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Abstract

A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr
1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes,
including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine,
pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including
genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask
whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated,
QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression,
haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression
datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p)
and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and
protein synthesis, including the expression of ,20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a
functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein
has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression
of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1,
composed of multiple loci modulating the expression of functionally cognate sets of genes.

Citation: Mozhui K, Ciobanu DC, Schikorski T, Wang X, Lu L, et al. (2008) Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates
Neurobehavioral Phenotypes and Gene Expression. PLoS Genet 4(11): e1000260. doi:10.1371/journal.pgen.1000260

Editor: Jonathan Flint, The Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom

Received May 27, 2008; Accepted October 14, 2008; Published November 14, 2008

Copyright: � 2008 Mozhui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by NIAAA INIA (grants U01AA13499, U24AA13513, and U01AA014425). GeneNetwork is supported by NIDA, NIMH and NIAAA
(grant P20-DA 21131), the NCRR BIRN (U01NR 105417), and the NCI MMHCC (U01CA105417).

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rwilliam@nb.utmem.edu

Introduction

The distal part of mouse Chr 1 harbors a large number of QTLs

that generate differences in behavior. Open field activity [1], fear

conditioning [2], rearing behavior [3], and several other measures

of emotionality [4,5] have been repeatedly mapped to distal Chr 1.

This region is also notable because it appears to influence responses

to a wide range of drugs including ethanol [6], caffeine [7],

pentobarbital [8], and haloperidol [9]. In addition to the behavioral

traits, a number of metabolic, physiological and immunological

phenotypes have been mapped to this region (table 1) [10–36]. This

QTL rich region on mouse distal Chr 1 exhibits reasonably

compelling functional and genetic concordance with the ortholo-

gous region on human Chr 1q21–q23. Prime examples of genes in

this region that have been associated with similar traits in mouse and

human are Rgs2 (anxiety in both species), Apoa2 (atherosclerosis),

and Kcnj10 (seizure susceptibility) [37–42].

Studies of gene expression in the central nervous system (CNS)

of mice have revealed major strain differences in the expression

level of numerous genes located on distal Chr 1, e.g., Copa, Atp1a2,

and Kcnj9 [26,43–45]. These differentially expressed genes are

strong candidates for the behavioral and neuropharmacological

traits that map to this region. We have recently shown that

sequence variants near each of these candidate genes are often

responsible for the prominent differences in expression [26,46,47].

In other words, sequence differences near genes such as Kcnj9

cause expression to differ, and variation in transcript level maps

back to the location of the source gene itself. Transcripts of this

type are associated with cis-QTLs.

These expression genetic studies have also uncovered another

unusual characteristic of mouse distal Chr 1. In addition to the

extensive cis-effects, a large number of transcripts of genes located

on other chromosomes map into this same short interval on distal

Chr 1 [47,48]. These types of QTLs are often referred to as trans-

QTLs. The clustering of trans-QTLs to distal Chr 1 has been

replicated in multiple crosses and CNS microarray datasets [47].

We refer to this region of Chr 1, extending from Fcgr3 (172.5 Mb)

to Rgs7 (177.5 Mb) as the QTL-rich region on Chr 1, or Qrr1. It is

possible that these modulatory effects on expression are the first

steps in a cascade of events that are ultimately responsible for

many of the prominent differences in behavior and neurophar-

macology. For example, Qrr1 modulates the expression of several

genes that have been implicated in seizure (e.g., Scn1b, Pnpo,

Cacna1g), and this may be a basis for the strong influence Qrr1 has

on seizure susceptibility [41].

In this study, we exploited 18 diverse array datasets derived

from different mouse crosses to systematically dissect the

expression QTLs in Qrr1. The strong trans effects are consistently
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detected in CNS tissues of C57BL/6J (B6)6DBA/2J (D2) and

B66C3H/HeJ (C3H) crosses, but are largely absent in ILS/Ibg

(ILS)6ISS/Ibg (ISS) and C57BL/6By (B6y)6BALB/cBy (BALB),

and in all non-neural tissues we have examined. We applied high-

resolution mapping and haplotype analysis of Qrr1 using a large

panel of BXD recombinant inbred (RI) strains that included highly

recombinant advanced intercross RI lines. Our analyses revealed

multiple distinct loci in Qrr1 that regulate gene expression

specifically in the CNS. The distal part of Qrr1 (Qrr1d) has a

strong effect on the expression of numerous genes involved in

RNA metabolism and protein synthesis, including more than half

of all aminoacyl-tRNA synthetases. Fmn2 and Rgs7, and a cluster

of tRNAs are the strongest candidates in Qrr1d.

Results

Enrichment in Classical QTLs
The Chr 1 interval, from 172–178 Mb, harbors 32 relatively

precisely mapped QTLs for classical traits such as alcohol

dependency, escape latency, and emotionality (Mouse Genome

Informatics at www.informatics.jax.org, Table 1). To compare the

enrichment of QTLs in Qrr1 with that in other regions, we counted

classical QTLs in 100 non-overlapping intervals covering almost the

entire autosomal genome (table S1). These intervals were selected to

contain the same number of genes as Qrr1. Numbers of QTLs

ranged from 0 to 23, and averaged at 9.1665.37 (SD). Compared to

these regions, Qrr1 had the highest QTL number, over 4 SD above

the mean, and over three times higher than average.

Enrichment in Expression QTLs in Neural Tissues
In this section, we summarize the number of expression

phenotypes that map to Qrr1 in different tissues and mouse

crosses. The results are based on the analysis of 18 array datasets

that provide estimates of global mRNA abundance in neural and

non-neural tissues from six different crosses. These crosses are—(i)

BXD RI and advanced intercross RI strains derived from B6 and

D2, (ii) CXB RI strains derived from B6y6BALB, (iii) LXS RI

strains derived from ILS and ISS, (iv) B66C3H F2 intercrosses,

and (v & vi) two separate B66D2 F2 intercrosses. These datasets

were generated by collaborative efforts over the last few years

[46,47,49–52] and some were generated more recently (e.g., the

Illumina datasets for BXD striatum and LXS hippocampus, and

BXD Hippocampus UMUTAffy Exon Array dataset). All datasets

can be accessed from GeneNetwork (www.genenetwork.org).

We mapped loci that modulate transcript levels and selected only

those transcripts that have peak QTLs in Qrr1 with a minimum

LOD score of 3. This corresponds to a generally lenient threshold

with genome-wide p-value of 0.1 to 0.05, but corresponds to a highly

significant pointwise p-value. Because we are mainly interested in

testing a short segment on Chr 1, a pointwise (region-wise) threshold

is more appropriate to select those transcripts that are likely to be

modulated by Qrr1. Qrr1 covers approximately 0.2% of the genome

and extends from Fcgr3 (more precisely, SNP rs8242852 at

172.887364 Mb using Mouse Genome Assembly NCBI m36,

UCSC Genome Browser mm8) through to Rgs7 (SNP rs4136041 at

177.273526 Mb). We defined this region on the basis of the large

number of transcripts that have maximal LOD scores associated

with markers between these SNPs.

Hundreds of transcripts map to Qrr1 with LOD scores $3 in

neural tissue datasets of BXD RI strains, B6D2F2 intercrosses, and

B6C3HF2 intercrosses (table 2). The QTL counts in Qrr1 are far

higher than the average of 15 to 35 expression QTLs in a typical

6 Mb interval. The fraction of QTLs in Qrr1 is as high as 14% of all

trans-QTLs, and 5% of all cis-QTLs in the whole genome (table 2).

The enrichment in trans-QTLs in Qrr1 is even more pronounced

when the QTL selection stringency is increased to a LOD threshold

of 4 (genome-wide p-value of approximately 0.01). For example, 27%

of all highly significant trans-QTLs in the BXD cerebellum dataset are

in Qrr1 (table 2). The BXD hippocampus dataset that was assayed on

the Affymetrix Exon ST array is an exception—there are over a

million probe sets in this array, and the percent enrichment of QTLs

in Qrr1 appears to be relatively low. Nevertheless, about 1000

transcripts map to Qrr1 in this exon dataset.

In contrast to the CNS datasets, relatively few transcripts map

to Qrr1 in non-neural tissues of the BXD strains and B6C3HF2

intercrosses. While the number of cis-QTLs is still relatively high

(1–3%), Qrr1 has limited or no trans-effect in these datasets (table 2).

Qrr1 does not have a strong trans-effect in the LXS and CXB

hippocampus datasets (table 2). This indicates that the sequence

variants underlying the trans-QTLs do not segregate to nearly the

same extent in the LXS and CXB RI panels as they do in B66D2

and B66C3H crosses. This contrast among crosses can be

exploited to parse Qrr1 into sub-regions and identify stronger

candidate genes.

Replication of trans-QTLs in Multiple Datasets
The trans-QTLs in Qrr1 are highly replicable. A large fraction of

the transcripts, in some cases represented by multiple probes or

probe sets, map to Qrr1 in multiple CNS datasets. For example,

there are 747 unique trans-QTLs with LOD scores greater than 4

(genome-wide p-value#0.01) in the BXD hippocampus dataset

(assayed on Affymetrix M430v2 arrays). Out of these highly

significant trans-QTLs, 155 are in Qrr1 and the remaining 592 are

distributed across the rest of the genome (figure 1). We compared

the trans-QTLs in the hippocampus dataset with a similar

collection of trans-QTLs (LOD$4) in the cerebellum dataset

(assayed on Affymetrix M430 arrays). Only 101 trans-QTLs in the

hippocampus are replicated in the cerebellum (for trans-QTLs that

were declared as common, the average distance between peak

QTL markers in the two datasets is 1.6 Mb). But it is remarkable

that of the subset of common trans-QTLs, 64 are in Qrr1 (figure 1).

The replication rate of trans-QTLs in Qrr1 is therefore about 6-fold

higher relative to the rest of the genome. When we compared the

BXD hippocampus dataset with the B6C3HF2 brain dataset

(assayed on Agilent arrays), we found 54 trans-QTLs common to

Author Summary

A major goal of genetics is to understand how variation in
DNA sequence gives rise to differences among individuals
that influence traits such as disease risk. This is challenging.
Most traits are the result of a complex interplay of genetic
and environmental factors. One of the first steps in the
path from DNA to these complex traits is the production of
mRNA molecules. Understanding how sequence differenc-
es modulate expression of different RNAs is fundamental
to understanding the molecular origins of complex traits.
Here, we combine classic gene mapping methods with
microarray technology to characterize and quantify RNA
levels in different crosses of mice. We focused on a hotspot
on chromosome 1 that controls the expression of a large
number of different types of RNAs in the brain. This
hotspot also controls many disease traits, including anxiety
levels, and vulnerability to seizure in mice and humans. We
show that this hotspot is made up of several distinct
functional regions, one of which has an unusually strong
and selective effect on aminoacyl-tRNA synthetases and
other genes involved in protein translation.

QTL Hotspot on Mouse Distal Chromosome 1
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both datasets (for the common trans-QTLs, the average distance

between peak markers in the two datasets is 2.7 Mb). Strikingly,

out of the 54 trans-QTLs common to both crosses, 52 are in Qrr1

(figure 1).

Among the transcripts with the most consistent trans-QTLs are

glycyl-tRNA synthetase (Gars), cysteinyl-tRNA synthetase (Cars),

asparaginyl-tRNA synthetase (Nars), isoleucyl tRNA synthetase

(Iars), asparagine synthetase (Asns), and activating transcription

factor 4 (Atf4). These transcripts map to Qrr1 in almost all datasets

in which the strong trans-effect is detected. Gars, Cars, and Nars are

aminoacyl-tRNA synthetases (ARS) that charge tRNAs with

amino acids during translation. Asns and Atf4 are also involved

in amino acid metabolism—Asns is required for asparagine

synthesis and is under the regulation of Atf4, which in turn is

sensitive to cellular amino acid levels [53]. Other transcripts that

consistently map as trans-QTLs to Qrr1 include brain expressed X-

linked 2 (Bex2), splicing factor Sfrs3, ribonucleoproteins Snrpc and

Snrpd1, ring finger protein 6 (Rnf6), and RAS oncogene family

member Rab2.

Candidates in Qrr1
Qrr1 contains 164 known genes. The proximal part of Qrr1 is

gene-rich and has several genes with high expression in the CNS

(e.g. Pea15, Kcnj9, Kcnj10, Atp1a2). The middle to distal part of Qrr1

is relatively gene sparse and consists mostly of clusters of olfactory

receptors and members of the interferon activated Ifi200 gene

family. Though comparatively gene sparse, the middle to distal

part of Qrr1 contains a small number of genes that have high

expression in the CNS—Igsf4b, Dfy, Fmn2, and Rgs7.

A subset of 35 genes were initially selected as high priority

candidates based on the number of known and inferred sequence

differences between the B6 allele (B) and D2 allele (D) and based

on expression levels in multiple CNS datasets (table 3). Eleven of

these candidates contain missense SNPs segregating in B66D2

Table 1. Classical QTLs on Chr 1 from 172–178 Mb; listed by approximate position from proximal to distal end (adapted from
Mouse Genome Informatics).

MGI ID Symbol Name Type Cross Reference

2389129 Bmd5 Bone mineral density 5 bone C3H/HeJ6C57BL/6J [10]

1349434 Bmd1 Bone mineral density 1 bone C57BL/6J6CAST/Ei [11]

3624655 Scgq1 Spontaneous crescentic glomerulonephritis QTL 1 kidney C57BL/6J6SCG/Kj [12]

2680094 Rrodp1 Rotarod performance 1 behavior 129S6/SvEvTac6C57BL/6J [13]

1891474 Tir3c Trypansomiasis infection response 3c immune A/JOlaHsd; BALB/cJOlaHsd; C57BL/6JOlaHsd [14]

2387316 Elnt Escape latencies during navigation task behavior C57BL/6J6DBA/2J [15]

1350920 Emo1 Emotionality 1 behavior BALB/cJ6C57BL/6J [5]

3050452 Alcdp1 Alcohol dependency 1 behavior C57BL/6J6DBA/2J [16]

1309452 Alcw1 Alcohol withdrawal 1 behavior C57BL/6J6DBA/2J [6]

2150827 Cafq1 Caffeine metabolism QTL 1 metabolism C3H/HeJ6APN [7]

1098770 Szs1 Seizure susceptibility 1 CNS C57BL/66DBA/2 [17]

2661242 Cd8mts1 CD8 T memory cell subset 1 immune BALB/c6C3H6C57BL/66DBA/2 [18]

3613641 Chlq1 Circulating hormone level QTL 1 endocrine BALB/cJ6C3H/HeJ6C57BL/6J6DBA/2J [19]

1345638 Pbw1 Pentobarbital withdrawal QTL 1 behavior C57BL/6J6DBA/2J [8]

2661145 Ssta2 Susceptibility to Salmonella typhimurium antigens 2 immune HIII6LIII [20]

3522039 Trglyd Triglycerides metabolism C57BL/6J6RR [21]

1346066 Gvhd1 Graft-versus-host disease 1 Immune B10.D2-H2d6C57BL/10J [22]

2155287 Radpf2 Radiation pulmonary fibrosis 2 Immune C3H/Kam6C57BL/6J [23]

2151854 Pbwm Pentobarbital withdrawal modifier behavior C57BL/6J6DBA/2J [24]

1890350 Ath9 Atherosclerosis 9 metabolism C57BL/6J6FVB/NCr [25]

2682357 Bslm4 Basal locomotor activity 4 behavior BALB/cJ6C57BL/6J; C57BL/6J6DBA/2J; C57BL/6J6LP/J [26]

1891174 Cbm1 Cerebellum weight 1 CNS C57BL/6J6DBA/2J [27]

2137602 Cq2 Cholesterol QTL 2 metabolism C57BL/6J6KK-Ay [28]

2680927 Eila1 Ethanol induced locomotor activity behavior C3H/HeJ6C57BL/6J [29]

2660561 Fglu2 Fasting glucose 2 metabolism C57BL/6J6KK-Ay [30]

2137474 Hpic2 Haloperidol induced catalepsy 2 behavior C57BL/6J6DBA/2J [9]

1890554 Melm2 Melanoma modifier 2 tumor BALB/cJ6C57BL/6J [31]

2684308 Mnotch Modifier of Notch 129X1/SvJ6C57BL/6J [32]

2149094 Sle9 Systematic lupus erythematosus susceptibility 9 immune BXSB/J6C57BL/10Ola [33]

3579342 Sphsr1 Spermatocyte heat stress resistance 1 other C57BL/6CrSlc6MRL/MpJSlc [34]

2148991 Yaa4 Y-linked autoimmune acceleration immune BXSB/J6C57BL/10Ola [35]

3613551 Bglu3 Blood glucose level 3 metabolism C3H/HeJ6C57BL/6J [36]

doi:10.1371/journal.pgen.1000260.t001
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crosses. We also scanned Qrr1 for variation in copy number

[54,55]. Graubert et al. [55] reported segmental duplication in

Qrr1 with a copy number gain in D2 compared to B6 near the

intelectin 1 (Itlna) gene at 173.352 Mb. We failed to detect any

expression signatures of a copy number variation around Itlna in

any of the GeneNetwork datasets. However, we did identify an

apparent 150 kb deletion across the Ifi200 gene cluster (175.584–

175.733 Mb). Affymetrix probe sets 1426906_at, 1452231_x_at,

Table 2. Expression QTLs in Qrr1 in different crosses and tissues.

Cross Na Dataset & Normalization Tissue Array LOD$3 LOD$4

transb cisb % transc % cisd % transc % cisd

B6D2F2 58 OHSU/VA (Sep05) PDNN Striatum Affymetrix M430v2 197 56 8 5 18 5

B6D2F2 56 OHSU/VA mRNA (Aug05) PDNN Whole brain Affymetrix M430 79 30 1 2 5 2

BXD 45 SJUT (Mar05) PDNN Cerebellum Affymetrix M430 439 44 9 2 27 2

BXD 69 Hippocampus Consortium (Dec05) PDNN Hippocampus Affymetrix M430v2 345 54 7 1 22 1

BXD 39 INIA (Jan06) PDNN Forebrain Affymetrix M430 279 39 5 1 13 1

BXD 64 Hamilton Eye Institute (Sep06) RMA Eye Affymetrix M430v2 156 43 2 1 2 1

BXD 54 HQF (Nov 07) RankInv Striatum Illumina M6.1 97 31 1 1 2 1

BXD 29 HBP/Rosen(Apr05) PDNN Striatum Affymetrix M430v2 94 25 2 1 6 1

BXD 63 UMUTAffy RMA (Mar08) Hippocampus Affymetrix Exon 1.0 ST 700 302 0.4 1 0.5 1

BXD 40 UNC (Jan06) BothSexes LOWESS Liver Agilent G4121A 9 20 0.3 1 0.7 1

BXD 53 Kidney Consortium (Aug06) PDNN Kidney Affymetrix M430v2 8 33 0.2 1 0 1

BXD 30 GNF (Mar03) MAS5 Hematopoietic Cells Affymetrix U74Av2 0 6 0 3 0 3

LXS 75 NIAAA INIA (May07) RankInv Hippocampus Illumina M6.1 10 28 0.4 1 1 1

B6C3F2 238 UCLA BHHBF2 (2005) mlratio Brain Agilent 516 51 14 3 23 2

B6C3F2 306 UCLA BHHBF2 (2005) mlratio Muscle Agilent 15 33 0.3 2 0.3 2

B6C3F2 298 UCLA BHHBF2 (2005) mlratio Liver Agilent 63 46 0.7 3 0.6 3

B6C3F2 282 UCLA BHHBF2 (2005) mlratio Adipose Agilent 56 34 0.5 3 0.4 3

CXB 13 Hippocampus Consortium (Dec05) PDNN Hippocampus Affymetrix M430v2 7 12 0.08 2 0.1 2

aNumber of RI strains or F2 mice.
bNumber of cis- and trans-QTLs in Qrr1 at minimum LOD of 3; complete list of these transcripts can be retrieved from www.genenetwork .org using search key ‘‘LRS = (15

500 Chr1 172 178)’’.
cPercent of trans-QTLs in Qrr1 = [(number of trans-QTLs in Qrr1)/(total number of trans-QTLs in the whole genome)6100].
dPercent of cis-QTLs in Qrr1 = [(number of cis-QTLs in Qrr1)/(total number of cis-QTLs in the whole genome)6100].
doi:10.1371/journal.pgen.1000260.t002

Figure 1. Highly replicable trans-QTLs in Qrr1. The charts illustrate the total number of trans-QTLs (LOD$4) in Qrr1 (shaded) and in other
regions of the genome (non-shaded) in three datasets—BXD cerebellum, BXD hippocampus, and B6C3H F2 brain. The smaller charts represent the
trans-QTLs in BXD hippocampus that are also detected in BXD cerebellum, and B6C3HF2 brain datasets. Out of the 101 trans-QTLs common to both
BXD hippocampus and cerebellum, 64 are in Qrr1 and the remaining 37 are located in other regions of the genome. The BXD hippocampus and
B6C3HF2 brain datasets have 54 common trans-QTLs, and almost all (52 out of 54) are in Qrr1.
doi:10.1371/journal.pgen.1000260.g001
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and 1452349_x_at detect Ifi204 and Mnda transcripts in B6 but

not in D2. The expression difference is robust enough to generate

cis-QTLs with very high LOD scores (.40). This gene cluster has

low expression in the CNS (Affymetrix declares this probe sets to

be ‘‘not present’’), but high expression in tissues such as

hematopoietic stem cells and kidney, in which the trans-effect of

Qrr1 is not detected. The Ifi200 gene cluster was therefore

excluded as a high priority candidate.

cis-QTLs in Qrr1
Transcripts of 26 of the 35 selected candidate genes map as cis-

QTLs (LOD$3) in the BXD CNS datasets (table 3). These

putatively cis-regulated genes are among the strongest candidates

in the QTL interval. The D allele in Qrr1 has the positive effect on

the expression of Sdhc, Ndufs2, Adamts4, Dedd, Pfdn2, Ltap, Pea15,

Atp1a2, Kcnj9, Kcnj10, Igsf4b, and Grem2. Increase in expression

caused by the D allele ranges from about 10% for Adamts4 to over

2-fold for Atp1a2. In contrast, the B allele has the positive effect on

the expression of Pcp4l1, Fcer1g, B4galt3, Ppox, Ufc1, Nit1, Usf1,

Copa, Pex19, Wdr42a, Igsf8, Dfy, Fmn2, and Rgs7. Increase in

expression caused by the B allele ranges from about 7% for Usf1 to

40% for Pex19.

Individual probes were screened to assess if the strong cis-effects

are due to hybridization artifacts caused by SNPs in probe targets.

Thirteen candidate genes with cis-QTLs were then selected for

further analysis and validation of cis-regulation by measuring allele

specific expression (ASE) difference [56]. This method exploits

transcribed SNPs, and uses single base extension to assess

expression difference in F1 hybrids. By means of ASE, we

validated the cis-regulation of 10 candidate genes—Ndufs2, Nit1,

Pfdn2, Usf1, Copa, Atp1a2, Kcnj9, Kcnj10, Dfy, and Fmn2 (table 4).

Adamts4 and Igsf4b failed to show significant allelic expression

difference. In the case of Ufc1, the polarity of the allele effect failed

to agree with the ASE result (D positive at p-value = 0.02).

High-Resolution cis-QTL Mapping
The BXD CNS datasets were generated from a combined panel

of conventional RI strains and advanced RI strains that were

derived by inbreeding advanced intercross progeny. The advanced

RIs have approximately twice as many recombinations compared

to standard RIs and the merged panel offers over a 3-fold increase

in mapping resolution [57]. This expanded RI set combined with

the relatively high intrinsic recombination rate within Qrr1 [58]

provides comparatively high mapping resolution. Mapping

precision can be empirically determined by analyzing cis-QTLs

in multiple large datasets, particularly the BXD Hippocampus

Consortium, UMUTAffy Hippocampus, and Hamilton Eye

datasets. These three datasets were selected because they have

expression measurements from six BXD strains with recombina-

tions in Qrr1. These strains—BXD8, BXD29, BXD62, BXD64,

BXD68, and BXD84—collectively provide six sets of informative

markers and divide Qrr1 into six non-recombinant segments,

labeled as segments 1–6 (haplotype structures shown in figure 2).

As cis-acting regulatory elements are usually located within a

few kilobases of a gene’s coding sequence [59], we used the cis-

QTLs as an internal metric of mapping precision by measuring the

offset distance between a cis-QTL (position of peak QTL marker)

and the parent gene (figure 3). For cis-QTLs with LOD scores

between 3–4 (genome-wide p-value of 0.1–0.01) the mean gene-to-

QTL peak distance is 900 kb. The offset decreases to a mean of

640 kb for cis-QTLs with LOD scores greater than 4 (p-

value,0.001). Very strong cis-QTLs with LOD scores greater

than 11 (p-value,1026) have a mean gene-to-QTL peak distance

of only 450 kb. In all, 60% of cis-QTLs we examined have peak

linkage on markers located precisely in the same non-recombinant

segment as the parent gene, and 30% have peak linkage on

markers in a segment adjacent to the parent gene (dataset S1).

These cis-QTLs provide an empirical metric of mapping precision

within Qrr1.

Parsing trans-QTLs by High-Resolution Mapping and
Gene Functions

Mapping precision of cis-QTLs is comparatively higher in the

BXD hippocampus dataset (average offset of only 410 kb), and we

used this set to examine the trans-QTLs (LOD$3) at higher

resolution. The trans-QTLs in Qrr1 were parsed into subgroups

Table 3. Candidate genes in Qrr1.

Gene Mb nsSNPa Expb BXDc B6C3HF2c CXBc LXSc

Fcgr3 172.981 2 8.2 cis

Sdhc 173.059 2 12.3 cis cis

Pcp4l1 173.103 8.7 cis cis

Tomm40l 173.148 9.67 cis cis

Apoa2 173.155 7.2 cis cis cis

Fcer1g 173.160 8.5 cis cis

Ndufs2 173.165 2 13.6 cis

Adamts4 173.181 1 8.1 cis cis cis cis

B4galt3 173.201 9.5 cis

Ppox 173.207 7.8 cis cis cis

Usp21 173.212 9.0 cis

Ufc1 173.219 10.8 cis cis cis cis

Dedd 173.260 9.7 cis

Nit1 173.272 1 9.8 cis cis cis cis

Pfdn2 173.276 12.8 cis cis cis

Arhgap30 173.319 4 7.6

Usf1 173.342 7.5 cis cis cis

Refbp2 173.434 2 9.7 cis cis

Vangl2 173.935 7.6 cis cis cis cis

Ncstn 173.996 8.5 cis cis

Copa 174.013 1 12.7 cis cis cis

Pex19 174.057 1 9.9 cis cis cis

Wdr42a 174.078 10.3 cis cis

Pea15 174.127 14.1 cis

Atp1a2 174.202 15.4 cis cis cis cis

Igsf8 174.243 12.1 cis

Kcnj9 174.251 9.1 cis cis cis cis

Kcnj10 174.271 1 11.2 cis cis cis

Tagln2 174.430 8.8

Dusp23 174.561 7.4 cis

Dfy 175.262 10.3 cis cis cis

Igsf4b 175.264 10.6 cis

Fmn2 176.419 3 10.4 cis cis cis

Grem2 176.764 8.2 cis

Rgs7 176.989 11.5 cis cis

aNumber of missense mutations between B and D alleles.
bMean expression signal of probe sets in BXD Hippocampus PDNN dataset;

below 7 is considered to be below background.
cCis-QTLs in BXD, B6C3HF2, CXB, and LXS crosses.
doi:10.1371/journal.pgen.1000260.t003
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based on the location of peak LOD score markers (figure 4). This

method of resolving trans-QTLs effectively grouped subsets of

transcripts into functionally related cohorts. For instance, all the

QTLs for the aminoacyl-tRNA synthetases (ARS) have peak LOD

scores only within the distal three segments of Qrr1 (figure 5). This

consistency in QTL peaks for transcripts of the same gene family is

itself a good indicator of mapping precision. In addition to the

ARS, numerous other genes involved in amino acid metabolism

and translation map to the distal part of Qrr1 (e.g., Atf4, Asns,

Eif4g2, and Pum2).

We divided the trans-QTLs into two broad subgroups—those

with peak QTLs on markers in the proximal part of Qrr1 (Qrr1p;

172–174.5 Mb or segments 1, 2, 3 in figure 2), and those with peak

QTLs on markers in the distal part of Qrr1 (Qrr1d; 174.5–

177.5 Mb or segments 4, 5, and 6 in figure 2). While Qrr1p is

relatively gene-rich, only 35% of the trans-QTLs (129 out of 365

probe sets) have peak LOD scores in this region. The majority of

trans-QTLs—about 65% (236 out of 365 probe sets)—have peak

QTLs in the relatively gene-sparse Qrr1d.

The two subsets of transcripts—those with trans-QTLs in Qrr1p

and those with trans-QTLs in Qrr1d—were analyzed for overrep-

resented gene functions using the DAVID functional annotation

tool (http://david.abcc.ncifcrf.gov/). This revealed distinct gene

ontology (GO) categories enriched in the two subsets (dataset S2).

Enriched GOs among the transcripts modulated by Qrr1p include

GTPase-mediate signal transduction (modified Fisher’s exact test

Table 4. Validation of cis-QTLs by measuring allele specific expression difference.

Gene ProbeSet ID SNP ID Cis-LOD Add. effect (QTL)a High allele (ASE) P-value

Ndufs2 1451096_at rs8245216 12 0.172 D 2.461025

Adamts4 1455965_at rs31537832 25 20.376 0.2

Ufc1 1416327_at rs13470410 21 20.262 D 0.02

Nit1 1417468_at rs31552469 15 20.154 B 0.01

Pfdn2 1421950_at rs31549998 5 0.174 D 4.161027

Usf1 1426164_a_at rs31542370 5 20.166 B 0.004

Copa 1415706_at rs13461812 9 20.148 B 3.961025

Atp1a2 1455136_at rs31570902 49 1.186 D 0.02

Kcnj9 1450712_at rs31569118 19 0.511 D 0.01

Kcnj10 1419601_at rs30789204 28 0.349 D 0.003

Dfy 1432273_a_at rs31616337 24 20.337 B 0.006

Igsf4b 1418921_at rs31613626 7 0.171 0.3

Fmn2 1450063_at rs33800912 17 20.286 B 5.561026

aAdditive effect is computed as [(mean expression in DD homozygote)2(mean expression in BB homozygote)]/2 on a log2 scale. Positive value means D high expression,
and negative value means B high expression.

doi:10.1371/journal.pgen.1000260.t004

Figure 2. Haplotype maps of Qrr1 recombinant BXD strains. BXD8, BXD29, BXD62, BXD64, BXD68, and BXD84 have recombinations in Qrr1. B
haplotype is assigned blue (2), D haplotype is assigned pink (+), and recombination regions are shown in grey. The Qrr1 interval (in Mb scale) is
shown above and approximate positions of recombination are highlighted (red). The recombinant strains collectively divide Qrr1 into six segments
(labeled 1–6), and provide six sets of informative markers. Markers are shown below and approximate positions of candidate genes (yellow bars) and
tRNA clusters (orange triangles) are indicated.
doi:10.1371/journal.pgen.1000260.g002
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p = 0.001), and structural constituents of ribosomes (p = 0.003).

Transcripts modulated by Qrr1d are highly enriched in genes

involved in RNA metabolism (p = 461027), tRNA aminoacylation

(p = 161025) and translation (p = 261025), RNA transport

(p = 0.003), cell cycle (p = 0.004), and ubiquitin mediated protein

catabolism (p = 0.006). Other GO categories show enrichment in

both Qrr1p and Qrr1d. For example, genes involved in RNA

metabolism and ubiquitin-mediated protein catabolism are also

overrepresented among the transcripts modulated by Qrr1p

(p = 0.002 for RNA metabolism and p = 0.005 for ubiquitin-

protein ligases). This may either be due to limitations in QTL

resolution, or due to multiple loci in Qrr1p and Qrr1d controlling

these subsets of transcripts.

An Aminoacyl-tRNA Synthetase trans-QTL in Distal Qrr1
A remarkable number of transcripts of the ARS gene family

map to Qrr1. A total of 16 ARS transcripts have trans-QTLs at a

minimum LOD score of 3 in one or multiple BXD, B6D2F2, and

B6C3H CNS datasets (table 5). In almost all cases, QTLs peak on

markers on the distal part of Qrr1. Except for Hars, the B allele in

Qrr1 consistently increases expression by 10% to 30%. In the case

of Hars, the D allele has the positive additive effect and increases

expression by about 10%.

We examined all probes or probe sets that target ARS and

ARS-like genes in the B66D2 CNS datasets. The Affymetrix

platform measures the expression of 34 ARS and ARS-like genes;

24 of these map to Qrr1 at LOD scores ranging from a low of 2 to a

high of 12. Even in the case of the suggestive trans-QTLs (i.e.,

LOD values between 2 and 3), the B allele in Qrr1 has the positive

effect on expression. The ARS family is also highly represented

among trans-QTLs in the B6C3HF2 brain dataset. Thirty-seven

probes in this dataset target the tRNA synthetases, eleven of these

have trans-QTLs in Qrr1d (LOD scores ranging from 2 to 20), and

almost all have a B positive additive effect (exceptions are Hars and

Qars). The co-localization of trans-QTLs to Qrr1d, the general

consensus in parental allele effect, and their common biological

function indicate that there is a single QTL in the distal part of

Qrr1 modulating the expression of the ARS. It is crucial to note

that this genetic modulation is only detected in CNS tissues.

In the LXS hippocampus dataset, Qrr1 has only a limited trans-

effect on gene expression. Despite the weak effect, expression of

Dars2 (probe ID ILM580427) maps to the distal part of Qrr1 at a

LOD of 3. Although this is only a weak detection of the ARS QTL

in the LXS dataset, it nonetheless demonstrates the strong

regulatory effect of Qrr1 on the expression of this gene family. In

the case of the CXB hippocampus dataset, not a single trans-QTL

for the ARS is detected in Qrr1.

trans-QTLs for Transcripts Localized in Neuronal
Processes

In addition to the high overrepresentation of transcripts

involved in translation and RNA metabolism, several transcripts

known to be transported to neuronal processes or involved in

RNA transport also map to Qrr1d, including Camk2a, Bdnf, Cdc42,

Eif4e, Eif4g2, Hnrpab, Ppp1cc, Pabpc1, Eif5, Kpnb1, Rhoip3, Stau2, and

Pum2 [60–63]. An interesting example is provided by the brain

derived neurotrophic factor (Bdnf). Two alternative forms of Bdnf

mRNA are known—one isoform has a long 39 UTR and is

specifically transported into the dendrites; the other isoform has a

short 39 UTR and remains primarily in the somatic cytosol [64].

The Affymetrix M430 arrays contain two different probe sets that

target these Bdnf isoforms. Probe set 1422169_a_at targets the

distal 39 UTR and is essentially specific for the dendritic isoform,

and probe set 1422168_a_at targets a coding sequence common to

both isoforms. Although both probe sets detect high expression

signal in the hippocampus, only the dendritic isoform maps as a

trans-QTL to Qrr1d. This enrichment in transcripts that are

transported to neuronal processes raises the possibility that this

CNS specific trans-effect may be related to local protein synthesis.

tRNAs in Qrr1
Prompted by the many ARS transcripts that consistently map to

Qrr1d, we searched the genomic tRNA database [65] for tRNAs in

this region. Interestingly, distal Chr 1 is one of many tRNA

hotspots in the mouse genome and several predicted tRNAs are

clustered in the non-coding regions of Qrr1 (figure 2). The majority

of these tRNA sequences are in the proximal end of Qrr1, over

2 Mb away from Qrr1d. We scanned the intergenic non-coding

regions in Qrr1d for tRNAs using the tRNAscan-SE software [65]

and uncovered tRNAs for arginine and serine, and three pseudo-

tRNA sequences between genes Igsf4b and Aim2 (175.204–

175.257 Mb) in Qrr1d (dataset S3). Transfer RNAs are involved

in regulating transcription of the ARS in response to cellular

amino acid levels [66] and are functionally highly relevant

candidates in Qrr1d. Polymorphism in the tRNA clusters (e.g.,

possible copy number variants, differences in tRNA species) may

have significant impact on the expression of the ARS.

Sequence Analysis of Crosses
Trans-regulation of large number of transcripts by Qrr1 is a

strong feature of crosses between B6 and D2—both the BXD RI

Figure 3. QTL mapping precision in Qrr1. Mapping precision was
empirically determined by measuring the distance between a cis-QTL
peak and location of parent gene. Cis-QTLs in BXD Hippocampus
Consortium, UMUTAffy Hippocampus, and Hamilton Eye datasets were
used for this purpose. Mean gene-to-QTL peak distance (y-axis) was
plotted as a function of LOD score (LOD score range on x-axis). Number
of probe sets in each LOD range is shown. Mapping precision increases
with increase in LOD score. The mean offset for cis-QTLs with LOD
scores 3–4 (genome-wide adjusted p-value of 0.1–0.01) is 900 kb, and
the offset decreases to 650 kb at 4–5 LOD scores (p-value of 0.01–
0.001). Cis-QTLs with LOD scores greater than 11 (p-value,1026) have
mean offset of only 450 kb.
doi:10.1371/journal.pgen.1000260.g003
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set and B6D2F2 intercrosses—and in the B6 and C3H

intercrosses. The feature is much weaker in the large LXS RI

set and in the small CXB panel. The effect specificity demonstrates

that a major source of the Qrr1 signal is generated by variations

between B and D, and B and C3H alleles (H) but not by variations

between the ILS and ISS alleles (L and S, respectively), and B and

BALB alleles (C). This contrast can be exploited to identify sub-

regions that underlie the trans-QTLs [67].

SNPs were counted for all four pairs of parental haplotypes—B

vs D, B vs H, B vs C, and L vs S—and SNP profiles for the four

crosses were compared (figure 6). Qrr1 is a highly polymorphic

interval in the B66D2 crosses. The flanking regions, however,

have few SNPs (170–172.25 Mb proximally, and 177.5–179.5 Mb

distally) and are almost identical-by-descent between B6 and D2.

The B66BALB crosses, despite being negative for the trans-effect,

have moderate to high SNP counts in Qrr1 and share a SNP profile

somewhat similar to B66D2 crosses. The B66C3H crosses also

have moderate to high SNP counts in Qrr1, with a relatively higher

SNP count in Qrr1d compared to Qrr1p. In contrast, in the LXS,

Qrr1p is more SNP-rich than Qrr1d. Most notably, the segments

that harbor the tRNAs and candidates Fmn2, Grem2, and Rgs7 are

almost identical by descent between ILS and ISS. This SNP

Figure 4. Segregation of trans-QTLs in Qrr1. Expression of Atp5j2, Cplx2, and Nars are modulated by trans-QTLs in Qrr1 (blue plot). D allele has
the positive additive effect (green plot; allele effect scale shown on the right) on the expression of Atp5j2 and Cplx2; peak LOD scores are on markers
near candidate genes Ndufs2 and Kcnj10. B allele has the positive additive effect (red plot) on the expression of Nars; peak LOD score is on markers
near candidate gene Fmn2. The horizontal lines indicate the genome-wide significant thresholds (p-value = 0.05). Yellow seismograph tracks the SNP
density between B and D alleles. Affymetrix probe set ID for each transcript in the BXD hippocampus dataset is shown.
doi:10.1371/journal.pgen.1000260.g004
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comparison indicates that the strongest trans-effect is from Qrr1d. A

possible reason why the trans-effect is not detected in the CXB RI

strains, despite being SNP rich in Qrr1, is that the crucial SNPs

underlying the trans-QTLs may not be segregating in this cross or

that undetected copy number variants make important contribu-

tions to the Qrr1 effects. A final explanation may be that the small

CXB dataset (13 strains) is simply underpowered.

High-Ranking Candidates Based on Cross Specificity of
cis-QTLs

We used the specificity of cis-QTLs in the multiple crosses to

identify higher priority candidates in Qrr1. The assumption is that

candidate genes whose transcripts have cis-QTLs (LOD score

above 3) in the B66D2 and B66C3H crosses but not in the LXS

and CXB RI strains are stronger candidates for trans-QTLs that

are detected in the former two crosses but not in the latter two

crosses. In contrast, cis-QTLs with the inverse cross specificity are

less likely to underlie these trans-QTLs. Based on this criterion,

there are four high-ranking candidates in Qrr1p—Purkinje cell

protein 4-like 1 (Pcp4l1), prefoldin (Pfdn2), WD repeat domain 42 a

(Wdr42a), and Kcnj10 (table 3). There are only two high-ranking

candidates in Qrr1d—formin 2 (Fmn2), an actin binding protein

involved in cytoskeletal organization, and regulator of G-protein

signaling 7 (Rgs7) (table 3).

Figure 5. QTL for aminoacyl-tRNA synthetases in distal Qrr1. Transcripts of Gars, Cars, Nars, Mars, and Yars map as trans-QTLs to Qrr1 at
LOD.4 (genome-wide p-value,0.01) in the BXD hippocampus dataset. The trans-QTLs have peak LOD precisely on markers in distal part of Qrr1,
,175–177.5 Mb (shaded regions). Yellow seismograph on Chr 1 (x-axis) tracks SNP density between B and D alleles. Affymetrix probe set ID for each
transcript is shown.
doi:10.1371/journal.pgen.1000260.g005

Table 5. Transcripts of aminoacyl tRNA synthetases that have trans-QTLs in Qrr1 (LOD$3) in one or multiple CNS datasets.

Gene Name ProbeIDa Chrb Datasetc LODd B/De

Nars asparaginyl-tRS 1452866_at_A Chr 18 BXD cerebellum 12.0 B

Gars glycyl-tRS 1423784_at Chr 6 BXD hippocampus 10.6 B

Rars arginyl-tRS 1416312_at_A Chr 11 BXD forebrain 8.9 B

Cars cysteinyl-tRS 10024406001 Chr 7 B6C3HF2 brain 8.9 B

Yars tyrosyl-tRS 10024399842 Chr 4 B6C3HF2 brain 8.0 B

Iars isoleucine-tRS 1426705_s_at Chr 13 BXD cerebellum 7.8 B

Sars seryl-tRS 1426257_a_at Chr 3 BXD cerebellum 6.9 B

Mars methionine-tRS 1455951_at Chr 10 BXD hippocampus 6.5 B

Hars histidyl-tRS 1438510_a_at Chr 18 BXD hippocampus 5.2 D

Iars2 isoleucine-tRS 1426735_at Chr 1 BXD hippocampus 4.3 B

Tars threonyl-tRS 10024395655 Chr 15 B6C3HF2 brain 4.0 B

Aars alanyl-tRS 1451083_s_at Chr 8 BXD eye 3.9 B

Lars leucyl-tRS 1448403_at_A Chr 18 BXD cerebellum 3.7 B

Ears2 glutmyl-tRS ILM5290446 Chr 7 BXD ILM striatum 3.7 B

Aarsd1 alanyl-tRS domain 1 1424006_at Chr 11 B6D2F2 brain 3.5 B

Dars aspartyl-tRS 1423800_at_A Chr 1 BXD cerebellum 3.2 B

aProbe/Probe set ID.
bPhysical location of gene; Iars2 is located on Chr 1 at 186.9 Mb, and Dars on Chr 1 at 130 Mb.
cDataset in which transcript has highest trans-QTL in Qrr1.
dHighest LOD score in Qrr1.
eAllele that increases expression.
doi:10.1371/journal.pgen.1000260.t005
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Both Fmn2 and Rgs7 are almost exclusively expressed in the

CNS and are high priority candidates for the CNS specific trans-

QTLs. A point of distinction between the two candidates is that

while expression of Rgs7 maps as a cis-QTL only in the B66D2

and B66C3H crosses, expression of Fmn2 maps as a cis-QTL in

B66D2 and B66C3H crosses, and in the CXB RI strains in which

the trans-effect is not detected (table 3). Based on the pattern of

specificity of cis-QTLs in multiple crosses, Rgs7 is a more appealing

candidate. However, Fmn2 has known missense SNPs that

segregate in the B66D2 (Glu610Asp, Pro1077Leu, Asp1431Glu)

and B66C3H crosses (Val372Ala). There are no known missense

mutations in Fmn2 in the CXB and LXS RI strains, and no known

missense mutation in Rgs7 in any of the four crosses.

Partial Correlation Analysis
Linkage disequilibrium (LD) is a major confounding factor that

limits fine-scale discrimination among physically linked candidates

in a QTL. To further evaluate the two high-priority candidates in

Figure 6. SNP comparison between crosses. SNPs in Qrr1 were counted for (A) C57BL/6J (B6)6DBA/2J (D2), (B) B66BALB/cBy (BALB), (C)
B66C3H/HeJ (C3H), and (D) ILS6ISS. The SNP distribution profiles were generated by plotting the number of SNPs in 250 kb bins. Vertical red lines
mark the approximate positions of recombination (corresponds to figure 2). Region covered by Qrr1p (horizontal line), candidate genes in Qrr1d
(yellow bars), and position of tRNA clusters (triangles) are shown above the graphs. The B66D2, B66BALB, and B66C3H crosses have moderate to
high SNP counts throughout Qrr1. In the ILSxISS cross, Qrr1p is relatively SNP-rich but Qrr1d is SNP-sparse.
doi:10.1371/journal.pgen.1000260.g006
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Qrr1d—Fmn2 and Rgs7—we implemented a partial correlation

analysis [68] in which the effect of genotype at Qrr1d was

controlled. For this analysis, we computed the partial correlation

coefficient between cis-regulated transcripts and each trans-

regulated transcript after regression against the Qrr1d genotype.

This partial correlation reveals residual variance that links cis

candidates with trans targets, independent of genetic variance at

Qrr1d. We computed the partial correlation between Rgs7 and

Fmn2, and 14 transcripts representative of the different GOs that

map to Qrr1d (dataset S4). The highest partial correlations are

between Fmn2 and Rnf6 (r = 0.68, p-value,10213), Atf4 (r = 0.6, p-

value,1029), Asns (r = 0.55, p-value,1027), Ube2d3 (r = 0.5, p-

value,1026), Hnrpk (r = 0.5, p-value = 1025), Rab2 (r = 20.5, p-

value = 1025), and Gars (r = 0.5, p-value = 1025). The strongest

correlate of Fmn2 is Rnf6, a gene involved in regulating actin

dynamics in axonal growth cones [69]. Although not unequivocal,

this analysis provides stronger support for Fmn2 than for Rgs7.

Effect of Fmn2 Deletion on Gene Expression
Fmn2 is almost exclusively expressed in the nervous system [70]

and is a strong candidate for a trans-effect specific to neural tissues.

However, its precise function in the brain has not been established.

Fmn2-null mice do not have notable CNS abnormalities [71], but to

evaluate a possible role of Fmn2 on expression of genes that map to

Qrr1d, we generated array data from brains of Fmn2-null (Fmn22/2)

and coisogenic (Fmn2+/+) 129/SvEv controls. At a stringent

statistical threshold (Bonferroni corrected p,0.05), only eight genes

have significant expression differences between Fmn22/2 and

Fmn2+/+ genotypes (table 6). Five out of the eight genes, including

Pou6f1, Usp53, and Slc11a, have trans-QTLs in Qrr1d. Deletion of

Fmn2 had the most drastic effect on the expression of the

transcription factor gene Pou6f1, a gene implicated in CNS

development and regulation of brain-specific gene expression

[72,73]. Expression of Pou6f1 maps as a trans-QTL (at LOD score

of 3) to Qrr1d in the hippocampus dataset, and its expression was

down-regulated more than 44-fold in the Fmn22/2 line. While the

expression analysis of Fmn2-null mice does not definitively link all

the trans-QTLs to Fmn2, variation in this gene is likely to underlie

some of the trans-QTLs in Qrr1d. The possible compensatory

mechanism in the Fmn2-null CNS, and the different genetic

background of the mice (129/SvEv) are factors that may have

contributed to the weak detection of trans-effects in the knockout

line.

Sub-Cellular Localization of FMN2 Protein in
Hippocampal Neurons

We examined the intracellular distribution of FMN2 protein in

neurons using immunocytochemical techniques. All hippocampal

pyramidal neurons on a culture dish exhibited distinct and fine

granular immunoreactivity for FMN2. The cell body itself had the

strongest signal (figure 7A). This fine punctate labeling extended

into proximal dendrites and could be followed into distal

dendrites. In some instances very thin processes, possibly the

axons, were also labeled.

Linking Expression and Classical QTLs: Szs1
The strong trans-effect that Qrr1 has on gene expression is a likely

basis for the classical QTLs that map to this region. For example, the

major seizure susceptibility QTL (Szs1) has been precisely narrowed

to Qrr1p [74]. We found that 10 genes already known to be associated

with seizure or epilepsy have trans-QTLs with peak LOD scores near

Szs1 and in Qrr1p. These include Scn1b, Cacna1g, Pnpo, and Dapk1

(Table S2) [75–84]. In every case, the D allele has the positive additive

effect on the expression of these seizure related transcripts, increasing

expression 5% to 20%. The two potassium channel genes, Kcnj9 and

Kcnj10, are the primary candidates [74]. Both are strongly cis-

regulated. The tight linkage between these genes (within 100 kb)

limits further genetic dissection, but in situ expression data from the

Allen Brain Atlas (ABA, www.brain-map.org) provides us with a

powerful complementary approach to evaluate these candidates [85].

Kcnj9 (figure 8A) is expressed most heavily in neurons within the

dentate gyrus, whereas Kcnj10 (figure 8B) is expressed diffusely in glial

cells in all parts of the CNS. The seizure-related transcripts with trans-

QTLs near Szs1 are most highly expressed in neurons, and all have

comparatively high expression in the hippocampus. Furthermore,

expression patterns of six of the seizure transcripts that map to Qrr1p

show spatial correlations with Kcnj9. Dapk1 and Cacna1g (figure 8C)

have expression pattern that match Kcnj9 with strong labeling in the

dentate gyrus and CA1, and weaker labeling in CA2 and CA3. In

contrast, Socs2 (figure 8D), Adora1, Pnpo, and Kcnma1 complement the

expression of Kcnj9 with comparatively strong expression in CA2 and

CA3, and weak expression in CA1 and dentate gyrus.

Table 6. Genes that have significant expression difference between Fmn2+/+ and Fmn22/2.

Gene ProbeIDa Chrb Fmn2+/+c Fmn22/2c Foldd pe LODf Datasetf

Pou6f1 ILM6200168 15 11.96 6.48 45 361026 3.0 BXD Hippocampus

Zfp420 ILM2570632 7 10.12 7.70 5 0.002

Txnl1 ILM2850148 18 10.72 6.70 16 0.002 3.0 B6D2F2 striatum

Usp53 ILM103190068 3 7.17 9.32 4 0.009 3.3 BXD Hippocampus

LOC331139 ILM103170273 4 14.45 10.59 15 0.01

Slc11a2 ILM104050242 15 9.92 9.17 2 0.02 3.9 BXD Hippocampus

Pgbd5 ILM103940435 8 13.40 12.12 2 0.02 3.3 BXD HBP Striatum

6330569M22Rik ILM104570300 3 6.42 10.63 18 0.03

aIllumina probe ID.
bPhysical location of gene.
cAverage expression signal in Fmn2-null and wild-type lines.
dFold difference in expression between Fmn2-null and wild-type lines
eBonferroni adjusted p-values; corrected for 46,620 tests.
fHighest LOD in Qrr1 and dataset in which transcript has highest LOD in Qrr1.
doi:10.1371/journal.pgen.1000260.t006
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Discussion

Qrr1 is a complex regulatory region that modulates expression of

many genes and classical phenotypes. By exploiting a variety of

microarray datasets and by applying a combination of high-

resolution mapping, sequence analysis, and multiple cross analysis,

we have dissected Qrr1 into segments that are primarily responsible

for variation in the expression of functionally coherent sets of

transcripts. The distal portion of Qrr1 (Qrr1d) has a strong trans-

effect on RNA metabolism, translation, tRNA aminoacylation,

and transcripts that are transported into neuronal dendrites. Fmn2,

Rgs7, and a cluster of tRNAs are strong candidates in Qrr1d. We

analyzed gene expression changes in the CNS of Fmn2-null mice

and detected a profound effect on the expression of a small

number of transcripts that map to Qrr1d, particularly on the

expression of the transcription factor Pou6f1. We have shown that

the FMN2 protein is highly expressed in the cell body and

processes of neurons, and is a high priority candidate in Qrr1d.

Kcnj9 vs. Kcnj10 and Seizure Susceptibility
The two inwardly rectifying potassium channel genes—Kcnj9

and Kcnj10—are strong candidates for the seizure susceptibility

QTL in Qrr1p that has been unambiguously narrowed to the short

interval from Atp1a2 to Kcnj10 [74]. In BXD CNS datasets, Qrr1

also modulates the expression of a set of genes implicated in the

etiology of seizure and epilepsy, including Pnpo, Scn1b, Kcnma1,

Socs2, and Cacna1g. Polymorphisms in the Kcnj9/Kcnj10 interval

that influence expression of these genes are excellent candidates

for the Szs1 locus.

The in situ expression data in the ABA shows a striking spatial

correlation between expression of Kcnj9 and other seizure-related

transcripts that have trans-QTLs in Qrr1p. The complementary

expression of Kcnj9 and the seizure-related transcripts (figure 8)

make Kcnj9 a stronger candidate than Kcnj10. Kcnj9 has over a 2-

fold higher expression in D2 [our data, and cf. 26,86], a seizure

prone strain, compared to B6, a relatively seizure resistant strain,

suggesting that the proximal cause of Szs1 may be high expression

of this gene, perhaps due to the promoter polymorphism

discovered by Hitzemann and colleagues [26].

Multiple Loci in a Major QTL Interval
Fine mapping of complex traits have often yielded multiple

constituent loci within a QTL interval [87,88]. Our mapping

analyses of expression traits also show that multiple gene variants,

rather than one master regulatory gene, cause the aggregation of

expression QTLs in Qrr1. Subgroups of genes with tight

coexpression can be dissected from the dense cluster of QTLs.

Most notable is the strong trans-regulatory effect of Qrr1d on genes

involved in amino acid metabolism and translation, including a

host of ARS transcripts. However, there are limits to our ability to

dissect Qrr1, and genes associated with protein degradation and

RNA metabolism map throughout the region. In part this may be

due to inadequate mapping resolution, but it may also reflect

Figure 7. Expression of FMN2 protein in hippocampal neurons. (A) Neurons exhibited pronounced fine granular immunoreactivity for FMN2.
The cell body had the strongest signal. The fine granular staining extended into apical and distal dendrites (arrows). Thin axon-like processes were
also labeled (arrow head). (B) The fine granular staining is not detected in controls of sister cultures processed in parallel without the first antibody.
doi:10.1371/journal.pgen.1000260.g007

Figure 8. Expression patterns of seizure related genes with cis-
and trans-QTLs in Qrr1p. Candidate gene Kcnj9 (A) has heavy
expression in neurons. Kcnj9 shows a regionally restricted expression in
the hippocampus with intense labeling in dentate gyrus, strong
labeling in CA1, and relatively weak labeling in CA2 and CA3. Candidate
gene Kcnj10 (B) has a more diffused pattern and expressed primarily in
glial cells. There is almost no labeling for Kcnj10 in the hippocampus.
Transcripts of seizure-related genes, Cacna1g (C) and Socs2 (D), have
trans-QTLs in Qrr1p. Both genes show high expression in neurons.
Cacna1g matches the expression of Kcnj9 with strong labeling in
dentate gyrus and CA1, and weak labeling in CA2 and CA3. Socs2
complements the expression of Kcnj9 and Cacna1g with intense
labeling in CA2 and CA3. In Situ expression data are from the Allen
Brain Atlas.
doi:10.1371/journal.pgen.1000260.g008
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clusters of functionally related loci and genes [89]. At this stage we

are also unable to discern whether there is a single or multiple

QTLs within Qrr1d. While it is likely that a single QTL modulates

the expression of the ARS, there may be additional gene variants

in Qrr1d that modulate other transcripts involved in translation

and RNA metabolism. With increased resolving power it may be

possible to further subdivide transcripts that map to Qrr1p and

Qrr1d into smaller functional modules.

There may be multiple loci in Qrr1 that modulate different

stages of protein metabolism in the CNS. Maintenance of cellular

protein homeostasis requires finely tuned cross talk between

transcription and RNA processing, the translation machinery, and

protein degradation [90–92], gene functions highly overrepresent-

ed among the transcripts that map to Qrr1. While these are generic

cellular processes, there are unique demands on protein

metabolism in the nervous system. Neurons are highly polarized

cells and specialized mechanisms are in place to manage local

protein synthesis and degradation in dendrites and axons [93].

The nervous system is also particularly sensitive to imbalances in

protein homeostasis [94,95], a possible reason why the trans-effects

of Qrr1 are detected only in neural tissues.

Candidates in Qrr1d and Possible Links with Local Protein
Synthesis

Transfer RNAs are direct biological partners of the ARS, and

the cluster of tRNAs in the highly polymorphic intergenic region

of Qrr1d (figure 6) is an enticing candidate. In addition to their role

in shuttling amino acids, tRNAs also act as sensors of cellular

amino acid levels and regulate transcription of genes involved in

amino acid metabolism and the ARS [66]. There is tissue

specificity in the expression of different tRNA isoforms [96], and

we speculate that the tRNA cluster in Qrr1d is specifically

functional in neural tissues.

Rgs7, a member of the RGS (regulator of G-protein signaling)

family, is another high-ranking candidate in Qrr1d. RGS proteins

are important regulators of G-protein mediated signal transduction.

Rgs7 is predominantly expressed in the brain and has been

implicated in regulation of neuronal excitability and synaptic

transmission [97,98]. Although RGS proteins are usually localized

in the plasma membrane, RGS7 has been found to shuttle between

the membrane and the nucleus [99]. This implies a role for RGS7 in

gene expression regulation in response to external stimuli.

Our final high-ranking candidate in Qrr1d is Fmn2. It codes for

an actin binding protein exclusively expressed in the CNS and

oocytes, and is involved in the establishment of cell polarity

[70,71]. In Drosophila, the formin homolog, cappuccino, has a role

in RNA transport and in localizing the staufen protein to oocyte

poles [100–102]. It is possible that FMN2 has parallel functions in

mammalian neurons. Interestingly, Staufen 2 (Stau2), a gene

involved in RNA transport to dendrites [62], maps to Qrr1d in

BXD CNS datasets. Furthermore, deletion of formin homologs in

yeast results in inhibition of protein translation [103], compelling

evidence for an interaction between the protein translation system

and formins. Evidence for a role for Fmn2 in dendrites also comes

from our immunocytochemical analysis that clearly demonstrates

the expression of FMN2 protein in dendrites. Taken together,

Fmn2 is a functionally relevant candidate gene in Qrr1d and may be

related to RNA transport and protein synthesis in the CNS.

Methods

Microarray Datasets
The microarray datasets used in this study (table 2) were

generated by collaborative efforts [46,47,49–52]. All datasets can

be accessed from www.genenetwork.org. They provide estimates

of global mRNA abundance in neural and non-neural tissues in

the BXD, LXS, and CXB RI strains, B6D2F2 intercrosses, and

B6C3HF2 intercrosses. Detailed description of each set, tissue

acquisition, RNA extraction and array hybridization methods, and

data processing and normalization methods are provided in the

‘‘Info’’ page linked to each dataset. In brief, the datasets are:

1) BXD CNS transcriptomes: The BXD CNS datasets

measure gene expression in the forebrain and midbrain

(INIA Forebrain), striatum (HBP/Rosen Striatum and HQF

Striatum), hippocampus (Hippocampus Consortium and

UMUTAffy Hippocampus), cerebellum (SJUT Cerebellum

mRNA), and eye (Hamilton Eye) of BXD RI strains (table 2).

The INIA Brain and HBP/Rosen Striatum datasets have

been described in Peirce et al. [47]. The Hippocampus

Consortium dataset measures gene expression in the adult

hippocampus of 69 BXD RI strains, the parental B6 and D2

strains, and F1 hybrids. The SJUT Cerebellum dataset

measures gene expression in the adult cerebellum of 45

BXD RI strains, parental strains, and F1 hybrids. The Eye

dataset measures gene expression in the eyes of 64 BXD RI

strains, parental strains, and F1 hybrids. The HQF BXD

Striatum is one of the newest datasets and was generated on

Illumina Sentrix Mouse–6.1 arrays. It is similar to the HBP/

Rosen Striatum and measures gene expression in the

striatum of 54 BXD RI strains, parental strains, and F1

hybrids.

2) BXD non-neural transcriptomes: The non-neural BXD

array sets measure gene expression in the liver (UNC Liver)

of 40 BXD strains, kidney (Kidney Consortium) of 53 BXD

strains, and hematopoietic stem cells (GNF Hematopoietic

Cells) of 30 BXD strains [49,50].

3) LXS hippocampus transcriptome: The LXS Hippocampus

dataset measures gene expression in the adult hippocampus

of 75 LXS RI strains and the parental ILS and ISS strains.

4) B6D2F2 CNS transcriptomes: The B6D2F2 datasets

measure gene expression in the whole brain (OHSU/VA

Brain), and striatum (OHSU/VA Striatum) of B66D2 F2

intercrosses [47,52]. The whole brain dataset comprises of

samples from 56 F2 animals, and the striatum dataset

comprises of samples from 58 F2 animals.

5) B6C3HF2 transcriptomes: These datasets were generated

from large numbers of B66C3H F2 intercross progeny and

assayed using Agilent arrays [51]. These datasets have been

described in Yang et al [51].

Mouse Strains and Genotype Data
The conventional BXD RI strains were derived from the B6

and D2 inbred mice [104,105]. The newer sets of advanced RI

strains were derived by inbreeding intercrosses of the RI strains

[57]. The parental B6 and D2 strains differ significantly in

sequence and have approximately 2 million informative SNP. A

subset of 14,000 SNPs and microsatellite markers have been used

to genotype the BXD strains [106,107]. We used 3,795

informative markers for QTL mapping. Thirty such informative

markers are in Qrr1 and we queried these markers to identify

strains with recombinations in Qrr1; genes with strong cis-QTLs

(Sdhc, Atp1a2, Dfy, and Fmn2) were used as additional markers.

Smaller sub-sets of markers were used to genotype the two F2

panels (total of 306 markers for the whole brain, and 75 markers

for the striatum F2 datasets).

QTL Hotspot on Mouse Distal Chromosome 1

PLoS Genetics | www.plosgenetics.org 13 November 2008 | Volume 4 | Issue 11 | e1000260



The LXS RI strains were derived from the ILS and ISS inbred

strains. They have been genotyped using 13,377 SNPs, and some

microsatellite markers [108]. 2,659 informative SNPs and

microsatellite markers were used for QTL mapping.

The CXB panel consists of 13 RI strains derived from C57BL/

6By and BALB/cBy inbred strains. A total of 1384 informative

markers were used for QTL mapping.

The B66C3H/HeJ F2 intercrosses have been genotyped using

13,377 SNPs and microsatellite markers, and 8,311 informative

markers were used for QTL mapping.

Animals and Tissue Acquisition
Majority of the BXD and LXS tissues (cerebellum, eye,

forebrain, hippocampus, kidney, liver, and striatum for the HQF

Illumina dataset) were dissected at the University of Tennessee

Health Science Center (UTHSC). Mice were housed at the

UTHSC in pathogen-free colonies, at an average of three mice per

cage. All animal procedures were approved by the Animal Care

and Use Committee. Mice were killed by cervical dislocation, and

tissues were rapidly dissected and placed in RNAlater (Ambion,

www.ambion.com) and kept overnight at 4u C, and subsequently

stored at 280 degree C. Tissue were then processed at UTHSC or

shipped to other locations for processing.

RNA Isolation and Sample Preparation
For the tissues that were processed at UTHSC (all BXD and

LXS CNS tissues except HBP Affymetrix striatum), RNA was

isolated using RNA STAT-60 (Tel-Test Inc., www.tel-test.com) as

per manufacturer’s instructions. Samples were then purified using

standard sodium acetate methods prior to microarray hybridiza-

tion. The eye samples required additional purification steps to

remove eye pigment; this was done using the RNeasy MinElute

Cleanup Kit (Qiagen, www.qiagen.com). RNA purity and

concentration was evaluated with a spectrophotometer using

260/280 nm absorbance ratio, and RNA quality was checked

using Agilent Bioanalyzer 2100 prior to hybridization. Array

hybridizations were then done according to standard protocols.

Microarray Probe Set Annotation
We have re-annotated a majority of Affymetrix probe sets to

ensure more accurate description of probe targets. Each probe set

represents a concatenations of eleven 25-mer probes, and these

have been aligned to the NCBI built 36 version of the mouse

genome (mm8 in UCSC Genome Browser) by BLAT analysis. We

have also re-annotated the Illumina probes and incorporated these

annotations into GeneNetwork. Each probe in the Illumina

Mouse–6 and Mouse–6.1 arrays is 50 nucleotides in length, and

these have been aligned to NCBI built 36.

QTL Mapping
We used the strain average expression signal detected by a

probe or probe set. QTL mapping was done for all transcripts

using QTL Reaper [47]. The mapping algorithm combines simple

regression mapping, linear interpolation, and standard Haley-

Knott interval mapping [109]. QTL Reaper performs up to a

million permutations of an expression trait to calculate the

genome-wide empirical p-value and the LOD score associated

with a marker. We selected only those transcripts that have highest

LOD scores, i.e., genome-wide adjusted best p-values, on markers

located on Chr 1 from 172 to 178 Mb. This selected transcripts

that are primarily modulated by Qrr1 but excluded transcripts that

have QTLs in Qrr1 but have higher LOD scores on markers

located on other chromosomal regions. Cis- and trans-QTLs were

distinguished based on criteria described by Peirce et al. [47]. To

identify trans-QTLs common to multiple datasets, we selected

probes/probe sets that target the same genes and have peak LOD

scores within 10 Mb in the different datasets.

Screening Local QTLs
We screened all Affymetrix probe sets with cis-QTLs in Qrr1 for

SNPs in target sequences. This step was taken to identity false cis-

QTLs caused by differences in hybridization. As probe design is

based on the B6 sequence, such spurious cis-QTLs show high

expression for the B allele, and low expression for the D allele. Our

screening identified only two probe sets in which SNPs result in

spurious local QTLs—1429382_at (Tomm40l), and 1452308_a_at

(Atp1a2). The majority of cis-QTLs in Qrr1 are likely to be due to

actual differences in mRNA abundance. We did not detect a bias

in favor of the B allele on cis-regulated expression and the ratio of

transcripts with B- and D- positive additive effects is close to 1:1.

Analysis of Allele-Specific Expression Difference
To measure expression difference between the B and D alleles, we

exploited transcribed SNPs to capture allelic expression difference

in F1 hybrids [56] using a combination of RT-PCR and a single

base extension technology (SNaPshot, Applied Biosystems, www.

appliedbiosystems.com). For each transcript we analyzed, Primer 3

[110] was used to design a pair of PCR primers that target

sequences on the same exon and flanking an informative SNP.

We prepared four pools of RNA from the hippocampus, and

four pools of genomic DNA from the spleen of F1 hybrids (male

and female B66D2 and D26B6 F1 hybrids). To avoid

contamination by genomic DNA, the four RNA pools were

treated with Turbo DNase (Ambion, www.ambion.com), and then

first strand cDNA was synthesized (GE Healthcare, www.

gehealthcare.com). The genomic DNA samples were used as

controls, and both cDNA and genomic DNA samples were tested

concurrently using the same assay to compare expression levels of

B and D transcripts.

We amplified the cDNA and genomic DNA samples using

GoTaq Flexi DNA polymerase (Promega Corporation, www.

promega.com). PCR products were purified using ExoSap-IT

(USB Corporation, www.usbweb.com) followed by SNaPshot to

extend primer by a single fluorescently labeled ddNTPs.

Fluorescently labeled products were purified using calf intestinal

phosphatase (CIP, New England BioLabs, www.neb.com) and

separated by capillary electrophoresis on ABI3130 (Applied

Biosystems). Quantification was done using GeneMapper v4.0

software (Applied Biosystems), and transcript abundance was

measured by peak intensities associated with each allele. Ratio of B

and D allele in both cDNA and gDNA pools was computed, and t-

test (one tail, unequal variance) was done to validate expression

difference and polarity of parental alleles.

SNP Analysis in Multiple Crosses
GeneNetwork has compiled SNP data from different sources—

Celera (http://www.celera.com), Perlegen/NIEHS (http://

mouse.perlegen.com/mouse/download.html), BROAD institute

(http://www.broad.mit.edu/snp/mouse), Wellcome–CTC [107],

dbSNP, and Mouse Phenome Database (http://www.jax.org/

phenome/SNP). SNP counts were done on the GeneNetwork SNP

browser.

Partial Correlation Analysis
A partial correlation is the correlation between X and Y

conditioned on one or more control variables. In this study, first
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order partial correlation was used to detect the interaction

between trans-regulated transcripts and cis-regulated candidate

genes conditioned on the genotype (marker rs8242481 at

175.058 Mb). If x, y and z are trans-regulated transcripts, cis-

regulated transcript, and genotype in the QTL, respectively, then

the first order partial correlation coefficient is calculated as—

rxy:z~
rxy{rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{r2
xz

� �
1{r2

yz

� �r

where rxy can be either Pearson correlation or Spearman’s rank

correlation between x and y. We employed the Spearman’s rank

correlation because the expression levels of many transcripts do

not follow a normal distribution.

The significance of a partial correlation with n data points was

assessed with a two-tailed t test on t~r
ffiffiffiffiffiffiffiffiffiffiffiffi
n{2{k

1{r2

q
*tn{2{k where r

is the first order correlation coefficient, and k is the number of

variables on which we are conditioning.

Immunocytochemistry
Cultured hippocampal neurons from male B6 mice, prepared as

described in Schikorski et al. [111] and cultured for 23 days, were

fixed with 4% paraformaldehyde and 0.1% glutaraldehyde in

HEPES buffered saline (pH 7.2) for 15 min. Cell membranes were

permeabilized with 0.1% triton X-100 and unspecific binding sites

were quenched with 10% BSA for 20 min at room temperature

(RT). Neurons were incubated with a polyclonal anti-FMN2

antibody (Protein Tech Group, www.ptglab.com) diluted to

0.3 mg/ml at RT overnight. An anti-rabbit antibody raised in

donkey (1:500, Invitrogen; http://www.invitrogen.com) conjugat-

ed with the fluorescent dye Alexa488 was used for the detection of

the first antibody. All regions of interest were photographed with

identical illumination and camera settings to allow for a direct

comparison of the staining in labeled and control neurons.

Fmn22/2 and Fmn2+/+ Microarray Analysis
The Fmn22/2 mice were generated using 129/SvEv (now strain

129S6/SvEvTac) derived TC-1 embryonic stem cells. Chimeric

mice were backcrossed to 129/SvEv [70]. The Fmn2-null and

littermate controls are therefore coisogenic. To validate the

isogenicity of regions surrounding the targeted locus [112], we

genotyped the Fmn2+/+, Fmn2+/2, and Fmn22/2 mice using ten

microsatellite markers located on, and flanking Fmn2 (markers

distributed from 172 Mb to 182 Mb). These markers are

D1Mit455, D1Mit113, D1Mit456, D1Mit356, D1Mit206,

D1Mit355, D1Mit150, D1Mit403, D1Mit315, and D1Mit426. With

the exception of a marker at Fmn2 (D1Mit150), all alleles in null,

heterozygote, and wildtype animals were identical.

RNA was isolated from whole brain samples of Fmn2+/+ and

Fmn22/2 mice, and assayed on Illumina Mouse-6 array slides (six

samples per slide). We compared five samples from Fmn22/2 nulls,

and five samples from Fmn2+/+ wildtype. Equal numbers of each

genotypes were placed on each slide to avoid batch confounds.

Microarray data were processed using both raw and rank invariant

protocols provided by Illumina as part of the BeadStation software

suite (www.illumina.com). We subsequently log-transformed

expression values and stabilized the variance of each array. To

identify genes with significant expression difference between the

Fmn22/2 and Fmn2+/+ cases, we carried out two-tailed t-tests and

applied a Bonferroni correction for multiple testing, and selected

probes with a minimum adjusted p-value,0.05.

Bioinformatics Tools
Classical QTLs counts are based on the April 2008 version of

Mouse Genome Informatics (MGI: www.informatics.jax.org)

[113]. Search for tRNAs was done using tRNAscan-SE 1.21

(http://lowelab.ucsc.edu/tRNAscan-SE/) [65]. GO analysis was

done using the analytical tool DAVID 2007 (http://david.abcc.

ncifcrf.gov/) [114]. Overrepresented GO terms were identified

and statistical significance of enrichment was calculated using a

modified Fisher’s Exact Test or EASE score [115]. We used the

Allen Brain Atlas to analyze expression pattern in the brain of

young C57BL/6J male mice (www.brain-map.org) [85,116].

Control for Non-Syntenic Association and Paralogous
Region

In RI strains, non-syntenic associations can lead to LD between

distant loci [89,106]. In the BXDs, we detected such non-syntenic

associations between markers in Qrr1 and markers on distal Chr 2

and proximal Chr 15. As a result of these associations, some

transcripts that have strong cis- or trans-QTLs in Qrr1 tend to have

weak LOD peaks, usually below the suggestive threshold, on distal

Chr 2 and proximal Ch15. However, there is no bias for genes

located in these intervals in LD with Qrr1 to have trans-QTLs in

Qrr1.

The Qrr1 segment has been reported to have paralogues on

mouse Chrs 1 (proximal region), 2, 3, 6, 7, 9, and 17 [117,118].

We examined if the trans-QTLs in Qrr1 are of genes located in

these paralogous regions. However, genes located in the

paralogous regions are not overrepresented among the trans-QTL.
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