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Abstract: Background: Domestic workers, flight crews, and sailors are three vulnerable population
subgroups who were required to travel due to occupational demand in Hong Kong during the
COVID-19 pandemic. Objective: The aim of this study was to explore the social networks among
three vulnerable population subgroups and capture temporal changes in their probability of being
exposed to SARS-CoV-2 via mobility. Methods: We included 652 COVID-19 cases and utilized
Exponential Random Graph Models to build six social networks: one for the cross-sectional cohort,
and five for the temporal wave cohorts, respectively. Vertices were the three vulnerable population
subgroups. Edges were shared scenarios where vertices were exposed to SARS-CoV-2. Results:
The probability of being exposed to a COVID-19 case in Hong Kong among the three vulnerable
population subgroups increased from 3.38% in early 2020 to 5.78% in early 2022. While domestic
workers were less mobile intercontinentally compared to flight crews and sailors, domestic workers
were 1.81-times in general more likely to be exposed to SARS-CoV-2. Conclusions: Vulnerable
populations with similar ages and occupations, especially younger domestic workers and flight crew
members, were more likely to be exposed to SARS-CoV-2. Social network analysis can be used to
provide critical information on the health risks of infectious diseases to vulnerable populations.

Keywords: social network analysis; COVID-19; SARS-CoV-2; vulnerable population; domestic
worker; flight crew; sailor; mobility; exponential random graph model

1. Introduction

Vulnerability is the state in which a person is exposed to the possibility of physical
or emotional harm and cannot protect himself or herself from the harm [1]. Vulnerable
populations are groups that experience vulnerability and are not limited to groups with
individuals of a specific ethnicity, age, socioeconomic status, sexual orientation, or medical
condition [2]. The Code of Federal Regulations specifies additional enhanced protections
if vulnerable groups are included in research [3]. Homeless populations, prisoners, and
those with substance abuse disorders were studied as vulnerable populations in previous
public health studies [4]. Mobility, also referred to as population mobility, is the movement
of individuals from one geographic location to another [5]. Mobility is considered to be
strongly related to airborne infectious disease [6]. In previous pandemics, such as the
severe acute respiratory syndrome (SARS) and influenza A, population mobility via public
transportation, such as trains and airplanes, in order to travel from place to place, was
found to contribute to the spread of SARS [7] and H1N1 virus [8].

The coronavirus disease (COVID-19) pandemic started in mid-December 2019 [9].
The first case infected by SARS-CoV-2 was reported in Wuhan, China [10]. At the early
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stage of the COVID-19 pandemic, massive population mobility during the Chinese New
Year in 2020 was found to exacerbate the rapid transmission of SARS-CoV-2 in China [11].
COVID-19 related public health restrictions such as lockdowns, heavily impacted certain
mobile populations, such as migrant domestic workers, and made them vulnerable [12].
The female-dominated domestic worker labor force faced limited access to resources during
the COVID-19 pandemic [13,14]. While they have been considered “essential workers”
worldwide and even heroes [15], the pandemic aggravated pre-existing issues, such as
low salaries, poor living conditions, and unstable employment [16–18]. On the other
hand, travel restrictions led to a 43% reduction in passenger volume in 2020 than that in
2019 [19]. This low demand increased layoffs among flight crews [20,21]. Additionally,
even though safe flying strategies to contain the spread of SARS-CoV-2 in cabins had been
designed and implemented by the International Air Transportation Association in 2020 [22]
and high-efficient filtering techniques had been used in aircrafts [19], flight crews were
still vulnerable to the increasing risk of SARS-CoV-2 infection and mental health burdens
during work [23,24], as well as employment uncertainty [21,25]. Sailors, another vulnerable
population during the COVID-19 pandemic who also needed to travel due to occupational
demand, were constantly gathered in confined working spaces in which SARS-CoV-2 could
spread quickly [26,27]. During the COVID-19 pandemic, deciding which populations were
vulnerable was crucial, since it impacted policy makers in their decisions regarding who to
serve [28]. Hence, we considered domestic workers, flight crews, and sailors to be three
hard-to-track and understudied vulnerable population subgroups in Hong Kong during
the COVID-19 pandemic.

In network science, social network is defined as a network that not only refers to
online social media platforms, but also has a broader meaning in which the vertices
represent human beings, and the edges stand for shared connections or relationships
between people [29]. In public health, social network analysis is utilized to understand these
connections or relationships and explore how they impact people’s health behaviors [30].
Hong Kong is a special administrative region of China with one of the most densely
populated economic and transportation hubs in the world [31,32]. The Center for Health
Protection in the Hong Kong Department of Health had been publishing publicly available
de-identifiable and individual-level COVID-19 data since 23 January 2020 [33]. These data
enabled us to conduct this social network study on the three hard-to-track vulnerable
population subgroups in Hong Kong.

Social network analysis has been utilized in a wide range of public health research
for decades, from human immunodeficiency virus (HIV) infection [34] and syphilis [35] to
smoking [36] and substance abuse [37]. Existing COVID-19 studies used social network
analysis to identify SARS-CoV-2 variants [38] and to build infection networks to estimate
health policy implications [39]. Furthermore, Exponential Random Graph Models (ERGMs)
is one of the most powerful and popular models [30,40,41] to explore social networks. In
existing public health studies, researchers used ERGMs to reconstruct the social network of
HIV key populations [42] to estimate and simulate missing network data for the National
Longitudinal Study of Adolescent to Adult Health (Add Health) [43] among 14 schools
in the United States [44]; explore the association between saliva hormones (cortisol and
testosterone) and the social network structure of students from a competitive nursing
program [45]; and model a location-based social network to investigate multidrug-resistant
tuberculosis [46]. Moreover, ERGMs were utilized to investigate mobility patterns among
nomadic herders to help combat emerging diseases [47] and examine homophily effects on
demographic age and symptoms among COVID-19 patients in Japan [48]. However, no
existing studies have examined social networks of the mobility of domestic workers, flight
crews, and sailors during the COVID-19 pandemic.

In this study, we utilized publicly available COVID-19 case daily reports and contact
tracing records from the Center for Health Protection in Hong Kong Department of Health
for domestic workers, flight crews, sailors, and their close contacts. Our study aims include
exploring social networks among the three vulnerable population subgroups and capturing



Int. J. Environ. Res. Public Health 2022, 19, 7565 3 of 25

temporal changes in their probability of being exposed to SARS-CoV-2 via mobility. We
hypothesize that vulnerable populations with increasing mobility will be at a higher
risk of exposure to SARS-CoV-2. This research fills a significant knowledge gap on the
social networks of vulnerable populations and their mobility in Hong Kong during the
COVID-19 pandemic. Our findings can be utilized to understand SARS-CoV-2 exposure via
social networks and risk among vulnerable populations, which could contribute to inform
comprehensive public health policies and provide necessary health resources to protect
vulnerable populations from bearing disproportionate health risks during the COVID-19
pandemic.

2. Materials and Methods

We obtained COVID-19 case reports of 13,400 confirmed COVID-19 cases in Hong
Kong from 23 January 2020 to 24 January 2022. Specifically, we retrieved daily situation
reports of the COVID-19 cases published by the Center for Health Protection in the Hong
Kong Department of Health [49]. We then collected contact tracing reports of each COVID-
19 case from vote4.hk [50]. All the data were publicly available and de-identifiable. Each
COVID-19 case was assigned a unique tracking ID by the local health authority to pro-
tect individual identities while making available valuable information for public health
research.

This study was designed to measure each vulnerable population’s social networks in
relation to mobility in Hong Kong during the COVID-19 pandemic. We manually filtered
652 cases out of the 13,400 cases pool by reviewing all the situation reports and contact
tracing records. The 652 cases in this study met our definition of inclusion in one of the
following vulnerable populations during the COVID-19 pandemic: (1) domestic workers,
(2) flight crews, and (3) sailors. We included these three vulnerable population subgroups
and their reported close contacts as the study population in this study. We stratified
the study population into five cohorts by COVID-19 temporal waves in Hong Kong (see
Table 1) based on the historical epidemic curve of confirmed COVID-19 cases in Hong Kong
(retrieved by 24 January 2022), as published by the Center for Health Protection in the Hong
Kong Department of Health [49]. We included the three subgroups because we found that
they had similar mobility during the COVID-19 pandemic in Hong Kong, which is a crucial
component in constructing the social networks in this study. Specifically, they shared the
same destination, Hong Kong, for their temporary or long-term mobility. Moreover, our
observed networks demonstrated that these three subgroups were physically present in
common scenarios such as the Hong Kong International Airport or flight cabins where they
were exposed to SARS-CoV-2.

Table 1. Temporal Stratification of the Five Wave Cohorts.

Cross-Sectional Cohort (Overall) January 2020–January 2022

Wave 1 cohort January 2020–May 2020
Wave 2 cohort June 2020–October 2020
Wave 3 cohort November 2020–December 2020
Wave 4 cohort January 2021–May 2021
Early wave 5 cohort * June 2021–January 2022

* Wave 5 in Hong Kong started from January 2022, and not end yet at the time of writing.

We built six observed empirical networks for this study: one for the cross-sectional
overall cohort, and five for the temporal wave cohorts, respectively. All six networks were
undirected and unweighted. A social network is composed of two components: vertices
and edges [30]. Vertices were the study population in this study. One vertex stood for one
individual. Edges were shared scenarios where vertices were exposed to SARS-CoV-2. If
two vertices were physically presented in at least one of the eight scenarios (see Table 2),
they were connected by an edge. This process is referred to as “edges formation” in this
study. We crosschecked the information and created all the eight scenarios of each vertex
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from the publicly available contact tracing records [50]. We then manually created edge
lists to build each network. Edges were unweighted in this study. The lengths of the edges
were not Euclidean distance, thus long and short edges were undifferentiated from each
other. We observed edges formation in this study in a binary manner: the presence of a
connected edge or not.

Table 2. Eight Scenarios for Edges Formation.

1 Cohabited in the same apartments with family members or roommates
2 Took same flights on the same dates
3 Cohabited with employer *
4 Social gathered at the same sites on the same dates
5 Worked in person with coworkers at the same physical sites on the same dates
6 Provided or received customer service in person

7 Physically presented at same departure and arrival airports within two days ** or physically
presented at the same arrival airports on the same dates

8 Lived or quarantined in the same hotels within 14 days ***
* Domestic workers are required by the Hong Kong government to live-in with their employers. ** For international
flights, we added one day to account for time differences. *** Hong Kong government required, 14 days quarantine
for newly arrived visitors during our study period.

Descriptive statistical analysis was conducted to examine the demographic character-
istics of the study population. We calculated and reported the mean value for continuous
variables (i.e., age) and proportion for categorical variables (i.e., gender). For descriptive
statistical analysis on social networks, we computed and reported average density as well
as three measures of centrality: degree centrality, betweenness centrality, and eigenvector
centrality. Density represents the proportion of observed edges to the maximum of possible
edges in a network [29,51]. A density closer to 1 indicates a highly connected network [29].
Degree centrality is the degree of a vertex, or, in other words, the number of edges connected
to that vertex [29]. Degree can range from 0 to a finite number. Betweenness centrality is
the frequency that a vertex lives on the shortest path that connects other vertices [29,30].
Betweenness centrality measures the extent to which a vertex sits on the short path between
other vertices [29,52]. Eigenvector centrality is the degree in which centrality scores take
into account the vertices of the vertex’s neighbor [29]. Eigenvector centrality measures how
central a vertex’s neighbors are in a network [29,41]. In addition to density and measures
of centrality, we also reported network size and number of isolates. Network size is the
number of vertices in a network [29,51], while isolates are vertices with a degree of zero
that have no edges connected to other vertices [41]. In our study, isolates were included in
the network analysis and excluded from network visualization.

We utilized Exponential Random Graph Models (ERGMs) to build and examine our
networks. Firstly, we built a null model for the cumulative cross-sectional network with
one term, the edges. This null model is a random graph model that shares the same size
of vertices as our observed empirical cross-sectional network. We used this null model
as a baseline model to examine how the fit models improved by comparing their Akaike
Information Criterion (AIC) values with the AIC in the baseline model. The smaller AIC
value the better. We then fitted models by adding terms on four vertex attributes: (1) age
(continuous variable in years); (2) gender (binary variable: female or male); (3) COVID-19
symptomatic status prior to diagnoses (categorical variable: asymptomatic, symptomatic,
or unknown); and (4) vulnerable population category (categorical variable: domestic
workers, flight crews, sailors, or close contacts). Monte Carlo Markov Chain (MCMC)
maximum likelihood estimation (MLE) was conducted for each fit model. We selected the
fit model with the lowest AIC value as our best-fit-model for the cross-sectional network.
We extracted the parameter estimates from the best-fit-model and carried out logistic
transformation to estimate the probability of edge formation. We also obtained odds ratios
through the exponentiation of the parameter estimates of interest. To capture the temporal
changes in the probability of edge formation, we built null and fit ERGMs for each of the
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five waves and their subnetworks, respectively. Subsequently, we ran MCMC MLE and
selected the best-fit-models for each of the five subnetworks.

A total of 1000 random networks were simulated for each of the six observed empirical
networks based on the best-fit-models. In total, we simulated 6000 networks. We plotted
randomly selected simulated networks to visually compare them with the observed empiri-
cal networks. In order to examine the quality of our model fit, we conducted goodness-of-fit
examination and reported the Monte Carlo empirical p-values on each of our predictors.
A Monte Carlo empirical p-value less than 0.05 indicates poor model fit [41]. After ex-
amining model fit, we tested the main effects of the four vertex attributes (age, gender,
COVID-19 symptomatic status, and vulnerable population category) on likelihood of edge
formation. For instance, are years of age significantly associated with the likelihood of two
vertices being connected by an edge? Moreover, we examined homophily effects on the
four vertex attributes. Homophily is a principle in social networks which suggests that
similar characteristics connect people together [53]. Specifically, we evaluated whether
edges are more likely to form between vertices which are similar to each other on the four
respective attributes. For example, are two female vertices more likely to be connected by
an edge than one female vertex and one male vertex? The results from this examination
were interpreted as probability of edges formation. A probability closer to 0 indicates a low
possibility of edges formation, while a probability closer to 1 indicates a high possibility
of edges formation. We also provided interpretation with odds ratios for some selected
results. An odds ratio greater than one indicates that edges formation is more likely to
happen in our study population subgroup.

The mobility of our study population was captured based on publicly available contact
tracing reports [50]. Temporary and long-term mobility records were included in our
analysis. In this study, we defined temporary mobility as travel to work from residence,
travel to local social gathering events, and air travel due to occupational demand. We
measured our study population’s temporary and long-term mobility through two different
methods. The first method was to record shared scenarios where they were physically
presented during mobility. We created edges of social networks in this study based on these
shared scenarios (Table 2). The second method was to compare our study population’s
mobility within Asia and intercontinental mobility by frequency counting. For instance, if
a flight crew traveled to Germany and Thailand 14 days before arriving in Hong Kong, we
counted “1” for intercontinental mobility and “1” for mobility within Asia for the flight
crew subgroup. If a domestic worker traveled to Hong Kong from the Philippines, we
counted “0” for intercontinental mobility and “1” for mobility within Asia for the domestic
worker subgroup. We then cross-sectionally and temporally compared the differences
in frequencies on mobility within Asia and intercontinental mobility among the three
vulnerable population subgroups and their close contacts. We did not count mobility
within Hong Kong in the comparison analysis because all members of the study population
physically presented there.

We evaluated statistical significance in this study at α = 0.05. Network and statistical
analyses in this study were performed using R Statistical Software (version 4.1.3; R Founda-
tion for Statistical Computing, Vienna Austria) and SAS® studio version (SAS Institute Inc.,
Cary, NC, USA), respectively.

3. Results
3.1. Descriptive Characteristics

Descriptive statistics for the demographic characteristics of our study population are
shown in Table 3. Among the study population (N = 652) included in this study, mean
age was 37.42 (±11.41) years old, which was younger than the mean age of the general
COVID-19 population in Hong Kong (43.62 ± 19.39 years old). The youngest (1-year-old)
and the eldest (94-year-old) cases in this study were close contacts of domestic workers. In
total, 64.47% of the study population were female, which was higher than the proportion
of females in the general COVID-19 population in Hong Kong (51.89%). For COVID-19
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symptomatic status prior to diagnoses, 65.64% of the study population was asymptomatic,
and only 2.6% of the study population’s COVID-19 symptomatic status was unknown.
In our study population, 28.37% were non-Hong Kong residents, which was higher than
the proportion of non-Hong Kong residents (4.99%) in the general COVID-19 population.
All the domestic workers in this study were labeled as Hong Kong residents by the local
health authority, while just 24.17% of flight crews and 10.48% of sailors were Hong Kong
residents. The cumulative mortality rate was 0.3% among our study population, which
was exceptionally low in comparison to the cumulative mortality rate of 1.59% among the
general COVID-19 population in Hong Kong. Specifically, there were only two deceased
cases in our study (one sailor and one close contact), which accounted for 0.16% among the
vulnerable population and 3% among their close contacts.

Table 3. Descriptive Statistics of Demographic Characteristics.

Sample
Size (n=)

Mean Age
(±SD) *

COVID-19 Status
(% Asymptomatic)

Gender
(% Female)

Study Population Category Size
and Distribution

(n = DW, n = FC, n = S, n = CC
%DW, %FC, %S, %CC) **

Cross-sectional
cohort (overall) 652 37.42

(±11.41) 65.64% 64.57% DW = 355, FC = 120, S = 105, CC = 72
55% DW, 18% FC, 16% S, 11% CC

Wave 1 cohort 62 43.34
(±16.36) 14.52% 58.06% DW = 12, FC = 13, CC = 37

19%DW, 21%FC, 60%CC

Wave 2 cohort 201 38.13
(±12.42) 65.17% 47.28% DW = 82, FC = 45, S = 58, CC = 16

41% DW, 22% FC, 29% S, 8% CC

Wave 3 cohort 46 36.65
(±11.36) 67.39% 56.52% DW = 17, FC = 20, S = 6, CC = 3

37% DW, 43% FC, 13% S, 7% CC

Wave 4 cohort 151 34.86
(±10.04) 79.47% 83.44% DW = 116, FC = 15, S = 6, CC = 14

77% DW, 10% FC, 4% S, 9% CC
Early wave

5 cohort 192 36.94
(±8.36) 71.35% 71.88% DW = 128, FC = 27, S = 35, CC = 2

67% DW, 14% FC, 18% S, 1% CC

* SD = standard deviation. ** DW = domestic worker, FC = flight crew, S = sailor, CC = close contact.

For the distribution of the vulnerable population category, 54.5% of the study pop-
ulation were domestic workers (n = 355), 18.4% were flight crews (n = 120), 16.1% were
sailors (n = 105), and 11% were close contacts (n = 72) of these three vulnerable population
subgroups. For temporal changes in the distribution of the vulnerable population category,
the proportion of domestic workers increased dramatically from 19% in wave 1 to 77% in
wave 4 and 67% in early wave 5. The proportions of flight crews and sailors fluctuated
across the five waves. The proportion of close contacts of the three vulnerable population
subgroups dropped sharply from 60% in wave 1 to 1% in early wave 5.

Descriptive statistics for network characteristics are presented in Table 4. Among
the five subnetworks, early wave 5 network was the densest (average density = 5.78%),
with the highest degree centrality of 22.08 and betweenness centrality of 43.39 among all
waves. The wave 3 network indicated the highest average eigenvector centrality of 5.8%
among all waves. The correlation between degree centrality and betweenness centrality
was positively strong in wave 1 (r = 0.775). Degree and eigenvector centrality indicated
strong positive correlations in wave 3, wave 4, early wave 5, and cross-sectional overall
networks (wave 3 r = 0.67; wave 4 r = 0.809; early wave 5 r = 0.815; cross-sectional r = 0.805).
However, no strong correlations among centralities were found in the wave 2 network.
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Table 4. Descriptive Statistics of Network Characteristics.

Network Size
(Number of
Vertices and

Edges)

Density

Measures of Centrality

Isolates *
(n=)Degree Mean

(Min.–Max.)

Betweenness
Mean

(Min.–Max.)

Eigenvector
Mean

(Min.–Max.)

Cross-sectional
network

vertices = 652
edges =1659 0.0078 10.18

(0–68)
16.96

(0–2616.67)
0.0098

(0–0.1855) 157

Wave 1 network vertices = 62
edges =64 0.0338 4.13

(0–28)
3.613

(0–172)
0.0537

(0–0.6103) 9

Wave 2 network vertices = 201
edges =252 0.0125 5.02

(0–18)
3.08

(0–81.33)
0.0149

(0–0.3333) 63

Wave 3 network vertices = 46
edges =50 0.0483 4.35

(0–12)
2.65

(0–38)
0.058

(0–0.4108) 11

Wave 4 network vertices = 151
edges =233 0.0206 6.17

(0–26)
11.68

(0–244.67)
0.0243

(0–0.2808) 36

Early Wave 5
network

vertices = 192
edges =1060 0.0578 22.08

(0–68)
43.39

(0–2616.67)
0.0332

(0–0.1855) 38

* Isolates are isolated vertices with degree of zero that have no edges connected to other vertices.

3.2. Network Visualization

Figure 1 shows the network topology of the six observed empirical networks and
six simulated networks. For better network visualization, we excluded isolates (vertices
that are not connected to any others) in Figure 1. There were 157 isolated vertices in the
cross-sectional network: nine in the wave 1 network, 64 in the wave 2 network, 11 in the
wave 3 network, 36 in the wave 4 network, and 38 in the early wave 5 network (Table 4).
We color-coded the included vertices into four categories: green vertices are shown as
close contacts of the vulnerable population, orange as domestic workers, blue as flight
crews, and pink as sailors. The color-coded six observed networks are empirical networks
that we created from the observed network data, which are shown on the left-hand side
of Figure 1A–F. One simulated network is displayed for each observed network on the
right-hand side, also color-coded. We randomly selected the 1000th simulated networks
for visualization comparison. All the simulated networks shared the same network size
(i.e., number of vertices) and density with the observed networks. However, all the edges
in the simulated networks look quite different from the edges in the observed networks.
The simulated networks are highly connected, while the observed networks are sparsely
connected. The simulated networks for the observed cross-sectional network look similar
to the simulated one for the early wave 5 network. In contrast, the simulated networks for
the wave 1 and wave 3 networks look alike, while the simulated networks for wave 2 and
wave 4 have a resemblance. This can be explained by the similar network size and density
between these networks (Table 4).

We observed clusters of connected vertices in each observed network and a large
component in the early wave 5 network (Figure 1F). Since the cross-sectional network is
the cumulative network of the five subnetworks, we can also observe the large component
from the early wave 5 in the cross-sectional network (Figure 1A). Clusters of connected
vertices in the wave 1 network occurred among employers that cohabited with domestic
workers, flight crews and their close contacts (Figure 1B). Clusters in the wave 2 network
showed that domestic workers, flight crews, and sailors can be connected in the same
clusters because of international air travel (Figure 1C). Clusters in the wave 3 network
were found to have similar patterns as clusters in wave 2, with more vertices categorized
as flight crews (Figure 1D). The dominant vertices for clusters in wave 4 were domestic
workers (Figure 1E). We also observed clusters that connected flight crews and sailors
with domestic workers (Figure 1E). The large component in the early wave 5 network
indicated that domestic workers’ international air travel and quarantine accommodations
can be connected, which increases their probability of SARS-CoV-2 infection (Figure 1F).
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A noticeable cluster in the early wave 5 also showed an outbreak among sailors in a ship
(Figure 1F).
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To further explore the clusters and large component in detail, we zoomed in on
each network and displayed the vertices with high degree in Figure 2. The vertex size
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was weighted by degree. The larger the vertex size, the higher the degree. Each of
the vertices were labeled with their COVID-19 symptomatic status prior to diagnoses:
“Asymptomatic” or “S” (symptomatic). In the wave 1 network, most of the high-degree
vertices were symptomatic, and were close contacts of domestic workers (Figure 2A). In
the wave 2 network, we observed that more high-degree vertices were asymptomatic and
were of sailors or flight crews (Figure 2B). In wave 3, more asymptomatic high-degree
vertices were present, which were mostly of flight crews (Figure 2C). In wave 4, all the
two highest-degree clusters were asymptomatic domestic workers (Figure 2D). In the early
wave 5 network, the majority of the high-degree clusters were asymptomatic domestic
workers, while a few were sailors (Figure 2E). Moreover, the extremely high-degree large
component in the early wave 5 network was dominated by asymptomatic domestic workers
(Figure 2E).

Int. J. Environ. Res. Public Health 2022, 19, x 12 of 26 
 

 

 
(A) 

 
(B) 

Figure 2. Cont.



Int. J. Environ. Res. Public Health 2022, 19, 7565 12 of 25Int. J. Environ. Res. Public Health 2022, 19, x 13 of 26 
 

 

 
(C) 

 
(D) 

Figure 2. Cont.



Int. J. Environ. Res. Public Health 2022, 19, 7565 13 of 25Int. J. Environ. Res. Public Health 2022, 19, x 14 of 26 
 

 

 

 
(E) 

Figure 2. (A) Clusters in Wave 1 Network (Degree > 2); (B) Clusters in Wave 2 Network (Degree > 
10); (C) Clusters in Wave 3 Network (Degree > 5); (D) Clusters in Wave 4 Network (Degree > 10); 
(E) Clusters & Large Components in Wave 5 Network.  

3.3. Goodness-of-Fit for ERGMs 
For model fit, we examined how our models fit the observed network data. The best-

fit-models’ terms and statistics are displayed in Table 5. We included one term in all null 
baseline models, the edges. We added more terms (i.e., predictors) to the best-fit-models. 
All the AIC values in our best-fit models were reduced from the AIC values in the null 
baseline models, which indicated that all the predictors that we added to the best-fit-mod-
els were useful for the prediction. All the Monte Carlo empirical p-values indicated that 

Figure 2. (A) Clusters in Wave 1 Network (Degree > 2); (B) Clusters in Wave 2 Network (Degree > 10);
(C) Clusters in Wave 3 Network (Degree > 5); (D) Clusters in Wave 4 Network (Degree > 10);
(E) Clusters & Large Components in Wave 5 Network.

3.3. Goodness-of-Fit for ERGMs

For model fit, we examined how our models fit the observed network data. The best-
fit-models’ terms and statistics are displayed in Table 5. We included one term in all null
baseline models, the edges. We added more terms (i.e., predictors) to the best-fit-models.
All the AIC values in our best-fit models were reduced from the AIC values in the null
baseline models, which indicated that all the predictors that we added to the best-fit-models
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were useful for the prediction. All the Monte Carlo empirical p-values indicated that all
the predictors that we added into the best-fit-models were an adequate fit, since all of the
p-values were greater than 0.05. If the Monte Carlo empirical p-value was less than 0.05, it
meant that the predictor was a poor fit.

Table 5. Best-Fit-Models and Goodness-of-Fit.

Null Models Best-Fit-Models

Terms AIC Value * Terms AIC Value Goodness-of-Fit Monte
Carlo Empirical p-Value **

Cross-sectional
network Edges 19,375

Edges + age + COVID-19
symptomatic status +

vulnerable population category
+ gender

17,444

Edges: 0.92
Age: 0.94

Symptomatic status: 0.46–0.86
Category: 0.62–0.98

Gender: 0.86

Wave 1 network Edges 554.5 Edges + vulnerable population
category 549.8 Edges: 0.96

Category: 0.86–0.96

Wave 2 network Edges 2701
Edges + COVID-19

symptomatic status +
vulnerable population category

2451
Edges: 0.96

Symptomatic status: 0.76–0.96
Category: 0.98–1

Wave 3 network Edges 402.6 Edges + age + vulnerable
population category 384.8

Edges: 1
Age: 0.92

Category: 1

Wave 4 network Edges 2265

Edges + COVID-19
symptomatic status +

vulnerable population category
+ gender

2134

Edges: 1
Symptomatic status: 0.98

Category: 1
Gender: 1

Early Wave 5
network Edges 8103 Edges + age + vulnerable

population category 6967
Edges: 0.86
Age: 0.84

Category: 0.6–0.98

* Smaller AIC value is better. ** A Monte Carlo empirical p-value < 0.05 indicates poor fit of the model predictor,
while large Monte Carlo empirical p-value > 0.05 indicates good fit of the model predictor.

The goodness-of-fit plots for degree distribution of the best-fit-models are presented
in Figure 3. There were six panels, with each panel showing the plot for each network. The
black lines in the plots indicated degree distribution for our observed empirical network,
while the parallel grey lines near the boxplots indicated the variability (95% confidence
interval) of degree distribution predictions among our simulated networks. Among the six
best-fit-models, the model for the wave 1 network demonstrated the best degree distribution
prediction, because the black line in the wave 1 network plot was totally placed inside the
parallel grey line band. The model for wave 3 demonstrated fair ability; it overestimated a
number of vertices with degree 2. The models for the cross-sectional, wave 2, and wave
4 networks underestimated numbers of isolates and low-degree vertices (degree < 2), and
overestimated numbers of some vertices between degrees 5 and 10. The model for the
early five wave network underestimated the number of isolates, as well as low-degree
(degree < 2) and very high-degree (degree > 20) vertices.
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3.4. Associations between Vulnerable Population Subgroups’ Attributes and Network Outcomes

We initially examined the basic association between age and vertex degree by plotting
a scatterplot (Figure 4). The scatterplot suggests that no linear relationship was found
between age and vertex degree. However, our fit ERGMs revealed significant main effects
and homophily findings. In the cross-sectional network, age was found to be negatively
and significantly associated with the likelihood of two vertices being connected by edges
(p = 0.046). Working as domestic workers (p = 0.009) or flight crews (p = 0.003) were
positively and significantly associated with the likelihood of edge formation. For homophily
effects, being symptomatic prior to a COVID-19 diagnosis increased the likelihood of being
connected by an edge with one another (p = 0.022). Additionally, if the vulnerable individual
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fell into the same vulnerable population category, they were more likely to be connected
by edges. All of the four vulnerable population categories (domestic worker, flight crew,
sailor, and close contact) were significant for homophily effects, respectively (p = 0.001).
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We then examined each of the five subnetworks for main effects and homophily effects
on temporal changes. In the wave 1 network, no significant main effects nor homophily
effects were found. In the wave 2 network, working as domestic workers (p = 0.004) was
positively and significantly associated with the likelihood of edge formation, while working
as part of a flight crew (p = 0.023) had a negative and significant association. Findings
for homophily effects were similar with the cross-sectional network, except working as a
domestic worker was not significant in terms of the wave 2 network homophily effect. In
the wave 3 network, domestic workers were found to be more likely to be connected by
edges (p = 0.004). In the wave 4 network, no significant main effects nor homophily effects
were found. In the early wave 5 network, age (p = 0.001) and working as a sailor (p = 0.047)
were found to be negatively and significantly associated with the likelihood of two vertices
being connected by edges. In contrast, working as a domestic worker (p = 0.015) or sailor
(p = 0.001) were more likely to be connected by an edge with one another.

From January 2020 to January 2022 in Hong Kong, the overall probability that two
COVID-19 cases in the study population were connected by an edge was 0.78%. Our study
further revealed that the probability of a 30-year-old COVID-19 case and a 50-year-old
case with a connected edge was 0.7%, while the probability for a 30-year-old and a 20-year-
old would increase to 0.8%. Moreover, the probability that two domestic workers were
connected by an edge was 3%, and 2.5% for two flight crews, which were higher than the
overall probability of edges formation. Those working as domestic workers were found to
be 1.81-times more likely to have edge formation than the general COVID-19 population, in
comparison to those working in a flight crew, who were found to be 1.65-times more likely.

For temporal changes in the probability of edges formation, the overall probability
of edge formation was 3.38% during wave 1. During wave 2, the overall probability of
edge formation decreased to 1.25%, but the probability of two domestic workers with a
connected edge was 14.97%. In other words, working as a domestic worker was found to
be 4.56-times more likely to have edge formation in wave 2. Overall, the probability of
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edge formation increased to 4.83% during wave 3 and dropped to 2.06% during wave 4.
During the early wave 5, the overall probability of edge formation doubled to 5.78%.

3.5. Mobility within Asia and Intercontinentally

The three vulnerable population subgroups indicated different patterns in cumulative
cross-sectional mobility from January 2020 to January 2022 (Table 6). Among the 355 domes-
tic workers, 84.5% experienced mobility within Asia, and only 2.82% had intercontinental
mobility. Regarding mobility within Asia among domestic workers, mobility was found
to show long-term activity. That is, they mainly migrated from Southeast Asian countries,
such as the Philippines and Indonesia, to Hong Kong to work. A small portion of inter-
continental mobility engaged in by domestic workers was temporary; they travelled from
Europe or America to Hong Kong for vacation with or without their employers. For the
120 flight crews, 78.33% had intercontinental mobility around North America, Europe,
Africa, and Oceania, and 30.83% were mobile within Asia. The mobility of flight crews was
temporary; they travelled around the world mainly for work-related reasons. For sailors,
90.48% were mobile within Asia, while 16.19% engaged in intercontinental mobility. Sailors’
mobility was temporary; they travelled around Asia and Europe for work-related reasons.
Regarding the close contacts of the three vulnerable population subgroups, only a few were
mobile within Asia (13.89%) and intercontinentally (11.11%). Consequently, their mobility
was temporary, and they travelled for personal reasons such as sightseeing.

Table 6. Study Population’s Cross-sectional Mobility.

Study Population Category
(n=) *

Mobility within Asia
(Non-Hong Kong Territory)

(n = **, % ***)

Intercontinental Mobility
(America, Europe, Africa,

and Oceania)
(n = **, % ***)

Domestic worker
(n = 355)

300
(84.5%)

10
(2.82%)

Flight crew
(n = 120)

37
(30.83%)

94
(78.33%)

Sailor
(n = 105)

95
(90.48%)

17
(16.19%)

Close contact
(n = 72)

10
(13.89%)

8
(11.11%)

* Sample size of subgroups. ** Number of cases experienced mobility. *** Proportion of the cases experienced
mobility among the subgroups.

We found temporal changes over the five temporal waves in the mobility of the three
vulnerable population subgroups within Asia (Figure 5). For mobility within Asia, domestic
workers indicated an upwards trend. That is, the proportion of domestic workers who
were mobile within Asia almost quadrupled from wave 1 (25%) to early wave 5 (94.53%).
Sailors also showed an upwards trend, but this started to decrease after wave 4. Flight
crews had a small peak in wave 2 and then their mobility constantly descended. Close
contacts of the three vulnerable population subgroups mainly showed a descending trend.

For intercontinental mobility, we also found temporal changes among the three vulner-
able population subgroups and their close contacts over the five temporal waves (Figure 6).
Flight crews engaged in the most intercontinental mobility among the subgroups; while it
fluctuated over the five waves, it maintained a relatively high level. Sailors showed the
second highest proportion of intercontinental mobility involvement over wave 2 and wave
4, but this mobility started to descend at wave 4. In contrast, domestic workers experienced
a descending trend over the five waves, and rarely engaged in intercontinental mobility
following wave 2. Close contacts of the three vulnerable population subgroups also showed
a descending trend until wave 4, where it started to increase.
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4. Discussion

The Hong Kong health authority changed policies regarding the COVID-19 pandemic
over the two years during our observation period. As a result, the wave difference was
affected by local policy change. Among our study population, gender distribution was
found to be skewed with 98.6% of domestic workers being female, while 100% of sailors
were male. Furthermore, while most foreign domestic workers originated from outside
Hong Kong, 100% of them were categorized as Hong Kong residents by the Hong Kong
Department of Health, representing ideal data completeness. Specifically, most domestic
workers included in this study originated from Southeast Asian countries, such as the
Philippines and Indonesia. While domestic workers were exposed to less mobility intercon-
tinentally but more mobility within Asia compared to flight crews and sailors, domestic
workers were 4.56-times in wave 2 and 1.81-times in general more likely to be exposed to
SARS-CoV-2 than other vulnerable populations. Flight cabins and public transport were
found to be the main risks of infection for newly arrived domestic workers. In contrast, the
risk for domestic workers who resided in Hong Kong without recent travel histories came
from employers. This is due to Hong Kong’s employment law, which requires domestic
workers to “live-in” or cohabitate with their employers, as well as to the high local mobility
found among domestics for social gathering activities. Our social networks visualization
captured the increasing numbers of clusters and a large component among domestic work-
ers in wave 4 and early wave 5. This indicated that our network structures were capable of
estimating the increasing risk among domestic workers.

In comparison, 34% of flight crews and 10% of sailors were Hong Kong residents, indi-
cating higher rates of missing data due to loss of follow-up. Due to the spatial heterogeneity
among flight crews and sailors’ places of origin and work sites all over the world, tracking
these two vulnerable population subgroups intercontinentally was extremely challenging.
Sailors’ places of origin were geographically diverse, ranging from Southeast, South, and
West Asia. Additionally, due to their work, there was a lack of follow-up among some
sailors who received the viral tests. Likewise, flight crews in this study also indicated
diverse places of origin across Asia, Europe, Africa, and North America, and were found to
have even higher rates of missing data due to the lack of follow-up.

Despite these challenges with the data, we found that there was an extremely low
mortality rate but high rate of asymptomatic cases among our study population, which
is suggestive of healthy worker effect [54,55]. Healthy worker effect is a phenomenon
that workers have lower mortality rate than the general population because individuals
with severe underlying conditions are likely to be excluded from employment [54,55].
The number of reported close contacts of the three vulnerable population subgroups also
decreased during our study period, which demonstrates the effectiveness of the local health
authority’s public health strategies in containing COVID-19 in local communities before
January 2022. However, unlike most Hong Kong residents who were able to increase pro-
tection against COVID-19 by reducing mobility, the three vulnerable population subgroups,
especially domestic workers, were at a high risk of being infected by SARS-CoV-2 due to
the international mobility required by their occupations. The probability of being exposed
to a COVID-19 case in Hong Kong among the three vulnerable population subgroups
increased from 3.38% in early 2020 to 5.78% in early 2022. On the other hand, we found
that having a higher socioeconomic level did not prevent some populations from being
vulnerable during the COVID-19 pandemic. Instead, our study indicated that vulnerable
populations could have diverse socioeconomic statuses. For example, members of flight
crews normally have a higher socioeconomic level than domestic workers and sailors, yet
their status does not necessarily change their vulnerability to SARS-CoV-2.

Moreover, in our study, ERGMs were utilized for their ability to manage cross-sectional
network data [30,41]. However, the temporal changes in the network dynamic usually
cannot be captured by analyzing cross-sectional network data. To compensate for this
major limitation of ERGMs, we analyzed both the cumulative cross-sectional network data
of this study, and the five subnetworks stratified by the five time periods of COVID-19
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waves in Hong Kong. By doing this, we successfully captured unique patterns and changes
in terms of the main effects and homophily effects, and probability of edges formation over
time for each wave. This innovative methodological design provides a model for future
studies that are interested in utilizing the power of ERGMs, but also want to capture the
temporal changes in network dynamics. Finally, we used ERGMs to discover findings that
otherwise could not be revealed by simple linear regression models, thereby demonstrating
the importance of widening the use of social network analysis in future public health
studies.

This study, however, has limitations. Firstly, as an observational study, we had no
direct access to the individuals of the COVID-19 cases and were not able to determine
causal relationships among these individuals. As a result, we were unable to build directed
networks to measure in-degree and out-degree vertices and edges. Moreover, our study
required detailed and high quality de-identifiable individual-level data; it cannot be repli-
cated with non-detailed data. Most health departments around the world cannot provide
such detailed publicly available data in situations where COVID-19 incidence rates are
high. For example, it is unrealistic to track and release such detailed data when thousands
of individuals are infected per day. Hong Kong’s incidence rate before wave 5 was low
enough to allow the health department to release detailed de-identifiable individual-level
data. Secondly, the study was dependent on publicly available data, which prevented us
from probing into COVID-19 cases’ contact tracing records. Thirdly, it was likely that the
publicly available data may have underreported individuals’ travel records as a result of
the overwhelming workload among contact tracing officers. Lastly, the lack of follow-up
among some of the hard-to-track vulnerable populations was an unsolved issue in our
study. As a result, our findings may underestimate the actual probability of edges formation
among these vulnerable populations, especially among flight crews and sailors. Global
cooperation is needed to track and follow-up these vulnerable populations to improve gaps
in our understanding of the infection and access to medical care.

Future studies are encouraged to explore research questions such as whether temporal
changes in health policies are associated with temporal changes in vulnerable population
structures, by applying an epidemiological study design to examine potential confounders
and effect modifiers. Additionally, future research could explore SARS-CoV-2 transmission
dynamics among vulnerable populations and how it differs from the general population by
utilizing traditional infectious disease transmission dynamics models, such as susceptible-
infectious-recovered (SIR) or susceptible-exposed-infectious-recovered (SEIR) models.

5. Conclusions

Our findings demonstrated that vulnerable populations who need to travel due to
occupation during the COVID-19 pandemic showed higher risk of exposure to SARS-CoV-2
than the general population. Specially, vulnerable populations with similar ages and
occupations, especially younger domestic workers and flight crew members, were more
likely to be exposed to SARS-CoV-2. Our study highlights the utility of social network
analysis to provide critical information on the health risks of airborne infectious diseases
to hard-to-track vulnerable populations. Awareness of the disproportional health risks
borne by vulnerable populations can motivates calls for health policy makers to provide
additional support and resources needed to reduce risk.
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