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Acquired bacterial resistance is one of the causes of mortality and morbidity from

infectious diseases. Mathematical modeling allows us to predict the spread of resistance

and to some extent to control its dynamics. The purpose of this review was to examine

existing mathematical models in order to understand the pros and cons of currently

used approaches and to build our own model. During the analysis, seven articles on

mathematical approaches to studying resistance that satisfied the inclusion/exclusion

criteria were selected. All models were classified according to the approach used to study

resistance in the presence of an antibiotic and were analyzed in terms of our research.

Some models require modifications due to the specifics of the research. The plan for

further work on model building is as follows: modify some models, according to our

research, check all obtained models against our data, and select the optimal model or

models with the best quality of prediction. After that we would be able to build a model

for the development of resistance using the obtained results.

Keywords: bacterial resistance, mathematical model, antibiotics

Introduction

In spite of significant advances in the development of antibiotics (AB) and antibacterial drugs in
general, infectious diseases remain a major cause of morbidity and mortality worldwide (Whitby
et al., 2001; Schwaber and Carmeli, 2007; Macgowan, 2008; Spellberg et al., 2008). Antibiotic
resistance (ABR) is considered to be a key factor in these unsatisfactory outcomes. Its increase
has been recognized as a real threat to the global population’s health, which was reflected in
the “Strategies for global surveillance of antimicrobial resistance” adopted by the World Health
Organization (World Health Organization, 2001). It is impossible to prevent the development
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and spread of all ABR due to bacteria’s innate property of
adapting to a changing environment, however, the rate of
increase of ABR needs to be reduced to prevent a greater problem.
Meanwhile, it seems viable to slow down the spread of ABR
and maintain the effectiveness of existing etiotropic treatment
(World Health Organization, 2001; Mölstad et al., 2008). Good,
appropriate approaches of antimicrobial stewardship are thought
to be pivotal in improving the resistance situation. The aim of this
review was to evaluatemathematical models which link antibiotic
usage to resistance, for this purpose, a systematic search and
analytic review of the literature was performed.

Materials and Methods

The method of this study involved a systematic search and
subsequent reviewing of publications relating to different
mathematical models of ABR. The search for publications that
came out during the last 10 years (from 03.11.2003 to 03.11.2013)
was performed in the MEDLINE, Web of Science and Scopus
databases.

Selection of Studies and Search Criteria
The search for relevant publications was performed in
the PubMed database using the following search request:
determinist∗ OR stochast∗ OR discrete OR mathematic∗ OR
simulat∗ AND model∗ AND resist∗ AND (“2003/11/03”[PDat]:
“2013/10/30”[PDat] AND “humans” [MeSHTerms]). The
following inclusion and exclusion criteria were developed and
applied. Inclusion criteria: any model describing ABR. Exclusion
criteria: non-bacterial resistance (caused by viruses, fungi,
mycobacteria, protozoa, etc.); studies of ABP based on animal

FIGURE 1 | Diagram of publication selection for systematic review. This paper reviews the seven models which remained after the filtering process.

models only; models of resistance transmission in vitro between
strains; pharmacokinetic/pharmacodynamics models; models
of resistant strains spreading in a human population under
conditions of a lack of AB.

Selection and Analysis of Publications
The primary selection of publications was assessed by five
independent reviewers: two mathematicians, two clinical
pharmacologists, and one microbiologist. Each publication
selected by the search query was assessed by the reviewers
in terms of the inclusion and exclusion criteria using the
following scheme: assessment after reading a title; assessment
after reading an abstract; assessment after reading the full text.
Final agreement on the publication list for further analysis and
review was made on a consensus basis. In case of disagreements
voting combined with formal Delphi methodologies (reaching
a consensus between the experts by two rounds with 85%
agreement) was used. The selection diagram is presented in
Figure 1.

Preliminary Conclusions
In most studies selected at the stage of abstract review the
development and spread of ABR was considered using the
epidemiological approach as a simplified means of describing
the transmission of communicable disease through individuals
without considering the impact of antibiotics. We reviewed
only models where AB consumption was introduced as an
independent parameter, because we consider the process of
developing resistance as a function of time and antibiotic
consumption. That is why some papers were excluded at the stage
of full text analysis (Bergstrom et al., 2004; Miller et al., 2004;
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Boni and Feldman, 2005; Huovinen, 2005; Mera, 2005; Reluga,
2005; Webb et al., 2005; Levin and Rozen, 2006; Schinazi, 2006;
D’Agata et al., 2007; Zalounina et al., 2007; Drovandi and Pettitt,
2008; Pienaar et al., 2009; Artalejo et al., 2010; Haber et al.,
2010; Kardas-Sloma et al., 2011; Kouyos et al., 2011; Opatowski
et al., 2011; Wang et al., 2011; Banks et al., 2012; Chamchod
and Ruan, 2012a,b; Deng et al., 2012; Hurford et al., 2012;
Joyner et al., 2012; Sotto and Lavigne, 2012; Yahdi et al., 2012;
Horsburgh et al., 2013; Lee et al., 2013a,b; Worby et al., 2013).
The seven remaining models were classified according to the
type of link between resistance and AB consumption. Three
major classes of model and one additional class were created
(Table 1).

We examined each model in detail and assessed the suitability
and successfulness of each class in addressing the research
question.

Results

Class 1. DDD as an Independent Parameter to
Enter the Antibiotic Into the Model
Model 1. Antibiotic resistance in hospitals: a

ward-specific random effect model in a low antibiotic

consumption environment (Aldrin et al., 2013)

Description of the model 1
This study quantified the impact of antibiotic consumption
on the changes of Pseudomonas aeruginosa resistance
in three Norwegian hospitals between January 2001 and
December 2006. The main antibiotics under consideration
were carbapenems (meropenem and imipenem), tandpenicillins
(ampicillin/pivampicillin and mecillinam/pivmecillinam)
to which P. aeruginosa is resistant. In particular, the study
considered the relationship between changes in P. aeruginosa
resistance and changes in antibiotic consumption. The main
questions were:

1. How is the IR of P. aeruginosa affected by the use of
antibacterial agents to which the microbe is resistant?

2. How is the proportion of P. aeruginosa non-susceptible to
meropenem influenced by the use of carbapenems?

Antibiotic consumption was expressed as defined daily doses per
100 bed-days and microbiology data were obtained from the

microbiological laboratories’ databases. Thus, the following data
were collected for each ward and month:

1. the incidence of P. aeruginosa;
2. the incidence of P. aeruginosa where susceptibility testing

against meropenem was performed;
3. the incidence of P. aeruginosa resistant to meropenem;
4. the number of bed-days.

Subsequently, the following values were calculated: (1) the IR of
P. aeruginosa, that is, the number of patients from whom the
bacterium was isolated per 100 bed-days; (2) the proportion of
P. aeruginosa resistant to meropenem, that is, the number of
patients from whom the resistant variant was isolated divided by
the total number of patients tested (binomial distribution).

The main approach of modeling the spread of resistance
used in the model is the regression and autoregression analysis
(autoregressive part with different lags was implemented for the
resistance, regressive part—for the consumptions of AB with
different lags and different confounders, like epidemic or holiday
variables). Also model was tested for seasonality. Selection of
the optimal model was carried out by Schwartz criterion. The
simulation of the resistance at various levels of consumptions was
made after finding the optimal model.

Model Analysis

Preliminary conclusions
The class of regression models described in this paper commonly
used in the study of time series. Authors specify resistance
with logarithmic link (the model for incidence rate of resistant
microbes) and logit link (the model for proportion of resistant
bacteria). Autoregressive and regressive parts are introduced with
different lags, so the authors get a lot of sub-models, because
different lags for autoregressive part are combined with different
lags for AB. The decision on whether to consider seasonality and
confounders also increases the number of sub-models. To reduce
the number of coefficients for different lags of AB consumption,
authors describe these coefficients by the polynomial of lags of
order 2. It would be correct to consider different set of AB in
model, but it increased greatly the number of sub-models, so
authors considered all AB simultaneously. Months where no
susceptibility tests were performed were treated separately by
the introduction of the new coefficient. Finally, all sub-models

TABLE 1 | Classes of mathematical model.

Class Method of introducing AB into the

model

References Description

1. DDD* Berger et al., 2004; Aldrin et al., 2013 Time series, regression, the biological process is not considered in

detail

2. Proportions of patients receiving treatment D’Agata et al., 2005 Differential equations, the biological process is not considered in detail

3. Dose (as a rate of growth suppression/the

drug kill rate) and duration of therapy

D’Agata et al., 2008; Friedman et al.,

2010

Differential equations, the biological process is considered in detail

4. Difficult to classify because of the specific

approach

Geli et al., 2006; Sun et al., 2010 Seasonal correlation between antibiotic consumption and resistance.

Artificial neural network.

*DDD, Defined daily dose.
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were tested using Bayesian information criterion. Unfortunately,
this method of validation does not exclude the overfitting of
the model, so we consider it appropriate to introduce the
second step for validation. That is to break up all data sets into
three subsets—raining set for finding coefficients, product set
to exclude overfitted sub-models, and a test set to estimate the
accuracy of forecast.

Model 2. Generalized Additive Model (GAM)

Demonstrates Fluoroquinolone Use/Resistance

Relationships for Staphylococcus aureus (Berger

et al., 2004)

Description of model 2
GAM was applied in this research to study fluoroquinolone
use and the incidence of fluoroquinolone-resistance in S.
aureus. Materials for microbiological studies were provided
by data from four hospitals in Marseille taken over a
period of 3 years (1997–2000). The information system in
all four hospital pharmacies provided data on antimicrobials
(amount in grams by class and formulation) prescribed
starting from January 1, 1997, 6 months prior to the start
of the microbiology study period. Data was obtained on
fluoroquinolones (ciprofloxacine, ofloxacine, and pefloxacine),
penicillins with β-lactamase inhibitors (amoxicillin/clavulanic
acid, ticarcillin/clavulanic acid, and piperacillin/tazobactam),
third-generation cephalosporins (cefotaxime, ceftriaxone, and
ceftazidime), gentamicin, oxacillin, and rifampicin. The total
amounts of AB consumed in grams each day were converted
into numbers of defined daily doses (DDD), using the average
maintenance dose of each drug as recommended by the
manufacturers. The possibility of delayed effects from AB
consumed was also considered. Monthly numbers of patient-
days were obtained from each hospital’s admission department
to provide a measure of the risk of patients becoming infected
or colonized. To quantify the association between incidence
of resistance and antibiotic use, the authors applied the
GAM, adapted to time series. A temporal analysis of the
monthly variations of DDD number and the incidence was
performed.

Model Analysis

Preliminary conclusions
The model was based on a similar method as in model 1,
but authors also considered the non-parametric smoothing
for antibiotic use, that was performed by locally weighted
scatterplot smoothing (LOESS). Autoregressive and regressive
parts were introduced by the same way as in model 1. As
to confounders, authors used a “holiday” variable (to control
the lower occupation rates of beds in hospitals over public
holidays) and “epidemic” binary variable (to control its potential
confusing effect). A trend and seasonality were controlled
by a spline function of a “month” variable. Binary variables
were created to control possible variations between winter
and summer. The criterion used to find the optimum model
is Akaike’s information criterion (AIC) The effect of therapy
was not considered. In the first article the authors went
further and examined the effect of changes in AB consumption

(proportionally increasing or decreasing) and presented the
quantitative results, something which was lacking in this study.
Different sets of AB were considered in this model (unlike
model 1), that increase the number of sub-models. To solve
this problem the AB was introduced successively to each
other with simultaneous estimation by AIC. Since the model
1 and model 2 and similar, the comments about validation
are also similar. We would like to add one more comment
about trend and autoregressive part, that is the opportunity to
double count a trend into the autoregressive part. Therefore,
it is necessary to consider options with and without the
trend.

Class 2. The Fraction of Patients Receiving AB
Treatment Serves as an Independent Parameter
to Include Antibiotic Use in the Model
Model 3. A Mathematical Model Quantifying the

Impact of Antibiotic Exposure and Other

Interventions on the Endemic Prevalence of

Vancomycin-Resistant Enterococci (D’Agata et al.,

2005)

Description of the model
Amodel was developed to quantify the contribution of antibiotic
exposure and other factors to the spread of vancomycin-resistant
Enterococci (VRE) in the hospital setting. Patients were divided
into four groups: patients colonized with (VRE) receiving
antibiotic treatment; patients colonized with (VRE) who were
not receiving antibiotic treatment; uncolonized patients receiving
antibiotics and uncolonized patients who were not receiving
antibiotics. Baseline parameter estimates were derived from
pharmacological databases, infection control databases and
clinical databases. It was assumed that patients colonized with
VRE and receiving antibiotics were more likely to transmit
VRE to other patients. Simulations were performed to quantify
the impact of starting or discontinuing antibiotic treatment in
different groups of patients either colonized or uncolonized
with VRE on the incidence of VRE over time. The necessary
data were obtained by analyzing computerized infection control
records, which monitor the number of patients admitted to
the hospital with a history of VRE, as well as pharmacy
records (microbiological data). Values for average duration of
hospital stay were obtained from the hospital administrative data.
Simulationmodeling was undertaken so as to estimate the impact
of the following independent variables on the development of
resistance:

1. the number of colonized and uncolonized patients who
received AB;

2. the number of colonized and uncolonized patients who
stopped receiving AB;

3. length of hospital stay of colonized patients;
4. hand hygiene among health care workers;
5. the ratio of health care workers to patients.

Each group is defined by a differential equation, describing
the changes in different groups of patients over time
(colonized/uncolonized, receiving AB/not receiving).
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Model Analysis

Preliminary conclusions
In this model, both patients colonized or uncolonized with VRE
were included. The influence of antibiotics (fraction of patients)
on resistance in the model was not described analytically and
was introduced during the simulation analysis. As a result of
generating simulations which considered different fractions of
patients receiving antibiotics, the authors were able to track the
main trends in the changes of resistance (fractions of patients
colonized with resistant strains).

Class 3. Dependency Between Resistance,
Antibiotic Dosage (As a Rate of Growth
Suppression) and Length of Treatment
Model 4. A Model of Drug Resistance with Infection

by Health Care Workers (Friedman et al., 2010)

Description of the model
The purpose of this study is mathematical modeling of strain
evolution among patients in hospitals. The model assumes that
during 6 weeks of the simulation time of the model patients do
not enter or leave the hospital. Also, the following assumptions
were made:

1. the immune system of the patients acts to reduce the bacterial
population;

2. non-resistant strains mutate into resistant ones at a certain
rate;

3. infection is transmitted between personnel and patients at a
certain rate.

The model is based on a series of differential equations and is not
validated in a clinical setting.

Model Analysis

Preliminary conclusions
The model is based on a differential equation of the dependence
of the non-resistant and resistant strains on AB dosage. The
following variables were included as factors in the model:

1. the rate of bacterial growth;
2. the immune response;
3. the drug kill rate (i.e., drug response, the reduction ratio of

the number of bacteria) the transmission between patients and
HCWs (the probability of transfer of bacteria).

AB dosage was categorized as either low, medium, or high and
the graphs were made for different durations of therapy and
different levels of consumption (low, medium, high). Thus, there
was a rough estimate of the impact of AB consumption, only in
terms of categories; there was no rigorous analytical link between
number of bacteria and amount of consumption. The model was
not validated in a real-world clinical setting and it did not use
any experimental data for assessment of the parameters. Its main
conclusion was that the longer treatment lasts and the higher AB
dosage is, the lower the level of resistance is. Perhaps, the optimal
treatment that the authors found is only a local minimum and
resistance will grow again in the long-term, because 6 weeks is a
very short period for simulation. The mechanism of mutations
in this study was discussed only in context of AB, i.e., it was

supposed that mutation occurs only if a bacterium is affected
by AB. As mentioned earlier, the reporting period of time was
very short, which excludes the possibility to assess the impact
of delay consumption. The conclusions based on the results of
modeling are of interest. If the main conclusions do not change
significantly after revision of the model and substitution of our
data, this approach deserves our attention.

Model 5. The Impact of Different Antibiotic Regimens

on the Emergence of Antimicrobial-Resistant

Bacteria (D’Agata et al., 2008)

Description of the model
This model contained three main parameters which are
hypothesized to regulate the development of resistance: immune
response, horizontal gene transfer, and treatment regimen. The
model of bacteria within a host was considered in order to
find optimal treatment which could restrain ABR. Differential
equations were used. The authors take into account the effect
of treatment with different durations of therapy, earlier or later
start of therapy, and simultaneous consumption of several AB.
The research included the following sub-models. Model with

immune response and singleAB treatment [sub-model (1)]. An
ideal setting was modeled where a bacterial population within a
host was treated with the appropriate AB. Since bacterial growth
is impacted by availability of nutrients, a logistic curve was used
to describe the dynamics of the population. It was assumed that
the bacteria were dying under the influence of AB at steady rate
which was proportional to their population density. Immunity
is interpreted as the ability to react to bacteria, suppress their
growth and destroy them bymeans of leucocytes. It was suggested
that the killing rate of bacteria by leucocytes could be described
by theMonod function. In this sub-model the authors considered
only the minimal infecting dose, i.e., the threshold number of
bacteria required to overcome immunity.

Model of the Development of Resistance to a Single

AB Through Horizontal Gene Transfer [Sub-Model (2)]
This model assumes that the AMR of bacteria can be intrinsic or
acquired through mutation and acquisition of new AMR genes.
The latter mechanism occurs through horizontal transfer of such
genetic elements as plasmids, integrons, and transposons.

Model with Different AB Treatment and

Multidrug-Resistant Strains [Sub-Model (3)]
Sub-model 3 was based on sub-model 2 and extended through
the assumption of multidrug-resistance of bacteria and modeling
for different treatment regimens.

Model Analysis

Preliminary conclusions
The authors created a dynamic model of the development of
infection (as the bacterial load) within one host depending on
the immune response, horizontal gene transfer, and presence
of a strain (either resistant or sensitive to an antibiotic). The
influence of AB was represented in the model through the
bacterial mortality rate in the presence or absence of AB. More
precisely, AB usage itself as a parameter was not included in the
model; one can assess its effect only by simulations with different
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mortality rates. On the other hand, the mortality rate can be
considered as being coefficiently linked with drug dosage, which
produces the given mortality in bacteria population. Due to this
assumption, and the fact that this study assessed the effect of
treatment duration this study was classified as one where the
effect of AB is introduced through its dosage and the duration
of therapy.

Additional Models Without Class reference
Model 6. Seasonality and Temporal Correlation

between Community Antibiotic Use and Resistance

in the United States (Sun et al., 2010)

Description of the model 6
A study of the seasonal dependence between antibiotic
prescription and resistance was conducted in the United States
from 1999 to 2007. The study used the data on retail antibiotic
sales obtained through IMS Health’s Xponent database (Campos
et al., 2007). The data from this source cover more than 70% of all
antibiotics prescribed in the United States. The mass of data was
broken down by prescription month into 5 major groups:

1. aminopenicillins
2. quinolones
3. macrolides/lincosamides
4. trimerthoprim/sulfamethoxazoles
5. tetracyclines.

Data on resistance were obtained from The Surveillance Network
Database-USA (Sun et al., 2010), an electronic database with
the susceptibility tests results for Escherichia coli and methicillin-
resistant Staphylococcus aureus (MRSA) from more than 300
laboratories in the USA. Trends of the time series which mapped
resistance and use of antibiotics were evaluated with LOESS
method (locally weighted scatter plot smoothing). To convert the
data into the form of time series with independent identically
distributed random variables, the Box-Jenkins approach to time-
series modeling was used.

Model Analysis

Preliminary conclusions
To assess antibiotic consumption the amount of prescriptions
was used instead of average daily dosage. Because of this, it
is difficult to compare the results of this model with other
studies. Moreover, this approach does not consider the dosage
and duration of antibiotics therapy as independent parameters.

This model contains autocorrelation elements and is based on
an ARIMA framework. However, this does not allow the model
to define the cause and effect relationship between antibiotic
resistance and drug usage. Moreover, this approach does not give
any numerical results. Still, these results may be useful in finding
the lag (as an alternative method for models of Class 1).

Model 7. Modeling Pneumococcal Resistance to

Penicillin in Southern Sweden Using Artificial Neural

Networks (Geli et al., 2006)

Description of the model
In this study a model based on an Artificial Neural Network
(ANN) approach was developed to describe and predict the

spread of penicillin-resistant pneumococci (PRP) as a function
of antibiotic consumption and a number of confounders. Data
on monthly incidence of PRP in 32 municipalities in the south
of Sweden from 1997 to 2003 were analyzed. Use of neural
networks suggests that there are inputs for which the result is
known (these data are used for training the network as well as
for checking the correctness of its performance). Typically, two-
thirds of all known data is taken as the training set (on these data,
the system is configured), and one-third is taken as the testing
set (on these data the system is checked for errors). In this paper
input information was taken from historical data for 1997–2003.
The data from 1997 to 2000 on antibiotic consumption in the
south of Sweden were taken as the training set, and information
from 2001 to 2003—as a testing set to verify proper performance
of the model.

Antibiotic consumption data were obtained from the
database of the National Corporation of Swedish Pharmacies
(Apoteket AB).

Model Analysis

Preliminary conclusions
ANNs represent a wide class of computational methods for
building flexible models, including linear regression, data
reduction models, and nonlinear dynamical systems. Models in
this paper make good predictions when checked against the
actual data from 2001 to 2003. The main result of this study is
that antibiotic usage and the incidences of PRP in the past do
not have a significant impact on the incidence of PRP. One of
the problems with the ANN topology used in this model is the
sigmoid function (definition interval from 0 to 1) in the last layer.
This means that the resulting predictions will vary in the range
from the minimum to the maximum number of PRP cases (in the
training data set), which is not very realistic. This problemmay be
solved by using a linear or inverse sigmoid function instead of the
sigmoid function. On the other hand, using a bounded transfer
function can lead to more conservative predictions. It would
be interesting to conduct a comparative analysis of simulation
results for the models of antibiotic resistance emergence obtained
at different transfer functions.

Discussion

Our objective was to identify and review models which looked at
the factors which affect and determine antibiotic resistance. After
a literature search to identify published models of this sort, we
undertook a critical review of different approaches and model
structures. The end purpose of this exercise is to increase our
knowledge in building a functioning model that makes it possible
to predict the development of resistance and control its dynamics.
To achieve this goal, first of all, we need to understand what
parameters should be included in the model. Also it seems most
appropriate to use not one but several models which describe
resistance, because the average forecast of several models can be
more accurate than forecast of only one. We investigated models
described above and now we offer our opinion as to which of
these models under which conditions should be used to build
your own predictive mathematical model of acquired resistance.
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Initially, after analyzing the two models in class 1 that are
similar in terms of mathematical approach [model 1 (Aldrin
et al., 2013), model 2 (Karlsson, 2011)], as well as assessing their
advantages and disadvantages, we made the following plan for
our research:

1. create a hybrid of both models: take into account all set of
confounders, check the model without trend, check all sets
of AB, check the model with logarithm as a link function and
without link function;

2. introduce the AB consumption as the proportion of patients
who received AB;

3. introduce the second step of validation (using test sets).

These goals highlight the importance of considering and
incorporating positive aspects of both models in the class to
build the most robust model. Class 1 models are defined by the
use of DDD as the variable indicating AB use and their great
advantage is the inclusion of the AB consumption parameter
through the volume or dose (DDD). In the process of using
actual consumption data we have to consider the uniformity of
consumption of drugs among patients, in order to avoid incorrect
parameter estimation.

Second, to apply model 3 of class 2 where AB usage is
introduced “by fraction,” it is required to make a number of
remarks (D’Agata et al., 2005). The most interesting for us
is to consider the dynamics of the total amount of patients
colonized by resistant type of strain, or changing the proportion
of patients (as a measure of resistance). AB consumption is not
included in the model as a key input parameter. The model does
not give an analytic representation of the dependence between
the number of drug-resistant strains and fractions of patients
receiving treatment. However, during the simulation modeling
by changing the proportion of patients receiving treatment, we
can track the dynamics in the resistant strains and construct a
graph of this dependence. The results obtained in this research
will allow us not only to test them on the basis of our data, but
also to compare the class 1 and class 2 models with each other.
If it appears that the segments of patients significantly influence
the change resistance, it is reasonable to build a new model
based on the class 1. However, the effect of AB is introduced not
through the dose, but is accounted for in the segments of patients
receiving treatment.

Model 4 has as a key component the number of drug-
resistant bacteria. In constructing our model we would want to
consider not the number of bacteria but the number of patients
diagnosed with the resistant strain, and to slightly change the
parameters of the model accordingly. This type of model will
be able to be validated using our data and if the conclusions
are quantitatively confirmed by our data, it will be useful to
incorporate key aspects of the model when developing our own.
However, it will be necessary to significantly modify the model,
for example, to exclude the part relating to the HCWs as well
as the self-contained aspect (patients do not enter or leave the
hospital).

Model 5 can be used to inform our model as it gives
information on the relative methods and benefits of considering
a within-host model or a between-host model, or what one
might describe as extrapolating from bacteria to patients. In that

perspective, the hospital is seen as the host and the patients
as bacteria. According to this new logic, we need to give new
definitions to the parameters. Suppose the growth rate of bacteria
λ is the change in patient dynamics; the division rate δ is the
rate of new patient admissions; the mortality rate µ refers to
the number of discharged (recovered) patients. This is also not
contrary to the main assumptions of the model, as recovery may
be related to the average dose of AB, though we suspect that
it would be better to describe this parameter separately, as it
was in the first article of this model class examined. One of the
distinctions between class 3 and class 1 (with DDD) is that in class
3 there is no influence of previous periods in the development of
resistance, i.e., it will be difficult to make a correct prediction for
the future situation. Class 3 is more complex because the models
in this class are based on biological processes that are difficult to
verify in practice.

We have identified two major decision points for building a

robust and pertinent model these two decisions are:

1. The dichotomy of mathematical and biological approaches.
2. The dichotomy of smoothing or not smoothing data.

The best example of biological approaches comes in class 3
models, which consider such biological mechanisms as mutation,
immunity, and horizontal gene transfer. Mathematical models
described in class 1 consider aspects of time series; moreover
class 1 models consider the influence of AB through the dose
(or consumption) parameter, with the length of treatment
assessed within this parameter. Class 3 introduces the influence
of AB separately through the killing rate, as a coefficient of
the mortality of bacteria caused by the action of AB, and
the length of treatment. Assessment of the killing rate of
AB seems to be difficult in the framework of our study,
so we are going to estimate this parameter in another way
(using AB dosage and time of recovery). However, in both
scenarios smoothing the dosage and consumption parameters
needs to be considered. As we understand things, consumption
is determined by two parameters: the dosage (mainly, DDD)
and the length of treatment, which may distribute unequally
amongst patients receiving a drug. It is necessary to understand
whether these parameters are important or they just make a
model noisy. Perhaps, if AB consumption is introduced into
model either through the percentage of patients receiving a
drug (as in class 2) or through the number of prescriptions
(model 7), the predictive ability of the model will be more
accurate. It will be possible to answer this question by creating
models with different approaches based on the same data.
Moreover, models of class 1 can also be considered from the
percentage (of prescriptions), not from the AB consumption. If
we verify two different approaches in one model, we will also
be able to understand whether smoothing these variables is a
beneficial step.

Conclusions and Plans

To conclude, we want to emphasize that the main advantage of
any new study over those discussed above is a consequence of
the breadth of information and knowledge garnered by reviewing
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each of the models since they all have positive aspects to them. As
a result, we will be able to verify these models using the same
set of data. This should allow us to build an optimal model, and
to extend the amount of independent models for the following
prognosis. Let us recall that suppose that the average (or the
weighted average) value of independent prognoses of the process
is always more preferable than only one prognosis.

Further work is planned as follows: modify and test these
models in accordance with our data and objectives, consider

the construction of a model using approaches (regressions,
differential equations, etc.) from one class and method of
introducing AB into a model from another class check all the
variety of models obtained on our data and select the model (or
several models) that best describes resistance dynamics (giving
the best quality of the forecast). This procedure will help us to
select the optimal approach or combination of approaches. Based
on the results obtained, we will build a robust and appropriate
model for resistance development.
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