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ABSTRACT Low-cost DNA sequencing technologies have expanded the role for direct nucleic acid
sequencing in the analysis of genomes, transcriptomes, and the metagenomes of whole ecosystems.
Human and machine comprehension of such large datasets can be simplified via synthesis of sequence
fragments into long, contiguous blocks of sequence (contigs), but most of the progress in the field of
assembly has focused on genomes in isolation rather than metagenomes. Here, we present software for
paired-read iterative contig extension (PRICE), a strategy for focused assembly of particular nucleic acid
species using complex metagenomic data as input. We describe the assembly strategy implemented by
PRICE and provide examples of its application to the sequence of particular genes, transcripts, and virus
genomes from complex multicomponent datasets, including an assembly of the BCBL-1 strain of Kaposi’s
sarcoma-associated herpesvirus. PRICE is open-source and available for free download (derisilab.ucsf.edu/
software/price/ or sourceforge.net/projects/pricedenovo/).
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In the past decade, the cost of DNA sequence determination has
diminished by orders-of-magnitude due to the maturity of novel tech-
nologies (Glenn 2011). Much effort has been applied to the develop-
ment of computational methods for the de novo assembly of genomes
using the type of data generated by these technologies: typically, short-
er reads and/or higher error frequencies vs. traditional Sanger se-
quencing (Sanger et al. 1977; Glenn 2011). The majority of that
effort has focused on the assembly of individual whole genomes
(Warren et al. 2007; Butler et al. 2008; Hernandez et al. 2008; Zerbino
and Birney 2008; Chaisson et al. 2009; Simpson et al. 2009; Li et al.
2010a), whereas de novo assembly for metagenomes—the total genome
complement of an entire ecosystem or environmental sample—has
been less thoroughly explored. Much of the success of de novo genome
assembly can be attributed to algorithmic optimizations that take

advantage of the properties of single-genome datasets. Many of these
properties, and therefore their relevant optimizations, are irrelevant to
metagenomic datasets, most notably the evenness-of-coverage across
the source genome that is used to error-correct source data and iden-
tify repetitive elements that could spawn chimeric contigs (Pevzner
et al. 2001; Butler et al. 2008; Chaisson et al. 2009; Schröder et al.
2009; Kelley et al. 2010; Li et al. 2010b; Ariyaratne and Sung 2011;
Simpson and Durbin 2012). The greater complexity of metagenomic
samples renders many current in silico assembly techniques less effi-
cient and less accurate. And where algorithmic improvements have
been made, they often require special in vitro library construction
techniques (Hiatt et al. 2010; Pignatelli and Moya 2011).

In addition to providing strings of nucleotide identities, many
sequencing platforms provide paired-end information. Paired-end
reads derive from the two ends of a library amplicon and thus
implicitly include information about the distance between and relative
orientation of the two sequences in the molecule from which they
derive. Given a contig that represents some fragment of a genomic
sequence and a large and complex dataset, paired-end information
can be and has been used to simplify the extension of that contig by
specifying the subset of data relevant to a local assembly and using it
to add sequence length to the termini of the contig (Hossain et al.
2009; Rausch et al. 2009; Li et al. 2010a,b; Ariyaratne and Sung 2011;
Etter et al. 2011). Reduction of the number of input sequences reduces
the number of pairwise comparisons that must be made, thereby re-
ducing both the time required for assembly and the probability of
spurious assembly of unrelated sequences. Both of these properties
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facilitate the use of less-stringent alignment requirements than would
be necessary with larger datasets, thereby lowering the amount of data
required to ensure a successful assembly. Reduced stringency is a boon
whether the sequence of interest is a component of a metagenome or
simply a particular region (say, a gene of interest) from a single ge-
nome. Furthermore, the size of each local assembly job (a “job” de-
fined as a discrete set of sequences for which assembly into contigs
will be attempted) can be used to dynamically scale assembly
requirements according to the local coverage, thereby allowing
each individual genetic component of a metagenomic mixture to be
assembled with efficiency and sensitivity tailored to its own level of
coverage and agnostic with respect to the total size of the metagenomic
dataset.

One practical application of inexpensive DNA sequencing tech-
nology has been the rapid discovery and genomic characterization of
novel pathogens, particularly viruses, that may contribute to disease
in humans or other organisms (Tang and Chiu 2010; Bexfield and
Kellam 2011). These pathogens are generally isolated from diseased
tissue samples and thus are found as subsets of complex metagenomic
data that also includes host sequence and, commonly, nonpathogenic
commensal microflora. Viral DNA or RNA typically comprises only
a tiny fraction of the total nucleic acid in such samples, and al-
though the small size of many viral genomes results in high ge-
nome coverage even given a small number of reads, the methods of
shotgun library preparation and peculiar structural qualities of
viral nucleic acids can result in highly uneven coverage across
the genome, particularly in the case of RNA viruses (Hansen et al.
2010). The work described below was motivated by the need for
a tool to address the following two peculiarities of RNA-based meta-
genomic/metatranscriptomic data in the context of viral genome
assembly: (1) highly uneven coverage across an entity that (2) com-
prises only a tiny portion of a massive, complex, largely irrelevant
dataset.

We implemented software for a Paired Read-based Iterative Contig
Extension strategy (PRICE) as a single package to repeatedly perform
all of the generic tasks of a targeted de novo assembly strategy. Each
“cycle” of assembly includes the mapping of reads to existing contigs;
assembly of the paired-ends of those reads, together with the contig
itself, to create a larger contig; the construction of scaffolds linking
multiple seed contigs that can then be assembled together into a single
sequence; avoidance of spurious assemblies that can be created by
multicopy (i.e., repetitive) genetic elements; (optionally) evaluation
of the output sequences to determine which is relevant to the original
target of the assembly; and the collapse of redundant output sequen-
ces. A cycle uses those steps to extend the length of existing contigs,
and subsequent cycles repeat the process using the output of the prior
cycle as input.

Packaging all of these steps into a single piece of software
permitted the optimization of each step of the assembly process by
taking algorithmic advantage of the context-specific requirements for
each step in ways that would be inappropriate for general-case
aligners, assemblers, etc. PRICE was implemented in C++ to compile
into a single executable requiring only one external non-STL module
(openmp: www.openmp.org), making it highly portable. Every step of
the assembly process was highly multithreaded, allowing PRICE to
take advantage of the ever-increasing availability of multicore central
processing units (CPUs). Here, we describe the assembly strategy
implemented by PRICE, discuss the relevance of its features to par-
ticular assembly challenges, and provide examples of its application to
the targeted assemblies of a single transcript from a transcriptome
dataset and virus genomes from multi-genome datasets.

MATERIALS AND METHODS

Software design
Details below; see Results for an overview of PRICE assembly. The raw
data for genome assembly are a set of DNA strings, each of which
derives from the chemical sequencing of an amplified DNA molecule.
Those “reads” could be presented to PRICE with or without a set of
scores indicating the probability that each nucleotide is called correctly
using the fastq or fasta file formats, respectively. Each read is a piece of
empirical evidence in support of its reported nucleotide identities.
When combining two sequences into a contig, PRICE would inter-
nally retain the quantity of evidence in the form of a score. For any
sequence, two sets of scores would be carried. The first set of scores
indicated, for each nucleotide, the number of reads supporting that
nucleotide’s stored identity. The second set of scores indicated, for
each pair of adjacent nucleotides, the number of reads supporting the
linkage of those two nucleotides by a phosphodiester bond. The input
reads would each receive a single count for each score type at each
position. In the case of fastq input, the nucleotide identity scores
would be the probability of the nucleotide having the indicated iden-
tity according to the fastq score at that position. Any nucleotide with
a redundant International Union of Pure and Applied Chemistry code
was considered to have a score of zero.

When two sequences were combined based on a high-quality align-
ment to yield a contig, the scores of agreeing nucleotides and phos-
phodiesters were summed at each position. In the case of nucleotide
mismatches, the nucleotide with the greater score would be selected, and
the nucleotide score for that position of the new contig would be the
difference of the two scores. This approach ensured that scores would
never fall below zero and that any nucleotide identity with a majority
count in the underlying data would always be the final identity selected,
independent of the order in which sequences were combined in a pair-
wise manner.

The case of disagreeing phosphodiester bonds (gaps in alignments)
was less straightforward because of the unequal number of phospho-
diester bonds in each sequence for which there was a disagreement.
The simplest case was a single block of nucleotides in one sequence
paired to gaps in the other, with aligned nucleotides flanking that
block. However, placement of gapped blocks adjacent to one another
(i.e., using switching between directly from gaps in sequence A to gaps
in sequence B with no intervening aligned nucleotides) is legitimate
and will occur when alignments are generated with overly punitive
mismatch penalties and milder gap penalties. Gaps were therefore
considered as blocks, defined as stretches of alignment with no aligned
nucleotides. For each block, the average of all disagreeing phospho-
diester bonds along each sequence was calculated and compared to
determine the sequence with better data support that would be
retained in the resulting contig. The ratio of the lower average divided
by the higher average was then multiplied to each disagreeing phos-
phodiester bond score from the winning sequence, thereby propor-
tionally penalizing the discrepancies and maintaining the principle of
scores never being less than zero. The nucleotide scores of inserted
positions would not change due to the lack of conflicting nucleotides
in the alternative sequence. However, the scores of deleted nucleotides
would be erased with those positions in the consensus. Therefore,
nucleotide scores could be artificially deflated through repeated de-
letion and reinsertion in the series of pair-wise assembly steps leading
to a final consensus sequence.

The replacement of reads with much longer contig sequences had
the potential to expand the complexity of individual assembly jobs
beyond manageability. In order to avoid this problem, and also to
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avoid spurious joining of contigs whose linking reads could also have
been mapped to other contig loci, as in the cases of a read deriving
either from a repetitive element (in the assembly of a single genome)
or from a sequence element that is conserved between otherwise
distinguishably distinct genomes (in the assembly of metagenomic
mixtures), a limit was imposed for the maximum number of contigs
that could replace any one read in an assembly job. In cases where
a read mapped to a number of contigs in excess of that limit with tying
best-possible scores, those mappings would be erased and ignored in
further analysis. In cases in which a read or contig was included in
multiple distinct assembly jobs, the possibility arose for the evidence
scores of nucleotides in that contig to be amplified in the overall
assembly. To avoid such an amplification of apparent evidence for
a sequence, the scores of all sequences were normalized to the number
of assembly jobs in which they were included. If the assembly jobs
themselves represented a redundancy in the assembly, then the
collapse of the products would return the scores to their original
values (also the case if a contig were brought inappropriately into an
assembly job by a spuriously mapped read). Conversely, if the contig
represented a consensus sequence for a repetitive element within the
source (meta)genome, such normalization would appropriately dis-
tribute the evidence scores across the multiple loci to which that
evidence had been applied, making it easier for locally-anchored read
evidence to override the consensus sequence.

Individual assembly jobs were each performed as a hierarchical
series of sequence collapses, with each of the following steps executing
assembly strategies of increasing computational complexity and sensi-
tivity. First, identical sequences were collapsed, effectively summing the
scores for all reads/contigs with the same nucleotide sequence. Second,
near-identical sequences were collapsed, defined as sequences of equal
length that could be aligned with no gaps or offset. Third, for strand-
specific assembly jobs, sequences with a length shorter than some user-
specified threshold were collapsed using a de Bruijn graph-based strategy
(see below for more details). Fourth, pairs of sequences were collapsed
for which one sequence is a complete subset of the other in the context of
an ungapped alignment. Fifth, sequences were collapsed based on
ungapped alignments for which neither sequence was required to be fully
aligned. Sixth, sequences were collapsed based on gapped alignments,
again allowing any extent of overlap meeting the minimum overlap
requirement of that assembly job. Each of these steps is described in
more detail below.

The first and second collapse steps, the collapse of identical and
near-identical sequences, were designed to reduce the complexity of
the input sequence pool as efficiently as possible. The underlying
assumption of these steps was that the collapsed sequences were
redundant pieces of data, and that observed polymorphism should be
treated as decreased confidence in the observed nucleotide identities.
These assumptions limited the scope of sequence comparisons to
ungapped, end-to-end alignments performed only between equal-
length sequences. Searches for identical sequences were the easiest to
perform, so those sequences were the first to be collapsed. Near-
identical matches were then sought by dividing each sequence into
a series of nonoverlapping windows and performing comparisons
between those pairs of sequences with perfect matches between one or
more of their windows.

The third collapse step used a de Bruijn graph-based strategy to
collapse short sequences. The confinement of this strategy to short
(i.e., read-length) sequences prevented the erasure of long-range struc-
tural information contained in large contigs (or a limited number of
very long reads). For long sequences, k-mers would not necessarily be
unique due to repetitive elements. However, the majority of sequences

serving as input for any assembly job were short and derived from
a small, local region of the source genome from which repeated
k-mers were unlikely to cause global-scale assembly errors. Thus, the
highly efficient de Bruijn method could be applied safely to the short
sequences of localized assembly jobs.

A plethora of variants of the de Bruijn assembly strategy provide
the core algorithms for many of the existing de novo genome assem-
blers (Pevzner et al. 2001; Butler et al. 2008; Zerbino and Birney 2008;
Simpson et al. 2009; Li et al. 2010b). Much of the complexity of those
algorithms derives from the double-stranded nature of DNA, which
forces each k-mer to be simultaneously considered as two different
k-mers: the observed k-mer and its reverse complement. The bio-
logical meaning of the de Bruijn graph structure is further complicated
by palindromic k-mers. In the context of PRICE, de Bruijn graphs were
only created in the context of assembly jobs with known relative ori-
entations for all of the input sequences based on paired-end topology.

Their single-stranded nature greatly simplified the construction
and evaluation of de Bruijn graphs in PRICE. For each observance of
a k-mer in the source data, that k-mer was added to the graph and
given/added a score equal to the lowest nucleotide or phosphate score
from the observation. Edges between k-mers were given/added the
worse of the two phosphate scores linking each k-mer to the additional
nucleotide of the adjacent k-mer. K-mers containing ambiguous
nucleotides (i.e., N’s) were not included in the graph. Contigs were
generated from the resulting graph beginning with the highest scor-
ing node and extending outward bi-directionally, choosing the best
linkage to an adjacent k-mer until either a tip was reached or the
best-supported edge led to an already-visited node. That process was
repeated until no unvisited nodes remained. Thus, the “tip” and
“bubble” structures (Zerbino and Birney 2008) that indicate ambi-
guity in de Bruijn graphs were resolved as short, independent contigs
that would either (a) be eliminated due to insufficient coverage
scores or insufficient length, (b) be collapsed with the contig gener-
ated from the consensus path in a later collapse step, or (c) continue
to exist as a distinct sequence in the assembly.

The fourth collapse step combined sequences using ungapped
alignments for which one sequence was completely overlapping the
other, i.e., was a complete subset. Although not qualitatively different
from the fifth collapse step (described in the paragraph to follow),
which allowed sequences to overlap only partially, the full-overlap
requirement provided numerous algorithmic advantages over the
equivalent operation allowing overlaps. These advantages were partic-
ularly useful due to the tendency of the de Bruijn graph parsing
strategy described previously to generate distinct but nonetheless
highly redundant sequences from tips or bubbles.

The fifth collapse step aimed to collapse pairs of sequences sharing
high-quality, semiglobal (not penalizing overhangs), ungapped align-
ments. Potential matches were seeded using perfect matches to
sequence substrings. As seeds increase in length and decrease in
redundancy, their probability of seeding time-consuming spurious
alignments decreases but so does their probability of not seeding what
would be a legitimate alignment. Seed sizes and redundancy were
selected by PRICE to always maintain a .90% probability of seeding
an alignment meeting the input percent-identity requirements. Long
subsequences were selected from across each full sequence that could
seed alignment to a target sequence with any degree of overlap.
Shorter seeds were also selected proximal to the contig termini that
were only allowed to seed alignments with shorter overlaps with the
target contigs. Perfect matches to all seeds were sought efficiently
using a Burrows-Wheeler indexing of the set of all input contigs that
was constructed using a linear algorithm (Ferragina and Manzini
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2001; Kärkkäinen and Sanders 2003). For each match, the extent of
overlap between the two sequences was calculated along with a max-
imum number of mismatches according to the input percent identity
requirement. Seeded alignments were then performed in a fail-fast
manner, and all tying highest-score matches were collapsed with the
query sequence. To avoid read count amplification in cases where the
number of tied high-scoring matches was .1, the nucleotide and
phosphate scores from the query contig were appropriately normal-
ized and distributed evenly across the new contigs.

The sixth collapse step repeated the fifth, but now substring
matches were used to seed gapped alignments. Gapped alignments
were performed using a constrained, fail-fast, semiglobal implementation
of the dynamic programming alignment algorithm (the Needleman-
Wunsch algorithm (Needleman and Wunsch 1970), modified to not
penalize initial gaps and to trace back from the highest-scoring
terminal node of either sequence). Seed matches were used to define
candidate offsets between sequences, and those offsets were used to
define diagonal corridors of permissibility through the dynamic pro-
gramming alignment grid. The width of each corridor was heuristi-
cally set to the square root of the number of gaps that would be
allowed given the offset-predicted alignment length and input per-
cent identity requirement for the alignment. Overlapping corridors
were merged. Other optimizations were introduced based on the
assumption that alignments not meeting the input requirements
could be discarded: newly filled squares were evaluated in terms of
their accumulated gaps and mismatches to ensure that they could
potentially generate a satisfactory alignment. If none of the squares
traversed by the optimal path lay along one of the seeded offsets,
then the number of gaps required to reach a seeding offset was also
considered. Squares incapable of generating a satisfactory alignment
were erased from the grid, preventing the spawning of downstream
squares. This elimination of unproductive squares reduced the com-
plexity of the dynamic programming task as errors accumulated in
the alignment and permitted the alignment to be terminated when
a total absence of potentially productive squares in the active portion
of the grid revealed that no alignment path could satisfy the input
requirements.

LSV2 assembly
Paired-end sequence data were obtained from Runckel et al. (2011)
(Dryad repository: doi:10.5061/dryad.9n8rh). Data consisted of 65nt
reads. All reads were supplied to PRICE (v0.18; derisilab.ucsf.edu/
software/price/); primer random hexamers were not trimmed from
the reads. Data were input from paired “_sequence.txt” files (fastq
format with Illumina-specific Phred164 ASCII score encoding) with
a maximum amplicon size of 400nt and minimum identity of 90% for
mapping to contigs specified with the flag “-fpp [read file 1] [read file
2] 400 90.” Low-quality reads were filtered out by PRICE using the
flag “-rqf 90 .95,” specifying that both reads of a pair must have$90%
of their nucleotides with a$0.95 probability of being correct. A single
seed sequence deriving from the dataset was provided to PRICE in
fasta format: “CACGAGGGCGACAGAATAGAAGACTGCGGC-
GAGCCTCTGTAACGGGCTGAGTTGGCGGTACTTCA,” using
the flag “-icf [filename] 1 1 1.” The assembly was specified to run
for 16 cycles using the flag “-nc 16,” although assembly was complete
after 12 cycles and the 12th cycle output was used for the analysis
presented here. For assembly, minimum sequence overlap of 30nt
with a minimum 80% identity were required for collapsing sequences
into a contig using the flags “-mol 30” and “-mpi 80,” respectively.
Explicit targeting (removal of contigs without apparent similarity to

the seed sequence) was invoked with the flag “-target 90 3 1 1,”
requiring contigs to share 90% identity with the seed and applying
that filter periodically (three cycles off, then every other cycle on).
Contigs shorter than the read length were removed after the first
cycle with the flag “-lenf 65 1.”

MetaVelvet (Namiki et al. 2012) was run on the same input dataset
by first using Velvet (Zerbino and Birney 2008) v1.2.08. The velveth
command was called specifying a kmer size of 31 and using the
–shortPaired and –fastq flags. Then velvetg was called with the fol-
lowing flags: “-exp_cov auto –ins_length 300.” Finally, meta-velvetg
was called using the flag “-ins_length 300.”

SOAPdenovo (Li et al. 2010b) v1.05 was run on the same
input dataset using a config file with the following specifications:
max_rd_len = 65, avg_ins = 300, reverse_seq = 0, asm_flags = 3,
rd_len_cutoff = 65, rank = 1, pair_num_cutoff = 3, map_len = 32.
The variables “q1” and “q2” were then set equal to the two paired-
end _sequence.txt files. Assembly was executed with the following
command: “./SOAPdenovo-31mer all –K 30 –d 2 –p 80 –R –s
[config file] –o [output file prefix].” Demanding an odd Kmer size,
SOAPdenovo reported use of –K 31 instead of 30.

The IDBA-UD assembler (Peng et al. 2012) was downloaded from
i.cs.hku.hk/~alse/hkubrg/projects/metaidba, the website reference in
the MetaIDBA publication (Peng et al. 2011). The following instruc-
tion was provided at the website: “Please note that MetaIDBA is out of
maintainance [sic] now, we recommend using IDBA-UD instead
which generally performs better.” We followed those instructions,
running IDBA-UD 1.1.0 on the same input dataset. First, the data
from both paired-end lanes were merged and converted to fasta using
the provided “fq2fa” tool. That output file was used as input for the
following command: “./idba_ud –r [merged fasta file] –o [output di-
rectory].” The “contig.fa” file was used for assembly analysis, although
all of the following output files were examined and contained only
contigs of equal or lesser quality vs. those of the consolidated file:
contig-20.fa, contig-40.fa, contig-60.fa, contig-80.fa, contig-100.fa.

Trinity (Grabherr et al. 2011) r2012-10-05 was run on the same
input dataset using the command “./Trinity.pl–seqType fq –JM 20G–
left [first-read _sequence.txt file] –right [second-read _sequence.txt
file] –output [output file]–CPU 40.” All assembly commands are pro-
vided in File S3.

Keratin 6A messenger (m)RNA assembly
Paired-end transcriptome data were obtained from accession SRA029929,
dataset B, barcode CAC, fromArron et al. (2011), corresponding to clinical
sample ID STA01-040 (Arron et al. 2011). Data were preprocessed as
described there to remove barcode, random-primer sequence, and
last nucleotide, generating 4,427,628 reads (2,213,814 amplicon pairs)
of 54nt each.

Assembly of keratin 6A by PRICE (v0.18; derisilab.ucsf.edu/software/
price/) was initiated with a single 54nt read from the aformentioned
dataset, found by BLASTn (Altschul et al. 1990) to match the reference
keratin 6A mRNA (NM_005554.3) with 100% identity, using the flag
“-icf [filename] 1 1 0.” That sequence was “TGGCCTCAGCTCTGTTG-
GAGGCGGCAGTTCCACCATCAAGTACACCACCACCTC.” Paired-
end data were included from paired “_sequence.txt” files (fastq format
with Illumina-specific Phred164 ASCII score encoding) with a max-
imum amplicon size of 400nt and minimum identity of 97% for
mapping to contigs specified with the flag “-fpp [read file 1] [read
file 2] 400 97.” The assembly was specified to run for 10 cycles using
the flag “-nc 10.” Reads pairs with homopolymer tracks (such as
poly-A tails) were filtered out using the flag “-maxHp 20.” The minimum
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overlap and percent identity for collapsing two aligned sequences into
a contig were set to 25nt and 90% using the flags “-mol 25” and “-mpi
90,” respectively. Explicit targeting (removal of contigs without appar-
ent similarity to the seed sequence) was invoked with the flag “-target
95 1 4 1.” requiring contigs to share 95% identity with the seed and
applying that filter periodically (1 cycle off, 4 cycles on, repeat). The
maximum length of sequence to which the de Bruijn method of
assembly would be applied was set to 55nt with the flag “-dbmax
55.” Output contigs shorter than 54nt were removed throughout the
assembly with the flag “-lenf 54 0.” Assembly was performed on
a desktop Macintosh Pro (OSX v10.6.2, 16Gb RAM, 2.26GHz Intel
Xeon) using a single CPU core. Command provided in File S3.

Kaposi’s sarcoma-associated herpesvirus (KSHV) library
construction and assembly
KSHV virus was obtained from the primary effusion lymphoma cells
BCBL-1 that were grown in RPMI 1640 supplemented with 10% fetal
bovine serum, penicillin, streptomycin, glutamine, and b-mercaptoe-
thanol. Virus from BCBL-1 cells was enriched from induced cells after
5 d as previously described (Lagunoff et al. 2002; Bechtel et al. 2003).
Pelleted virus was resuspended in endothelial medium containing
8 mg/mL polybrene, and viral DNA from this medium was obtained
as described (Grossmann and Ganem 2008). KSHV DNA was frag-
mented using a nebulizer and ligated to sequencing/polymerase chain
reaction (PCR) adapters according to the instructions for the Genomic
DNA Sample Preparation kit (Illumina). The resulting amplicon li-
brary was run on a 2% agarose gel, DNA fragments of 250-350 base
pairs excised and purified, and size-selected amplicons PCR-amplified
for 18 cycles as per the Illumina kit instructions. In preparation for
flowcell loading, PCR products were diluted to 100 nM using elution
buffer (QIAGEN) and 0.1% Tween 20. Paired-end sequencing was
performed on an Illumina HiSequation 2000 instrument for 65nt in
each direction (accession SRS367470). The mean length of amplicon
inserts (excluding PCR/sequencing adapters) was 207nt (43nt stan-
dard deviation), calculated using mapped reads to the reference
genomes and excluding 11 outliers .1 kb.

Assembly of KSHV by PRICE (v0.18; derisilab.ucsf.edu/soft-
ware/price/) was initiated with a fasta file of 65nt fragments taken
from even 5-kb intervals across the reference KSHV genome
(NC_009333.1) using the flag “-icf [filename] 1 1 2” (seeds provided
in Supporting Information, File S1). Paired-end data were included
from paired “_sequence.txt” files (fastq format with Illumina-specific
Phred164 ASCII score encoding) with a maximum amplicon size of
500nt and minimum identity of 90% for mapping to contigs specified
with the flag “-fpp [read file 1] [read file 2] 500 90.” The assembly was
specified to run for 81 cycles using the flag “-nc 81,” although it
reached completion by the 65th cycle (Figure 4); output contigs were
collected every five cycles using the flag “-nco 5.” Reads were quality-
filtered to lessening degrees through the assembly using the flags “-rqf
95 0.998 0 14 -rqf 95 0.99 14 6 -rqf 95 0.9 20 10 -rqf 90 0.9 30 10 -rqf
80 0.6 40 20.” Low-coverage sequence was periodically trimmed from
contig termini using the flags “-trim 25 2 -trim 35 2 -trim 45 2 -trim
55 2 -trim 65 3 -trim 70 2.” Minimum output/retained contig sizes
were increased through the assembly using the flags “-lenf 60 1 -lenf
70 5 -lenf 80 20.” Contigs that had previously stopped expanding were
periodically reset, allowing advantage to be taken of updated cycle-
specific specifications, using the flag “-reset 5 10 14 18 20 25 30 35 40
45 50 55 59 60 63 65 70 75.” The explicit targeting option was not
used for this assembly. Assembly was threaded to 16 cores using the
flag “-a 16.” Assembly was performed on an Ubuntu Linux 12.04

machine (Kernel 3.2.0-39, 64 bit) with four AMD Opteron 6274
CPUs (1.4 Ghz, 16 cores each) and 256 Gb RAM. Sequence com-
plexities for nonoverlapping 250nt genomic windows were deter-
mined as the number of additions to the string table during an
LZW compression of the DNA sequence (Welch 1984). Command
provided in File S3.

RESULTS

Implementation of a targeted de novo
assembly strategy
Our concept of a targeted assembly strategy involved iteratively
repeated execution of three steps: (1) for each seed contig, identifi-
cation of a subset of data that could be assembled to expand the seed
contig; (2) performance of an assembly on each seeded dataset; and (3)
elimination of redundancy from the products of individual assembly
jobs through performance of a meta-assembly on those products
(Figure 1A). Sequences of relevance to the extension of a contig were
selected using paired-end read information. Therefore, extension of
a contig through a single iteration of this three-step process would be
limited to the spacing of the paired-end reads in the source genome
(Figure 1B). Arbitrarily long extension of a contig could therefore only
be achieved through repetition of the process.

For the clarity of the discussion to follow, paired-end reads will be
assumed to derive from opposing genomic strands and to lie 39 of one
another (inward-facing), although PRICE was implemented to also
support the outward-facing paired-read topology typical of long-dis-
tance mate-pair libraries as well as nonpaired reads that are typically
the produced by long-read high-throughput sequencing technologies.
In the former case, so-called mate-pair reads do not differ qualitatively
from paired-end reads, but that term is typically applied to libraries
where the two reads derive from relatively distant loci in the reference
genome (multiple kilobases). The construction techniques for such
libraries often result in read orientations different from those of typical
paired-end libraries. In the latter case, PRICE can use single sequences
either as seed contigs or can split them into variably overlapping,
artificial paired-ends.

For the first step of the PRICE assembly strategy, the identification
of a subset of read data that could contribute to the extension of each
contig, the entire paired-end dataset was mapped to the seed contigs
(Figure 1Bi), the goal being identification of the paired-end reads
deriving from the same parts of the source genome as the termini
of the seed contigs. From that perspective, reads whose map positions
were distant from the contig 39 termini (the direction of the paired-
ends) were irrelevant to extension of the contig. Initial read mapping
was therefore limited to being within a user-defined distance of the 39
terminus of each strand of the seed contig. This limitation greatly
reduced the complexity of the mapping task, making it scale approx-
imately with the number of seed contigs rather than the total size of
the assembly.

In some cases, both reads of a pair would map, each to the
terminus of a distinct contig (Figure 1Bii, orange). This suggested the
adjacency of those two contigs in the source genome, with the ampli-
con sizes of the library further suggesting an approximate intervening
distance. In that case, each read would be replaced with the contig to
which it mapped in the assembly job for each of the seed contigs. If
the majority of contig-linking reads from each of those two contigs
connected them (.50%, with all read counts normalized to the num-
ber of contigs to which they were mapped), then their assembly jobs
would be fused into a single nonredundant job. For extensively over-
lapping contigs, the possibility existed that only one read of a pair
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Figure 1 Schematic views of the PRICE assembly strategy. (A) The three general steps of a PRICE assembly cycle: (1) retrieval of reads that are
likely to derive from genomic regions proximal to the edges of initial input contigs; (2) localized assembly of each contig with its gathered
proximal reads to yield larger, extended contigs; and (3) collapse of highly redundant contigs that were generated in the prior assembly step
(meta-assembly). (B) A more detailed description of steps 1 and 2 from (A): (i) read mapping to the outward-facing edges of the input contigs; (ii)
gathering of the paired-ends (green) of the mapped reads, along with other input contigs linked by mapped read pairs (orange); (iii) strand-
specific assembly of the gathered reads and linked contigs; and (iv) repetition using the output contigs as input for a new assembly cycle. (C)
Scaling strategy for assembly requirements (minimum overlap and minimum percent identity between aligned sequences). Both requirements
were scaled in proportion to the log of the number of input sequences (y-axis), with the minimum overlap increasing linearly (left x-axis) and
the minimum percent identity approaching 100% asymptotically (right x-axis). Global minimum values for both factors were defined and applied
at and below a baseline number of input sequences (red dashed lines). (D) Hierarchical workflow for local assemblies using a series of different
strategies, with subsequent steps increasing both sensitivity and computational demand. The same steps apply to meta-assembly, but the de
Bruijn graph method is not applied in that case and the final gapped and ungapped alignments are limited to cases of extensively overlapping
sequences.
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would map to a contig terminus. All terminus-mapped reads and their
paired ends were therefore re-mapped to the entire assembly. The
reduction in complexity of the mapping job due to the small fraction
of reads that were initially mapped to contig termini would generally
compensate for the increase in complexity due to the inclusion of the
entire current assembly as a “mappable” target (a target/region to
which reads can be accurately mapped with a given informatic tool).

Remapping of reads also provided an opportunity for critical
reassessment of the original mappings to 39 contig termini. If reads
could be aligned to an interior position, or one proximal to a 59 contig
terminus, with a superior score vs. that of the original alignment, then
the new mapping position replaced the old (for a description of the
scoring system based on the ratio of supporting vs. conflicting input
data, see Materials and Methods). If both reads of a pair were dis-
placed by new mappings, then that read pair was removed from the
extension/linkage dataset. At this stage, the alignments of reads de-
riving from repetitive genomic elements were also invalidated. PRICE
implemented three techniques for detecting such sequences: (1) align-
ment to a user-provided database of repetitive element sequences; (2)
alignment to a similar database generated by PRICE during assembly
based on regions of anomalously high read coverage; and (3) equally
scoring alignments to multiple distinct initial contigs.

The second step of the PRICE assembly strategy, performance of
an assembly job for the collection of sequences associated with each
initial contig (Figure 1Biii), was designed to dynamically balance effi-
ciency and sensitivity. Efficiency was favored for jobs with many input
sequences, suggesting high coverage that will be sufficient to create an
accurate assembly even with high stringencies for alignment. Sensitiv-
ity was favored for jobs with few input sequences, suggesting low
coverage that would necessitate low alignment stringencies in order
to produce a successful assembly but would also imply a low proba-
bility of spurious misassembly. Assembly requirements, in terms
of minimum alignment/overlap length and minimum percent identity
match for the alignment, were scaled covariantly with the number of
sequences in the assembly job, i.e., inversely with the naïve probability
of there being an alignment between two sequences in the assembly
job that was generated by chance (Figure 1C).

A variety of strategies can be used to collapse redundant input
sequences into contiguous consensus sequences, including the simple
collapse of identical sequences, the use of de Bruijn graph represen-
tation (Zerbino and Birney 2008) to generate a consensus view of
overlapping sequences, and more time-consuming binary alignment-
then-collapse methods. For PRICE, the following strategies were
implemented and executed in series, with subsequent collapse steps
executing assembly strategies of increasing computational complexity
and sensitivity (Figure 1D; see Materials and Methods for details): (1)
the collapse of identical sequences, (2) the collapse of near-identical
sequences (equal in length and aligned without gaps or offset), (3) de
Bruijn graph-based assembly (limited to the short sequences), (4)
pairwise alignment and collapse using ungapped alignments for
fully-redundant sequences, and finally (5/6) pairwise alignment and
collapse for overlapping sequences, first using ungapped, then gapped,
alignments.

Although PRICE was not built to output scaffold structures, such
structures were built internally during the assembly process. The
scaffolding performed by PRICE consolidated series of paired-end-linked
contigs into single assembly jobs. The scaffolding requirements set
by PRICE were generally much less stringent than those imposed by
dedicated scaffolding software or the scaffolding components of
other genome assemblers (Pop et al. 2004; Butler et al. 2008; Li et al.
2010b), but scaffolding only contributed to PRICE output if validated

by common, overlapping sequences at the contig termini that allowed
the joining of the linked contigs into a single sequence.

The third step of our assembly strategy, the elimination of
redundancy in the final contig set through performance of a meta-
assembly (Figure 1A), had an implicit efficiency advantage over the
seeded assembly jobs deriving from its definition. In order for two
sequences to be truly redundant, the area of the source genome cov-
ered by one sequence must be a subset of that covered by the other.
Therefore, a redundancy collapse required all alignments to be global
with respect to one of the two sequences and semiglobal with respect
to the other. Although the complexity of the meta-assembly would still
scale with the number of contigs in the full assembly, the complexity
of comparison for any two sequences was reduced to the difference
between their lengths rather than the sum of their lengths. In practice,
this kept meta-assembly jobs manageable, even when large (multi-
kilobase) sequences were being compared using gapped alignments
and even without the application of the de Bruijn graph strategy that
PRICE reserved for the short sequence components of the small,
strand-specific, contig-centered assembly jobs.

Applications of PRICE to diverse biological problems
and datasets
PRICE is free and open-source software, and early alpha-stage
implementations were made available to the broader research
community through our website (derisilab.ucsf.edu/software/price/
or sourceforge.net/projects/pricedenovo/). We were able to evaluate
the utility of PRICE during development in terms of its ability to
contribute to real-world projects involving targeted analysis of geno-
mic or metagenomic sequence datasets. The full assembly protocol
described previously was the product of iterative redesign to address
challenges encountered during these applications. Below, the contri-
butions made by PRICE to published discoveries are reviewed. These
include the sequencing of novel viral genomes from metagenomic
datasets and the targeted assembly of genes-of-interest from whole-
genome datasets.

The motivation for PRICE was to facilitate the assembly of
individual genomes of interest using complex, shotgun, metagenomic
datasets, derived from virtually any origin, be it clinical or environ-
mental. As source code was made publicly available before the writing
of this manuscript, several examples of genome assembly using PRICE
have been published (Runckel et al. 2011; Grard et al. 2012; Holmes
et al. 2012; Kaysser et al. 2012; Stenglein et al. 2012a,b; Melters et al.
2013). The first demonstration of PRICE’s utility for assembly of novel
viral genomes was in the context of a survey of the pathogens that
infect honey bees in the United States (Runckel et al. 2011). For that
study, sequence data were collected from nucleic acid isolated from
multiple whole bees, collected from different hives and carrying dif-
ferent pathogens. The source data set was exceptionally complex,
containing data derived from the host genome (Apis melifera), the
genomes of the bees’ symbiotic microflora, and the genomes of a va-
riety of cellular and viral pathogens, including Spiroplasma sp., Cri-
thidia sp., Nosema sp., and a multitude of RNA viruses (Runckel et al.
2011). Alignments of the short reads to known viral genomes, fol-
lowed by extension of those sequences into larger contigs using
PRICE, revealed the genome sequences of four novel viruses: two
Dicistroviridae (Aphid Lethal Paralysis virus strain Brookings and
Big Sioux River virus) and two Nodaviridae (Lake Sinai Virus strain
1 and 2; LSV1/2). The assembly of LSV1/2 made for an informative
comparison relative to other assembly algorithms, the details of which
are presented in the following section and in Figure 2.
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Figure 2 De novo assembly of an RNA virus genome from a metagenomic dataset. (A) Scale and genic structure of LSV2, a positive-strand RNA
genome encoding three ORFs: ORF1 (function unknown), RdRP, and capsid (Runckel et al. 2011). (B) Assembly of LSV2 by PRICE seeded with
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Similar targeted assembly approaches have been used to obtain full
genome sequences for other animal viruses, namely a rabbit Astrovir-
idae (Stenglein et al. 2012b), as well as two novel Arenaviridae that
infect snakes (Stenglein et al. 2012a). In the latter case, the identified
viruses are highly divergent members of a viral family otherwise only
known to infect mammals. Their discovery was aided by the filtering
away of host sequence using Boa constrictor genomes generated for
the second iteration of the Assemblathon genome assembly competi-
tion (assemblathon.org) (Earl et al. 2011). Most recently, PRICE has
been used to recover the genome of a Flaviviridae associated with
Theiler’s disease (hepatitis) in horses (Chandriani et al. 2013) . In
addition to these applications to veterinary medicine, PRICE has also
been used to address human infectious diseases, namely through the
assembly of a novel and divergent rhabdovirus isolated from a human
patient with hemorrhagic fever (Grard et al. 2012).

An alternative application for PRICE was the targeted assembly of
genomic regions of interest from single-species datasets. This single-
genome application of PRICE has been applied in two contexts of
note. In the first context—the discovery of centromeric tandem repeat
elements from diverse plant and animal species—the high apparent
coverage and polymorphism of these elements due to their high copy
numbers in the genome made them recalcitrant to assembly using
typical whole-genome assemblers (Melters et al. 2013). When inde-
pendently seeded by randomly selected reads, PRICE could treat these
repeats as if they were independent, high-copy-number components
of a metagenomic mixture and assemble a consensus element, thereby
revealing their structures and evolution across diverse taxa (Melters
et al. 2013).

Targeted assembly from single genomes, limited to regions of
interest, has also been applied to the discovery of natural product
biosynthesis pathways, such as those that generate antibiotics in diverse
bacteria. The genes needed to synthesize antibiotics from common
biological metabolic precursors are often clustered in bacterial genomes,
accompanied by genes that confer antibiotic resistance to the host cell;
such an arrangement increases the probability of the entire synthesis
machinery being retained on a single fragment of sheared DNA and
thereby increases the fitness of that DNA in the context of all of the
major horizontal gene transfer mechanisms (transformation, bacterio-
phage transmission, and conjugation) (Lawrence and Roth 1996;
Dobrindt et al. 2004). PRICE was therefore applied to the initial as-
sembly of the biosynthesis gene cluster for the merochlorin A-D mer-
oterpenoid antibiotics of Streptomyces sp. CNH-189 (Kaysser et al.
2012). In that case, structural knowledge of the antibiotics was used

to generate hypotheses of enzyme-catalyzed reactions that might be
involved in the synthesis of the CNH-189 merochlorins, and seed
sequences from CNH-189 were sought by aligning translated reads to
known proteins that catalyze similar reactions from other bacteria.
Extension by PRICE of the few reads with high-confidence alignments
into larger contigs revealed the full genes from which those reads de-
rived, alongside surrounding genes that provided additional informa-
tion about the gene content of the cluster and allowed contigs built
from spurious matches to the hypothetically homologous enzymes to
be confidently dismissed. Targeted assembly by PRICE was used in
a similar manner to uncover the biosynthetic pathway for the guadi-
nomine family of antibiotics produced by Streptomyces sp. K01-0509
(Holmes et al. 2012).

The aforementioned examples encompass a variety of dataset
types, assembly challenges, and research goals. In the sections to
follow, we present three additional sample assemblies to highlight the
ability of PRICE to address particular assembly challenges commonly
encountered in real-world datasets. The first was a repetition of the
LSV2 assembly described previously, presented in tandem with the
results obtained using other assembly software applied to the same
dataset. The second, assembly of a keratin mRNA from a tran-
scriptome dataset deriving from a human cancer sample, illustrated
the ability of PRICE to both accommodate highly uneven coverage
that is typical of sequenced RNA (RNAseq) libraries, especially those
that are constructed using mRNA-enrichment techniques, and to
remain focused on a sequence of interest even when erroneous data
suggests that off-target assemblies should be performed. And the
third, assembly of a previously unsequenced strain of the KSHV,
illustrated the utility of PRICE for de novo assembly of nucleic acid
sequences significantly longer than mRNAs, as well as its ability to
remain focused on target sequences even through the many cycles of
contig extension (and many opportunities for off-target assembly)
required by such an assembly.

Specific assembly of an RNA virus genome from
a complex metagenomic dataset
As described previously, PRICE was used to obtain complete genome
sequences from a complex metagenomic mixture of nucleic acid
associated with honeybees (Runckel et al. 2011). Here, we provide
details of a reassembly of one of those viral genomes, that of LSV2,
from that metagenomic dataset (Dryad repository: doi:10.5061/dry-
ad.9n8rh). This dataset consists of 65.1M 65nt paired-end reads
(32.5M pairs). The source nucleic acid mixture derives from all 20

(Figure 2, continued) a single 65nt read. Contigs from each step of a 12-cycle PRICE assembly aligned to the single 12th-cycle output contig. (C)
Percentage of reads from the full input dataset that could be aligned to the GenBank reference LSV1 (HQ871931) or LSV2 (HQ888865) genomes,
requiring $90% identity across the entire read length. (D) Nucleotide % identity of nonoverlapping 50nt windows of the PRICE-assembled LSV2
vs. the reference LSV1 (orange) and LSV2 (blue) genomes. (E) Amino acid % identity of nonoverlapping 10aa windows across each of the three LSV
ORFs (starts and ends defined by the reference LSV2 annotations) vs. the protein sequences for ORF1/RdRP/capsid from LSV1 (orange;
AEH26192/AEH26193/AEH26194) and LSV2 (blue; AEH26187/AEH26189/AEH26188). (F) Read coverage across the PRICE-assembled LSV2
genome. Coverage values are averaged across nonoverlapping 10nt windows. (G) Contigs from assemblies performed on the same paired-read
dataset as above (Dryad repository: doi:10.5061/dryad.9n8rh) using MetaVelvet (Zerbino and Birney 2008; Namiki et al. 2012) (blue), SOAP-
denovo (Li et al. 2010b) (orange), IDBA-UD (Peng et al. 2012) (green), and Trinity (Grabherr et al. 2011) (red). Bars indicate alignments between
contigs output by those assemblers and the PRICE-assembled LSV2 generated by BLASTn (Altschul et al. 1990) and covering $150nt on the
PRICE LSV2. Analysis was limited to contigs $200nt. Contigs are marked whose lengths are .125% (~) or .200% (�) that of their aligned
segments. (H) PRICE sensitivity: the number of nucleotides from LSV2 encompassed by the alignments shown in (G) for each assembly. I) The N50
length for alignments shown in (G). (J) The redundancy of the aligned portions of each assembly shown in (G). Calculated as the summed lengths
of the aligned segments divided by the length of their total footprint on the LSV2 assembly from (H). (K) PRICE specificity: the % of nucleotides or
contigs from each assembly that were aligned to LSV2 in (G). Chimeric contigs that only partially aligned to LSV2 were fully counted. Only contigs
$200nt were considered for both the alignments and the total assembly size.
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of the hives being monitored for the study, with 50-100 individual
bees per hive, with libraries prepared following four separate proto-
cols, three of which could have captured purely RNA species such as
the LSV2 virus. The resulting dataset includes a diverse mixture of
sequences from not only the bees themselves, but also from the full
diversity of their natural microbiomes (gut and surface) and a panoply
of viral and nonviral pathogens (Runckel et al. 2011).

The ~5.5-kb RNA genomes of the Lake Sinai viruses contain three
open reading frames (ORFs), encoding a protein of unknown function
(ORF1), an RNA-dependent RNA polymerase (RdRP), and a capsid
protein (Figure 2A), with the ORF1 and RdRP encoded by overlap-
ping, offset frames. The genome and proteome sequences are partic-
ularly distant from those of previously known viruses, sharing only
25% amino acid identity with their closest known relative in the most
highly conserved ORF (the RdRP) (Runckel et al. 2011). Such se-
quence divergence obfuscates the retrieval of reads based solely on
homology, shifting the burden for whole genome sequence recovery
onto the shoulders of the assembler. Matters were further complicated
by the presence of two distinct but similar strains of Lake Sinai virus
in this dataset (LSV1).

For the sample assembly shown in Figure 2B, we selected a single
65nt read from the RdRP gene of LSV2 as a seed. The complexity of
the dataset was highlighted by the tiny fraction of reads that could be
aligned to the reference LSV2 genome (Figure 2C). Inclusion of the
random-hexamer-derived nucleotides from the library primers further
obfuscated the correct nucleotide identities of the genome: unpaired
nucleotides from the original priming event generate 59 sequences
with accurately called nucleotides that nonetheless do not match the
reference genome. Assembly was performed for 12 cycles, producing
a single contig of 5456 nt. Though knowledge of LSV derives from
PRICE assemblies of this dataset, the reference LSV1 and LSV2 ge-
nome sequences (HQ871931 and HQ888865, respectively) derive
from Sanger sequencing of reverse transcription PCR products am-
plified from a separate sample (Runckel et al. 2011). This assembly
and the reference sequence were therefore likely to derive from similar
yet distinct viral strains. Overall, the nucleotide percent identity of the
new assembly vs. the reference genome was high (Figure 2D), and the
amino acid percent identity for the LSV2-encoded proteins was higher
(Figure 2E), suggesting that the assembly was largely correct. The new
assembly was also consistently closer to the reference LSV2 sequence
than the reference LSV1 sequence (Figure 2D-E) despite the presence
of far more LSV1-matching reads in the dataset (Figure 2C), further
illustrating the ability of PRICE to remain focused on a sequence of
interest, avoiding chimeric aberrations, even in the presence of related
sequences.

Read coverage of LSV2 was dramatically variable across the length
of the genome (Figure 2F). This consequence of biases in the library
preparation methods can pose a challenge to genome assembly. The
built-in scaling of assembly overlap requirements by PRICE to reflect
local coverage was intended to address these biases. Further, the local
nature of PRICE assembly jobs (limitation of input sequences to those
inferred to derive from local genomic regions based on paired-end
information) was intended to avoid the chimeric misassemblies that
would be expected to arise when applying reduced alignment strin-
gency to a full dataset. We assessed the potential advantage provided
by PRICE over competing assembly strategies in performing assem-
blies of metagenomic components from large datasets with the con-
founding factors observed here: the scarcity and unevenness of relevant
data. Assemblies were performed using four other software packages:
MetaVelvet (Namiki et al. 2012), a metagenome-optimized variant of
the de Bruijn graph assembler Velvet (Zerbino and Birney 2008); the

de Bruijn graph assembler SOAPdenovo (Li et al. 2010b); the meta-
genome-optimized assembler IDBA-UD (Peng et al. 2012); and the
transcriptome assembler Trinity (Grabherr et al. 2011) (see Materials
and Methods for details). Alignments of output contigs from those
assemblies to the LSV2 genome assembled by PRICE are shown in
Figure 2G.

Two distinct failure modes were apparent from the performance
of the four other assemblers. The first applied to MetaVelvet and
SOAPdenovo. These assemblies were characterized by a small number
of short contigs that appeared to derive from LSV2 (Figure 2G). The
LSV2 contigs covered small portions of the LSV2 genome, i.e.,
exhibited low sensitivity (Figure 2H), and individually covered only
short fragments (Figure 2I). The second failure mode applied to
IDBA-UD and Trinity and was characterized by extensive coverage
of the LSV2 genome (Figure 2H) and longer assembled fragments
(Figure 2I), but also by high redundancy, with many contigs contain-
ing slight sequence variations repeatedly covering the same parts of
the genome (Figure 2J). Both failure modes included chimeric contigs
with a significant portion of their sequences deriving from a non-
LSV2 source, but these mis-assmblies were more commonly observed
in the second failure mode, in which the LSV2 contigs were more
numerous (Figure 2G).

The targeted assembly strategy implemented by PRICE was not
only intended to improve assembly of the target sequence, but was
also intended to focus post-assembly analysis on a limited number of
sequences that were selected by the investigator to be “of interest”
before assembly and provided as seeds, i.e., provide specificity of
assembly. The LSV2 dataset used here included scarce quantities of
LSV2-relevant data (Figure 2C). The output of the non-PRICE assem-
blers reflected this paucity of LSV2 data, with only a small portion of
the assembly output deriving from LSV2 in each case (Figure 2K).

Transcript assembly in the context of highly
uneven coverage
Transcriptomes are analogs of metagenomes, with the mRNA product
of each gene being analogous to an organismal species within an
ecological community and with each mRNAmolecule analogous to an
individual of that species in the ecosystem. Like species in metagenomes,
some transcripts are much more abundant than others, with distinct
genes sharing varying degrees of interrelatedness and possibly differing
in the magnitudes of their own intrinsic sequence polymorphism.

To illustrate de novo transcript assembly, PRICE was used to as-
sembly the mRNA sequence of human keratin 6A using a published
paired-end transcriptome dataset from a cutaneous squamous cell
carcinomatumor of the keratoacanthoma subtype (NCBI Sequence
Read Archive accession SRA029929; Figure 3) (Arron et al. 2011).
The dataset included 2.2M amplicons, each sequenced from either
end to generate 4.4M reads of only 54nt (after the removal of barcodes
and random-primer nucleotides; see Arron et al. 2011 for details).
This assembly highlighted several features of PRICE, primarily its
ability to accommodate hugely inconsistent read coverage levels, even
across a single transcript. The library in question derives from ran-
dom-hexamer priming of RNA templates, but those RNA’s were gen-
erated from poly-A2enriched cellular RNA that was further amplified
using in vitro transcription driven from the 39 end of the original
mRNA (Arron et al. 2011). This approach both enriches for the 39
portions of any fragmented RNA’s from the original samples and
generates abortive transcripts whose sequence is biased toward the
39 end of the original mRNA. Combined, those techniques substan-
tially biased the coverage toward the 39 end of transcripts.
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For keratin 6A, although the 39 end of the transcript had.10,000-
fold coverage, most of the transcript was covered at ~100-fold, and
a substantial 59 portion, including much of the CDS and all of the 59
UTR, had zero coverage (Figure 3B). The PRICE-generated contig of
keratin 6A extended to within a read’s length of transcript’s fold-
coverage reaching zero (Figure 3A-B, dashed gray line). At the 39
end, the contig extended all the way to and included the poly-A tail
(Figure 3A, dashed green line).

Assembly of keratin 6A was further hampered by the presence,
in the same dataset, of two closely related paralogous transcripts:
keratin 6B and keratin 6C. For much of these transcripts, their
percent nucleotide identity with one another exceeded the
thresholds used by PRICE for redundant contig collapse, result-
ing in the construction of a consensus sequence that generally
favored the 6A isoform of keratin (Figure 3C). However, the
single output contig was composed entirely of keratin mRNA
sequence, with no additional contigs deriving from other tran-
scripts. This focus was provided by an explicit targeting feature
built into PRICE that eliminates contigs with no discernible sim-
ilarity to the initial seed sequences.

In paired-end RNAseq datasets, template switching by reverse-
transcriptase can generate chimeric read pairs that combine sequences
from distinct transcripts (Roy and Irimia 2008). Such chimeric read
pairs provide data that spuriously support off-target assembly, as was
observed in the form of explosive expansion of the number of contigs
generated during those few assembly cycles that were not explicitly
targeted (cycles 1 and 6, Figure 3A). This transcript assembly
thereby illustrated the capacity of PRICE to remain focused on
the pre-determined goal of the assembly, even in the presence of
data erroneously supporting off-target assembly, using the explicit
targeting feature.

Assembly of a large DNA virus (KSHV) from
a multigenome dataset
The examples of PRICE assemblies described and referenced pre-
viously focused on fragments of sequence rarely exceeding a few
kilobases in length, and for which the primary challenges facing
assembly reflected quality of the input dataset, uneven coverage in
particular. However, the same localized approach to assembly can be

Figure 3 De novo assembly of the keratin 6A mRNA from a transcriptome dataset. (A) Contigs from each step of a 10-cycle PRICE assembly
aligned to the keratin 6A reference sequence (NM_005554.3) by BLASTn (Altschul et al. 1990). The seed sequence is a single 54nt read from the
paired-end transcriptome dataset (Arron et al. 2011) (dark blue; seeMaterials and Methods); the later contigs (purple) include poly-A tail sequence
not included in the reference sequence. Left: the total number of output contigs generated in each cycle, shown as a histogram of blue or green
bars for cycles that were or were not explicitly targeted (using the –target flag; seeMaterials and Methods) to the seed sequence, respectively. (B)
Read coverage from the 54nt paired-end read dataset determined by mapping to the keratin 6A reference. Units are the number of reads
overlapping each nucleotide, averaged across nonoverlapping 10nt windows. Coverage is shown requiring 90% (red) or 100% (orange) nucleotide
identity between the read and the reference. (C) Identity of the PRICE contig vs. the reference keratin 6A sequence, as well as the human keratin
6B and 6C isoforms (NM_005555.3 and NM_173086.4, respectively) for nonoverlapping 50nt windows and including the poly-A tail sequence.
Bottom, the maximum % identity for each 50nt contig window to the three keratin 6 isoforms.
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applied to larger genomes, either by seeding with arbitrary portions of
the genome (i.e., using randomly-selected reads) or by focusing
on portions of the genome of particular interest (similar to the
approaches above, but using seeds from many parts of the genome in
parallel). To illustrate this approach, we constructed a dataset from
and performed an assembly of the genome of the KSHV (Figure 4).
This paired-end dataset (NCBI Sequence Read Archive accession
SRS367470), with 65nt reads from each end of each amplicon, de-
rived from the BCBL-1 KSHV-infected cell line (Renne et al. 1996),
and although it contained very high coverage of the KSHV genome
(~1100-fold; see Materials and Methods), only a small minority of
the reads derived from KSHV (4.4%). The remainder primarily de-
rived from the human host cells (92.3% of all read pairs had at least
one read that could be aligned to the reference human genome with
at least 90% identity, combining alignments found by BLAT (Kent
2002) and BLASTn (Altschul et al. 1990)). This assembly therefore
also tested the ability of PRICE to ignore a large amount of irrelevant
genomic data when performing a targeted assembly of a large viral
genome.

The DNA genome of KSHV enabled construction of a library with
consistent coverage across the genome (Figure 4A) vs. the RNA-
derived datasets described previously. Remaining regions of depleted
coverage could have been explained by either or both of two models:
(1) amplicon depletion due to PCR bias or (2) apparent but untrue
lack of coverage due to mappability bias. Regarding the first model:
amplicons from regions of high G/C nucleotide bias can become de-
pleted during PCR amplification of libraries such as these (Aird et al.
2011). However, regions with high G/C content (Figure 4B) were
generally represented well in our dataset (Figure 4B). Regarding the
second model: the multiplicity of equally valid mapping positions for
sequences repeated in a genome obfuscates their correct assignment to
a genomic region, making reads from such regions less “mappable,”
both intrinsically and due to the processes by which software searches
for significant alignments. In particular, the lowering of sequence
complexity increases the probability of multiple, equally good align-
ments, but low complexity is not the only property that can cause
mappability problems. In the case of KSHV, regions of apparent
extremely low coverage often coincided with regions of diminished
sequence complexity, independent of the G/C complexity of those
regions, and always coincided with regions of low mappability (Figure
4B), indicating that data from such regions were not necessarily de-
pleted in the dataset.

Our assembly of KSHV began with 28 seeds selected at even 5-kb
intervals across the KSHV reference genome (File S1) (Rezaee et al.
2006) and proceeded for 65 cycles of PRICE extension to yield 13
contigs covering 97.3% of the reference genome (File S2; Figure 4C).
In support of the hypothesis that unmappable reads were present in
the dataset, many of the regions with apparent low coverage due to
low mappability were correctly traversed by the assembled contigs
(Figure 4C, positions ~30k, ~93k, ~120k), whereas regions whose
unmappable regions substantially exceeded the calculated mean
amplicon size of 207nt remained largely unaccounted for in the as-
sembly (Figure 4C, positions ~0, ~25k, ~119k, ~126k). In some cases,
contigs abutted one another without being joined despite apparently
high read coverage. However, all of those cases corresponded to positions
where adjacent reads overlapped by only ~25nt, the specified minimum
overlap allowed between two sequences for collapse into a contig for our
assembly (see Materials and Methods; Figure 4B, positions ~23k, ~54k,
~88k, ~91k, ~94k).

This assembly of KSHV illustrated two strengths of PRICE. First,
despite the majority of the dataset deriving from the human genome

of the host cells in which KSHV was cultured, the assembly remained
focused on only the KSHV component of the dataset. In the keratin
assembly described previously, the targeting feature of PRICE was
used to eliminate contigs with little discernible similarity to the seed
sequence. This avoided incorporation of misleading chimeric data that
can derive from reverse-transcriptase template-switching (Roy and
Irimia 2008). However, the explicit targeting feature was not used
for the KSHV assembly (seeMaterials and Methods). KSHV remained
the sole subject of successful assembly through a large number of
cycles and through iterative, stepwise growth across many kilobases
of novel genome sequence. Consideration of this result in conjunction
with the use of explicit targeting for the keratin assembly illustrated
a low propensity for PRICE to spuriously engage in off-target assem-
bly work not supported by data.

Although the correction of sequence data are generally in-
appropriate for metagenomic analysis, PRICE did implement
a feature that filters input data based on sequence quality scores in
a user-controllable and dynamic manner. This feature was used for
the assembly of KSHV. In principle, stringent quality filtering should
improve both the quality and efficiency of the assembly, but such
filtering also has the potential to prevent assembly through low-
coverage regions. We therefore took advantage of the dynamic
aspect of PRICE quality filtering subjecting early cycles to very
stringent quality requirements, followed by less stringent require-
ments in later cycles to fill in low-coverage regions (see Materials
and Methods).

DISCUSSION

Genome vs. metagenome assembly
The drastically lower cost of nucleic acid sequencing provided by
modern high-throughput technologies permits a paradigm shift away
from in vitro and toward in silico enrichment techniques. PRICE was
designed to facilitate this transition by enabling convenient targeted
assembly of metagenomic subcomponents of interest. Previously
implemented genome assembly tools have been designed assuming
that all or most of the data collected is relevant to the scientific goal,
and that has been an appropriate design choice because it has been the
case for genome sequencing projects to date. However, especially for
metagenomic datasets, an investigator may only be concerned with
individual genes or genomes, rendering wasteful any effort spent as-
sembling data from other aspects of the data.

In addition, several of the assumptions that can be made about
single-genome datasets that facilitate efficient assembly become
irrelevant in the metagenomic context. First, the read coverage
across a single genome will be highly consistent, excepting for
variation due to statistical sampling error and known biases based
on nucleotide content (Lander and Waterman 1988; Aird et al.
2011). Repetitive sequence elements, whose multiplicity within a ge-
nome obscures the appropriate pairwise matching of flanking
sequences, reveal themselves by their apparent anomalously high
read coverage when considered as single-copy elements, allowing
assemblers to avoid generating erroneous assemblies around them.
This assumption of consistent coverage is irrelevant for metage-
nomic datasets, where the level of coverage for each genome will
be different and dictated by the number of cells and genome copies
of each organism in the locally sampled ecosystem. Although PRICE
did provide an optionally invokable tool for detecting and masking
repetitive elements on the basis of anomalously high read coverage,
its default behavior was to not apply such a strategy; that would be
the appropriate behavior for metagenomic data.
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A second assumption made of genomic data that is irrelevant to
metagenomic analysis is the rarity and consistent nature of true se-
quence polymorphism within a sample. The ratios of coverage between
genomes from different species or strains/subspecies in an ecosystem
sample span a continuum, unlike the quantized levels of coverage
determined by ploidy or repeat copy-number differences. The quantized

distribution of coverage among single-genome data simplifies the
distinction between true polymorphism and sequencing errors:
true polymorphisms will occur at frequencies whose denominators
match the ploidy of the sequence element (for commonly-sequenced
diploid species, that denominator is only two), whereas errors will
occur at much lower frequencies vs. the consensus. In metagenomic

Figure 4 De novo assembly of the BCBL-1 strain of the KSHV. (A) Read coverage from the 65nt paired-end read dataset determined by mapping
to the KSHV reference genome (Rezaee et al. 2006) (NC_009333.1) with BLASTn (Altschul et al. 1990), requiring 90% identity. Units are the
number of reads overlapping each nucleotide, averaged across nonoverlapping 100nt windows. (B) Heat maps indicating the percent of
nucleotides that are G/C in nonoverlapping 250nt windows (orange), LZW sequence complexity (Welch 1984) of nonoverlapping 250nt sequen-
ces (blue; see Materials and Methods), read mappability as determined by mapping every overlapping 65mer from the genome using the same
method as in (A) and averaging the coverage over a 100nt window (red), and the minimum overlap between adjacently mapping reads across
each 100nt window, measured as the minimum value across all reads with 39 ends in the window, measuring the maximum overlap with all reads
mapped 39 of the given read (green). (C) Contigs from selected steps of a 65-cycle PRICE assembly aligned to the reference genome. Seed
sequences of 65nt are shown as the innermost ring (dark blue), followed by intermediate contigs aligned to the reference genome by BLASTn
(Altschul et al. 1990), with the final contigs aligned to the reference genome by the Smith-Waterman method (Smith and Waterman 1981) shown
on the outer ring (purple).
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data, the continuous ratios of polymorphism make such distinctions
theoretically impossible, blurring the line between a correct sequence
for one species and a consensus sequence for several. Such ambiguity
between sequencing errors vs. true polymorphisms is especially rele-
vant to viruses with RNA genomes, whose genomes rapidly accumu-
late polymorphisms and exist as a population of diverse quasi-species,
even in the context of single infections (Lauring and Andino 2010).
Therefore, PRICE was built to seek a consensus sequence, again fa-
voring behavior appropriate for metagenomic data.

In terms of algorithmic efficiency, the strategy for targeted assembly
of metagenomic components that was implemented by PRICE scales
differently vs. whole-genome assembly algorithms. These differences
represent trade-offs that could be advantageous or disadvantageous
depending on the context. The principle disadvantage of the PRICE
strategy was the requirement of read mapping to contig edges in every
cycle. The cost of this requirement grew linearly with the size of the
paired-read dataset, the number of contigs being extended (but not
their length, as the mappable area is defined by paired-read amplicon
size), and the number of cycles run (desired size of output contigs). The
advantage gained was the limit of individual assembly jobs to locally
relevant reads, typically a minor fraction of the total dataset.

Genome assembly by the traditional overlap-layout-consensus
method is a polynomial process, requiring each sequence to be com-
pared to (potentially) all others and/or already constructed contigs
(Pop 2009). Hashing and indexing functions can drastically increase
alignment efficiency (Li and Homer 2010), but they cannot eliminate
the polynomial nature of growth with respect to the number of input
sequences. Eulerian graph-based methods can reduce the time of
parsing input data into a graph structure that can (ideally) be effi-
ciently traversed to yield an assembly (Pop 2009). However, the com-
plexity of the resulting graph, and therefore the difficulty of its
traversal, rapidly increases given either erroneous data or true geno-
mic polymorphism. While these complicating factors are either in-
frequent or easily correctable in the case of single genomes, they are
intrinsic components of metagenomes, and they therefore encourage
the metagenomic investigator to choose between inappropriate data
corrections or inefficient whole-dataset assembly.

With respect to the size of the input dataset, the linear dis-
advantage of PRICE (mapping) was countered by a polynomial advan-
tage (reduced input for each seeded assembly job). A similar advantage
could have been gained by pre-sorting data of interest away from
irrelevant data. The goal of PRICE was to provide such an algorithmic
advantage for assembly even if only a tiny subset of the data of interest
could be identified ahead of time. However, the added cost of repeated
mapping through a series of assembly steps limited the expected
efficiency advantage of PRICE to cases where the initial design
assumptions hold: when an investigator is interested in a particular
species that comprises a small fraction of a much larger, more
complex dataset, and that subset of data cannot be reliably identified
ahead of time.

PRICE as a tool for the in silico purification paradigm
The purpose for which PRICE was designed, the discovery of viruses
through sequencing of the viral genome from a clinical or other
metagenomic sample, is intrinsically hampered by the metagenomic
nature of the genetic source material. Traditionally, the targeting of
viral genome would occur at the lab bench. Sample-processing
techniques such as particle-size filtration or density-based enrichment
by centrifugation increase the frequency of viral genomes by depleting
other components of the metagenomic mixture but require that the

sought virus have the morphology enriched by the technique (Segura
et al. 2011). Molecular techniques such as virus-specific polymerase
chain reaction (PCR) or microarray hybridization capture provide
even more powerful molecular enrichment for viral nucleic acid, but
they require very specific prior knowledge about the sequence being
sought that can hamper the discovery of highly novel pathogens (Tang
and Chiu 2010; Mahony et al. 2011). In vitro viral culture can provide
tremendous viral amplification without specific prior molecular
knowledge. However, the specific requirements for host cell biology
to support viral replication makes the establishment of such a culture
system naïvely improbable, as evidenced by longstanding difficulties
establishing suitable systems for the study of replication by hepatitis C
virus (Jones and Mclauchlan 2010) and human papillomavirus (Schiller
et al. 2010). In all cases, these techniques reduce the metagenomic
complexity of the sample to enable discovery by imposing constraints
on the allowed properties of the pathogens to be discovered.

The low cost of modern DNA sequencing at large scale has
facilitated a paradigm shift away from physical to in silico enrichment
techniques. Rather than anticipating the properties of a particle or
genome of interest, total metagenomic data can be collected and
sorted afterward for properties of interest. Versus in vitro methods,
in silico enrichment offers the advantage of not destroying any in-
formation from the original full dataset, allowing it to be repeatedly
queried ad infinitum for sequences with new properties. Possibly the
most important advantage of in silico over physical enrichment is its
foundation of information content. The genomics era has framed
evolution, the defining process of biological systems, in terms of in-
formation theory, propagation, retention, and entropic degradation
(Lander 2005). Although many of the physical properties of virus
particles that are leveraged for physical enrichment are selectively
maintained, their utility for enrichment is often arbitrary with respect
to the information impacted by natural selection. Worse, pathogens
physically protect their best-conserved structures from host immune
systems (Ploegh 1998), a property that can also shield them from
physical enrichment tools. In silico, appropriate attention can be fo-
cused on those parts of a genome that are also the focus of purifying
selection: for instance, by examination of the translated amino acid
sequence of the nucleic acid under scrutiny, or further by focusing on
those aligned positions whose function has been widely conserved
across the family of proteins with similar functional roles.

The selection of appropriate sequences to seed PRICE assemblies
represents a parallel bioinformatic challenge to the targeted assembly
implemented by PRICE. The various examples presented in this paper
highlight the pros and cons of alternative seed selection strategies.
When searching for novel biological entities, the similarity of new
sequences to known sequences/motifs can be slight, implying that
database searches should be performed with lenient requirements.
However, such leniency can also attract false-positive matches that will
seed the assembly of undesired contigs. The LSV2 and keratin
assemblies were each seeded with individual reads, demonstrating
the ability of PRICE to function given only a small amount of initial
information. This ability would give the user the option of using
highly stringent similarity requirements, the kind of requirements that
would identify very few satisfactory sequences. In the case of the larger
KSHV genome, several seeds were evenly spaced at wide (5-kb)
intervals. Although those seeds provided a clean and complete
assembly, the inability of all contigs to join highlighted the reality
that there were practical limits to the contig extension that PRICE
could accomplish, and the presence of regions with insufficient data
for assembly can generate inaccessible genomic islands that would be
missed by seeds distributed too sparsely. In addition, the KSHV
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assembly took many more cycles than the LSV2 or keratin assemblies,
highlighting the performance advantage of lenient database searches
that lead to higher seed density.

A large advantage of the iterative assembly protocol of PRICE that
has not been highlighted was its ability to make use of assembly that
has already been performed. All three of the assemblies presented here
were seeded with short reads. As has been discussed, it can be difficult
to find meaningful similarity between short reads and distantly related
reference sequences. Our application of whole-dataset assemblers to
the LSV2-containing bee-associatedmetagenome illustrated the advan-
tages provided by a targeted assembly strategy toward obtaining a full
viral genome sequence. However, it also demonstrated the ability of
all of the whole-dataset assemblers used to generate fragments of
correctly assembled sequence far longer than individual reads. Those
contigs, if deemed interesting, could easily have served as seed
sequences for PRICE assembly. The utility of naïve whole-dataset
assembly can be maximized by placing it in the context of a pipeline,
with PRICE at the end to compensate for the limitations of the whole-
dataset approach.

The role for PRICE in expanding the paradigm of in silico purifi-
cation/enrichment was to amplify the power of information-based
purifications by providing a mechanism for co-purification of genomi-
cally associated sequences. The examples presented here, in combina-
tion with the published applications to real-world metagenomic
problems, highlighted the ability of PRICE to maximize the amount
of information that can be gathered about a biological sequence and
its (meta)genomic context given identification of a short sequence of
potential interest from a large, complex library of sequences. They also
highlighted the ability of PRICE to accommodate the challenges that
are both intrinsic to such problems (complexity of datasets in terms of
diversity of the source material) and that reflect current shortcomings
of metagenomic data (unevenness of coverage, even across a single
molecular species). PRICE was designed pragmatically, to address
these practical problems that are common to contemporary deep-
sequence datasets. PRICE shifts burden away from the bench (the
generation of a perfect library) and onto the computer (handling
problematic data). By doing so, PRICE improves the likelihood that
an arbitrary dataset will produce useful data of interest and therefore
reduces the time, financial cost, and risk associated with metagenom-
ics projects. Reducing the costs and risks of metagenomic analyses
should empower a wider community of scientists to engage in such
projects and help democratize the field of metagenomics.
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