerization and spinogenesis [89] (reused as per the Journal of Neurochemistry copyright
permission policy) (CdK5: Cyclin Dependent Kinase5,Cdc42: Cell Division Control Protein 42).

3.5. Effect of Adrenergic Agents on Dendritic Spines

Noradrenergic system influences multiple brain functions like arousal, perception,
attention, learning, and memory by regulating synaptic plasticity and dendritic spine dy-
namics via the modulation of cell surface receptors (NMDARs, AMPARs), protein kinases,
and phosphatases [90,91]. Noradrenergic agonists are known to elevate intracellular cAMP
concentration, tropomyosin receptor kinase-B (TrKB) phosphorylation and its translocation
to spines thus enabling TrKB interaction with PSD-95 [92]. Studies report that activation of
β-adrenergic receptors (β-ARs) by isoproterenol, through canonical and noncanonical (Gi
and Gs Coupled) pathways forms LTP through activation of Ca2+/calmodulin-activated
kinase-II, protein kinase A, and exchange protein activated by cAMP (Epac) which is critical
for spine formation [93]. The α(2A)-adrenoreceptors (α(2A)-ARs) are highly expressed
in neurons and essential for neuronal differentiation, growth, and neurotrophy. It was
found that activation of α(2A)-ARs by guanfacine enhanced the expression of PSD-95,
and significantly induced stubby and mushroom spines, along with enlargement of spine
head size in cultured prefrontal cortex neurons. However, co-administration of yohimbine
with guanfacin blocked the effects of guanfacine, confirming the role of α(2A)-ARs in the
maturation of dendritic spines [94]. Furthermore, guanfacine prevented dendritic spine loss
in layer II/III pyramidal neurons of prelimbic prefrontal cortex in rats exposed to chronic
restraint stress [95]. In cultured cortical neurons from C57/B6 mice, guanfacine enhanced
the expression of spinophilin (a key cytoskeletal protein involved in the formation and
maintenance of dendritic spines) that leads to 1.2- and 1.8-fold increase in spine length
and spine density, respectively [96]. PD rats treated with bromocriptine, a α-adrenergic
agonist, showed significant increase in the number of synaptic contacts with dendritic
spines compared to sham-operated rats indicating the indirect effect of bromocriptine
on the memory and learning [97]. These findings collectively indicate that activation of
adrenergic receptors have positive impact on the growth and distribution of dendritic
spines.
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3.6. Effect of Dopaminergic Agents on Dendritic Spines

Dopamine (DA) is implicated in several neuropsychiatric and neurological disor-
ders as it regulates movement, motivation, reward, learning, and memory [98]. Primary
prefrontal cortex (PFC) neuronal culture on repeated treatment with SKF81297, a DA
agonist, resulted in increased dendritic branching and spine density, which is believed
to be mediated through activation of D1 receptors and downstream signaling molecules
(Rac1 and RhoA). While administration of SCH23390, a dopamine antagonist, reversed the
SKF81297-induced increase in dendritic morphogenesis, indicating the positive role of D1
receptors in dendritic morphogenesis [99]. Increased spine density in hippocampal neurons
is also reported by promoting transactivation of TrKB, mediated by D1 receptors [100].
D3 receptor agonists, ropinirole and pramipexole showed dose-dependent increase in
the dendritic arborization in translational model of human-inducible pluripotent stem
cells (hiPSCs) derived from dopaminergic neurons [101]. PD animal models have shown
marked decrease in the number of spines and increase in spine head volume in striatal
dendrites [102]. 6-hydroxydopamine-lesioned rats on chronic treatment with levodopa
showed significant increase in the spine density and spine head area in the pyramidal
tract neurons of primary motor cortex [103]. Further, the spine enlargement in the nu-
cleus accumbens (NAc) and medium spiny neurons (MSNs) is linked to be associated
with dopamine dysregulation syndrome (DDS). These observations are corroborated to
dopaminergic degeneration and loss of dopamine in striatum and NAc [104]. Loss of
nigrostriatal dopamine neurons in PD induces reduction in the number of dendritic spines
with smaller cell body and less profusely arborized dendritic trees on MSNs of striatum
expressing both D1 and D2 receptors [105]. However, non-selective activation of dopamin-
ergic receptor by apomorphine (D1-D5 dopamine receptor agonist) resulted in learning
and memory impairment, reduced dendritic length and LTP followed by neuronal damage
in CA1 region of mice hippocampus [106]. Similar results were also observed in young
Mongolian gerbil’s hippocampus on apomorphine treatment [107]. Another study revealed
that brain-derived neurotrophic factor (BDNF)-induced chronic activation of D3 receptors
improved motor functions and increased the dendritic spines in the striatal neurons of
6-hydroxydopamine (6-OHDA)-induced Parkinson’s rat [108].

Dopamine D(4) receptor activation upregulates the cofilin activity by dephosphorylat-
ing cofilin and thus depolymerizing actin [109]. 6-hydroxydopamine lesions in the ventral
tegmental area disrupts the prefrontal cortex dopamine resulting in the decreased dendritic
length and spine density of layer V pyramidal cells in the prelimbic cortex [110]. High-
fat-diet-fed mice displayed reduced dendritic spine density in the substantia nigra due
to neuroinflammation-mediated degeneration of dopaminergic neurons in midbrain [90].
Striatal dopamine loss is shown to decrease the number of MSN dendritic spines [111].
Activation of D1R and D2R receptors in a striatal cell culture containing MSNs increased the
number of spines and spinophilin expression, indicating the direct role of these receptors
on spines formation. Similarly, blockade of D1R and D2R receptors reduced the number
of dendritic spines in cultured striatal MSNs indicating the role of dopamine in the spine
formation [112]. It was also found that there was significant decrease in the association of
spinophilin with neurofilament medium (NF-M) in dopamine-depleted striatum, causing
decreased number of spines, as observed in Parkinson’s disease [113]. Thus, it is clear
that spinophilin-induced alterations in spine density and morphology depends on D1
and D2 receptors which act as scaffolding key synaptic proteins [114]. Further, another
study showed that alcohol-dependent rats fail to perform emotional learning tasks, while
administration of L-DOPA during early withdrawal showed optimal learning along with
increased number of long thin spines in MSNs of NAc. Another study revealed that
drebrin, a dendritic spine protein depletion reduces D1 receptor levels and in turn reduces
dendritic spine morphogenesis in mouse hippocampus [115]. These results display the role
of dopamine in growth, maintenance, and restoration of spines [116].

The observations for all the neurotransmitter systems from various studies are sum-
marized in Table 1.
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Table 1. Effect of various neurochemical systems on dendritic spines.

Sl.
No

Neurochemical
System

Drug/Chemical
Treatment

Effect on DS
References

Number Density Length Size Morphogenesis Enlargement

1 Cholinergic
Donepezil, LM11A-3,

Brahmi Nei, Phenserine
tartarate, Huperzine A,

↑ ↑ ↑ - - - [53,55–58]

2 Glutamatergic Riluzole, Ketamine,
LY341495 ↑ ↑ - - - - [69,72,73]

3 GABAergic Bicuculline,
mercaptopropionic acid - ↑ - - - - [79]

4 Serotonergic LP-211, Olanzapine,
Vortioxetine, ↑ ↑ - ↑ ↑ ↑ [84,87,88]

5 Adrenergic
Guanfacine,

Bromocriptine,
isoproterenol

- ↑ ↑ ↑ - - [93,94,97]

6 Dopaminergic SKF81297, Ropinirole,
Pramipexole ↑ ↑ ↑ - ↑ - [99,101]

↑ denotes increase; - denotes no information.

4. Non-Therapeutic Modulators of Dendritic Spines
4.1. Impact of Calorie Restriction on Dendritic Spine

Calorie restriction (CR) has shown prominent improvement in adult neurogenesis and
neural plasticity [117,118], while high saturated fat diets have shown to impair learning
and memory, demonstrated by decreased spine number and density in substantia nigra
and striatum of mice brain (Figure 2) [90]. Diet that mimics fasting enhanced the hip-
pocampal neurogenesis, upregulated neurogenic differentiation factor-1 (NeuroD1), spine
density, and improved cognitive performance in aged mice [119]. Stranahan et al. (2009)
investigated the effect of physical exercise and dietary restriction on hippocampal neuron
morphology. Increase in neurotropin, BDNF, and density of dendritic spines was attributed
to the dietary restriction, but not to the physical exercise. These data indicate that dietary
restriction influences the biosynthesis of new dendritic spines and hence synaptic plastic-
ity [120]. Rats fed ad libitum displayed significant loss of L-type spines (lollipop-shaped)
in the basilar tree of layer V pyramidal cells of parietal cortex with normal ageing when
compared to the diet-restricted rats [121]. Similarly, a reduction in dendritic spines density
in CA1 region of hippocampus was observed along with insulin resistance in the high-
fat-diet-fed rats [122]. Diabetic rats maintained on dietary restriction showed significant
increase in the dendritic mushroom spines in the pyramidal neurons of CA1 region of
hippocampus than diabetic rats fed ad libitum [123]. Further, mice maintained with CR
and low protein-high carbohydrate (LPHC) diet showed increased dendritic spines in the
dentate gyrus neurons [117].

Similarly, rats maintained with low-protein diets showed minimal decrease in the
total number of neurons in dentate gyrus, CA1 and CA3 neurons compared to ad libitum
fed rats. However, the feed-restricted rats also displayed reduced segments in the dendritic
arborization of granule cells. However, there was an increase in the spine density in distal
segments of dendritic spines and total number of axospinous synapses in dentate gyrus
region. In addition, dendritic length of granule cells was also found to be increased. This
study explains that controlled diet restriction improves the dendritic spines density in turn
the synaptic functions [124].

On contrary, feed restriction in crucial stages of life viz feed restriction in new born
rats between post-natal day 0 and 20 decreased dendritic spines in the layer V pyramidal
cells in the frontal, parietal, and occipital cortices which may be related to the perinatal
undernourishment [125]. Similarly post-mortem brains of severely malnourished infants
showed short apical dendrites and fewer spines [126]. These data reveal that dietary
interventions play critical role in dendritic spines formation and maintenance.
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Figure 2. Representative Golgi staining images of dopaminergic neurons in substantia nigra and striatum [90] (reused as per
the International Journal of molecular Sciences copyright permission policy). (A) Represents decreased dendritic spine density
in substantia nigra of high fat diet (HFD) mice compared to control. (B) Represents decreased dendritic spine density in
striatum of high fat diet (HFD) mice compared to control. * indicates the significant difference with respect to control.

4.2. Effect of Pre-, Pro-, and Syn-Biotics on Dendritic Spines

Several studies have established the correlation between gut microbiota and neurolog-
ical disorders including blood brain barrier integrity [127], neurogenesis [128], maturation,
and ramification of microglia [129], myelination [130], expression of neurotrophins like
BDNF, oxytocin, and vasopressin [131], and release of neurotransmitters [132]. Pre- and
pro-biotics (text Box 1) are well-known for their positive influence on mental health, along
with supporting the growth of commensal bacteria with psychophysiological effects, and
hence they are also termed as psychobiotics [133,134]. The role of psychobiotics is not only
limited to the regulation of neuroimmune axis and diseases of nervous system, but also
involved the enhancement of cognition, and behavior phenomena [135].

The microbiome has attracted significant attention for its impact on the synaptic
plasticity by modulating the dendritic spine morphology and distribution [136]. In light
of this, germ-free (GF) animals have shown decreased dendritic size and fewer synaptic
connections in the hippocampal pyramidal neurons. Indeed, absence of symbionts in mice
was correlated to dendritic hypertrophy with more thin, stubby, and mushroom spines in
the basolateral amygdala neurons, while the ventral hippocampal pyramidal neurons of
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GF mice displayed shorter, less branched spines with less stubby and mushroom types.
These findings reveal a casual role of gut microbiota in the realm of spine pathology [136].

Multiple reports evidenced the involvement of BDNF in dendritic arborization and
spine formation [137,138]. Moreover, administration of prebiotics and probiotics en-
hanced brain BDNF levels, which has prompted many researchers to examine the role
of pre/probiotics on spine density and dendritic arborization in different diseased condi-
tions [139,140]. Administration of antibiotics during pregnancy is reported to affect the
maternal gut microbiota and alters the behavioral pattern in offspring [141].

Pregnant rats and their female offspring exposed to lead resulted in the loss of den-
dritic spines in both CA1 and dentate gyrus (DG) regions irrespective of the developmental
stages (PND 22 or PND 68). Long-term intervention with multispecies probiotic (Bifi-
dobacterium longum BL986, Lactobacillus acidophilus LA43, Lactobacillus fermentum LF26,
Lactobacillus helveticus LH43, Lactobacillus paracasei LPC12, Lactobacillus rhamnosus LRH10,
and Streptococcus therophilus ST30) restored the spine densities in both adolescence and
adulthood [142].

In an in vivo study, high-fat-diet (HFD)-fed rats displayed hippocampal dysplasticity
(decreased synaptic proteins like PSD-95, synaptophysin and spinophilin) including LTP im-
pairment along with low grade local and systemic inflammation [143–145]. Earlier reports
also suggest the evidence of gut dysbiosis on HFD consumption by enhancing the ratio of
Firmicutes to Bacteroidetes ratio, thus promoting the growth of Proteobacteria [146,147].
On the other hand, decreased spine density in high-fat-diet-fed rats was restored on treat-
ment with prebiotic Xyloolidosaccharide (XOS), probiotic Lactobacillus paracasei HIIO1 (L.
paracasei) and synbiotics (combination of XOS and L. paracasei) [143]. Drebrin, a cytoplas-
mic actin-binding protein expressed in dendritic spines, regulates the morphology and
plasticity of dendritic spines. Aberrant expression of drebrin indicates abnormal dendritic
spines [148–150]. In an in vitro study, exposure of hippocampal neurons to live or heat in-
activated Lactobacillus rhamnosus (LGG) and Bifidobactererium bifidum (TMC3115) increased
the neuronal viability, and upregulated drebrin and SYP levels. Evidence strongly supports
probiotics belonging to the family Lactobacillus and Bifidobactererium influence host neuronal
development, brain biochemistry, and behavioral phenomenon [151].

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism mice
hippocampus showed increased expression of neuropsin, decreased expression of PSD-
95 and synaptophysin along with reduced CA1 apical spine density. Administration
of probiotic Bifidobacterium breve (MCC1274) reversed the MPTP-induced changes [152].
Aberrant higher induction of neuropsin in PD mice is linked to abnormal changes in the
hippocampal plasticity [152]. Chronic administration of mixture of three Bifidobacteria
(B. longum, B. breve and B. infantis) known as B-MIX to rats induced significant increase
in thin and mushroom spine numbers in both apical and basal dendritic branches in
CA1 region of hippocampus, while stubby spines remained unaltered. The mixture also
positively enhanced the total dendritic length, total branch number, number of tips/neuron,
and the number of pints/neurons, confirming the role of B-MIX mixture not only on spine
density, but also on dendritic arborization [153].

4.3. Effect of Enriched Environment (EE) on Dendritic Spines

EE is well utilized experimentally to substantially mitigate conditions like depression
and anxiety [154,155]. EE has shown to improve the rate of synaptogenesis and complex
dendritic arbors formation [156]. Huntington’s disease (HD) mice exposed to EE showed
the absence of dendritic spine pathology [157]. Maternal immune activation (MIA) of
female rats downregulated HPA axis and glutamate signaling pathways in amygdala
leading to alterations in behavior, endocrine status, and neural markers of synaptic plas-
ticity [158]. MIA rats challenged with endotoxin lipopolysaccharide (LPS) during mid
gestation (G15) induced alterations in the expression of genes critical to synaptic trans-
mission and plasticity like Eaats, PSD-95, Gria1, and TrKB in amygdala, leading to the
development of cognitive impairments. On postnatal day 50, the offspring were grouped
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to standard housing, communal nesting, and EE. The offspring exposed to EE rescued
the deficits through reducing the activity of HPA axis, upregulating the synaptic markers
like Eaat1, Eaat3, PSD-95, and TrKB, which otherwise reduced following prenatal immune
activation. The upregulation in synaptic markers indirectly indicate the enhancement of
dendritic spines [159]. SNK-SPAR pathway is involved in activity-dependent remodeling
of synapses [160]. Similarly, studies have illustrated the mechanism of NWASP-ARP2/3
pathway in regulating spine and synapse formation via ARP2/3-mediated branching of
actin for dendritic head enlargement and maturation [161]. Pregnant rats exposed to heavy
metal mixtures (MM) via drinking water throughout gestation (from G0) and the offspring
were continued to receive the MM throughout lactation, and were experimentally grouped
into control and EE-treated groups. The offspring from control group showed impaired
cognitive performance correlated to the decreased dendritic spine density, decreased num-
ber of mushroom type spines, activation of SNK-SPAR, and inhibition of NWASP-ARP2/3
pathways. However, EE-treated offspring reversed MM-induced disruptions [162]. Few
studies claim the necessity of zinc for experience-dependent plasticity in brain. A study
conducted by McAllister et al. reported the beneficial effects of EE are independent of zinc
in terms of increased basal dendritic length and spine density in neurons of barrel cortex,
striatum and amygdala [163]. Amyloid beta (Aβ) oligomer, a synaptotoxic agent, induced
the impairment of LTP through downregulation of miRNA-132 expression and increased
histone deacetylase (HDAC3), while EE produced beneficial effects through suppressing
the effects of Aβ oligomer in hippocampus of wild-type mice [164].

In mice subjected to cerebral focal ischemia by occluding middle cerebral artery, ex-
posure to EE increased the synapse numbers along with the upregulation of expression
of synaptophysin and GAP-43, indicating the important role of EE in promoting synaptic
remodeling [165]. Recognition memory impairment induced by MK-801, a NMDA antago-
nist was significantly reversed by EE through restoration of LTP and dendritic spines in
long Evans rats [166]. Deafening protocol in rats significantly decreased apical and basal
spine density indicating the absence of auditory stimulation induced neuronal atrophy
in auditory cortex. Auditory environmental enrichment increased the number of action
potentials recorded and glutamergic synapses in layer II/III of auditory cortex along with
increase in apical dendritic length and spine density in pyramidal neurons of auditory
cortex [167].

4.4. Effects of Yoga and Meditation on Dendritic Spine

Yoga and meditation offer several health benefits including enhanced memory, emo-
tional and attention control, improvement in depressive, anxious, and stressful behav-
ior [168–170]. However, the effects of yoga and meditation on central nervous system
function still need to be studied more scientifically. Recently, Villemure et al. (2021) re-
ported that yogic practitioners have greater grey matter volume compared to non-yogic
practitioners [171]. Though many studies proved the beneficial role of yoga and meditation
practice on memory and cognition, not much information is available on their impact
on dendritic spines. Practice of Hatha yoga is corroborated to the increased grey mater
volumes in the frontal, limbic, temporal, occipital, and cerebellar regions and improved
performance in cognitive failure questionnaire which is linked to the neuroplastic changes
in the brain [172]. Sahaja yoga facilitates emotional and attentional control which is again
linked to the neuroplastic changes in the temporal and frontal areas of cerebrum [173].
Intriguingly, the larger grey matter volume, evidenced from magnetic resonance imaging,
in long-term mediators is linked to the improved cognitive, emotional, and attention con-
trol [174]. Mounting evidence shed light on the benefits of different yoga and meditation
techniques on the cognition, emotional balance, attention control, reward, and happiness
which is correlated to increased grey matter volume [174–178]. Indeed, the loss of dendritic
spines is positively correlated to decrease in grey matter volume in stressful conditions
in mice [179]. Thus, the increased grey matter volume in yoga and meditators might be
due to the positive changes in the dendritic spine numbers/density. However, imaging
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the morphology and distribution of dendritic spines in yoga and meditators will provide
interesting evidence and studies are warranted in this line.

Box 1. Definitions.

Dendritic Spine sprouting: “Recurving of distal dendritic arbors, short-segment branching, growth
cone-like processes initiating at the neuronal dendritic process is spine sprouting” [39].
Siddha medicine: “Siddha is an ancient traditional Indian system of medicine practiced in southern
part of India. Siddha medicine is claimed to revitalize and rejuvenate dysfunctional organs that
cause the disease. Kayakarpam, a special combination of medicine and life style, Varmam therapy,
Vaasi (Pranayamam) and Muppu the universal Salt are the specialties of Siddha system of medicine.
Thus, this system connects both spiritual and physical and treats the person as a whole i.e., it
concentrates on the physical, psychological, social, and spiritual wellbeing of an individual” [180].
Prebiotics: “Are the source of food for gut’s healthy bacteria or the food that induces growth or
activity of beneficial microorganisms in the gut”.
Probiotics: “Are the live microorganisms, when consumed improve or restore the gut flora”.
Synbiotics: “Are mixture of both prebiotics and probiotics viz, fermented food that synergistically
improve the gut flora” [181].

5. Conclusions

Spinogenesis has a functional role in memory formation and retrieval, and is regulated
by multiple factors like PAK, CaMKII, syndecan-2, Ena/VASP, paralemmin-1, TLCN, PSD,
AF6/afadin, Kalirin-7, Rac1, Semaphorin 3F, Tiam1-Rac1-3-LIMK1/2-Cofilin1, and RhoA-
ROCK1/2-Myosin II pathways. Autism spectrum disorder (ASD), schizophrenia, and
AD are the neurological disorders characterized by significant disruptions in processing
information and cognition. Although multiple studies suggest synaptic dysfunctions
as a leading insult to neuronal death, disease-specific disruptions in spine shape, size,
or number accompany a large number of brain disorders, suggesting dendritic spines
as target for many neurodegenerative disorders. Exploration of relationship between
dendritic spines and neurological diseases unlocked spine dysmorphogenesis as one of the
main underlying causes. This led to the identification of new windows of opportunities for
therapeutic intervention.

Experimental studies have demonstrated that application of neurotransmitters and
chemical messengers like acetylcholine, adrenaline, dopamine, glutamate, GABA, and
5-HT elicits alterations in spine structure and functions (Figure 3). Incidentally, alteration
in these chemical messengers is also one of the underpinning pathological mechanisms for
most of the neurological disorders. These chemical messengers have been reported to be
involved in rectifying both structural and distributional pathologies of dendritic spines
and hence can be of therapeutic interest. Interestingly, various studies have shown the role
of life style modifications like reduced calorie intake, inclusion of pro/pre/synbiotics in
the diet, exposure to enriched environment, and regular practice of yoga and meditation in
improving the dendritic spine pathologies as shown in Figure 3 As per the observations
from this review it can be proposed that effect of non-pharmacological interventions on the
dendritic spine morphogenesis is on par with the pharmacological interventions. Thus,
non-pharmacological interventions can be advised as supplementary to neurodegenerative
diseases associated with cognitive decline.

Overall, this review robustly reinforces the application of non-pharmacological modu-
lators to treat spine pathologies as an appropriate approach. However, new discoveries that
contribute to the elucidation of beneficial effects of therapeutic vs. non-therapeutic modu-
lators are much needed. More detailed mechanistic studies on non-therapeutic modulators
are imperative because the non-therapeutic interventions may allow the development of
newer avenues in treating spine pathologies and thus the underlying neurological diseases.
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Figure 3. Pharmacological and non-pharmacological targets on structural pathways in dendritic spine. In the figure, the
descriptions in red colour indicates pharmacological modulators and blue indicates non-pharmacological modulators on
various phases of dendritic spine morphogenesis. (+) denotes positive modulation; (−) indicates negative modulation.
NMDAR: N-methyl-D-aspartate receptor, AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, cdK5:
Cyclin dependent kinase-5, BDNF: Brain derived neurotrophic factor, CaMKII: Calcium/calmodulin-dependent protein
kinase II, TrKB: Tropomyosin receptor kinase-B, TIAM1: T-cell lymphoma invasion and metastasis-inducing protein 1,
cdc42: Cell division control protein 42, WASP: Wiskott-Aldrich syndrome protein.

6. Limitations

In the present review, an attempt is made to collate information that demonstrate the in-
fluence of various neurotransmitter systems, chemical messengers, and non-pharmacological
approaches on the structural and functional status of dendritic spines. Majority of the
evidence on the effects of neurotransmitters on the dendritic spines are obtained from
preclinical studies, while only a few clinical data are available, even in recent years. Fur-
ther, in many instances the results of the in vivo studies are not specific, as the effects
observed may also be contributed by the overlapping role of other neurochemical systems.
Hence, specific and elaborate in vitro studies are needed. Although preliminary research
data have provided significant evidence on improved cognitive performance following
non-pharmacological approaches, by altering the dendritic spine turnover and shape,
only limited literature are available on the spine turnover, and imaging-based structural
information before and after the intervention.

These findings underpin the urgent need for intense preclinical and clinical investiga-
tions on both pharmacological and non-pharmacological modulators, the combination of
which may impart synergistic effects on dendritic spines, in turn cognitive performance,
and shall be of transitional importance.
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