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Abstract
This paper presents a framework for automated optimization of double-heater convective PCR (DH-cPCR) devices by 
developing a computational fluid dynamics (CFD) simulation database and artificial neural network (ANN) model. The 
optimization parameter space that includes the capillary tube geometries and the heater sizes of DH-cPCR is established, and 
a database consisting of nearly 10,000 CFD simulations is constructed. The database is then used to train a two-stage ANN 
models that select practically relevant data for modeling and predict PCR device performance. The trained ANN model is 
then combined with the gradient-based and the heuristics optimization approaches to search for optimal device configuration 
that possesses the shortest DNA doubling time. The entire design process including model meshing and configuration, paral-
lel CFD computation, database organization, and ANN training and utilization is fully automated. Case studies confirm that 
the proposed framework can successfully find the optimal device configuration with an error of less than 0.3 s, and hence, 
representing a cost-effective and rapid solution of DH-cPCR device design.

Keywords  Polymerase chain reaction (PCR) · Point of care (POC) · Neural network · Device optimization · Computational 
fluid dynamics (CFD) · Machine learning

1  Introduction

Polymerase chain reaction (PCR) is an effective technique 
to amplify a few copies of deoxyribonucleic acids (DNA) 
to a detectable level (Li et al. 2016; Shu et al. 2019a), and 
has found widespread applications in biomedical research, 
medicine, criminal forensics, molecular archaeology, and 
others that require genomic information (Shu et al. 2019a). 
Especially during the recent COVID-19 outbreak, PCR has 
been used extensively for testing viral infections throughout 
the world, substantiating its significance in biomedicine 
(Powledge (2004). Despite popularity of bulky and high-
throughput PCR devices in centralized laboratories, there 
is a strong demand for integrated and miniaturized PCR 
technologies that can be utilized economically with a 
minimal requirement of operator experience and deployed 

easily outside the lab environment near the patients (Petralia 
and Conoci 2017). Such devices are normally referred to 
as “Point-of-Care” (POC) systems, which have already 
been established for testing of diabetes, pregnancy, cardiac 
disease, HIV, and others (Luppa et al. 2011). Similarly, the 
use of PCR devices for POC testing would be advantageous 
as it enables rapid scale-up of medical tests in community 
and immediate responses to emergent situations (Sia and 
Kricka 2008; Niemz et al. 2011).

However, design and development of the POC PCR 
device is challenging due to its stringent requirements on 
reliability, cost, ease-of-use, portability, and speed of DNA 
amplification (Weidemaier et al. 2015). The existing process 
for POC PCR design suffers from several limitations, such 
as high cost, long development cycles, and intensive labors, 
since most of the them solely rely on experiments and trial-
and-error. Moreover, it is also formidable to maintain the 
same level of PCR performance in the field due to severe 
environmental uncertainties and limited functionalities and 
resources. Hence, exploiting the computational methods 
to enhance the POC PCR performance and design process 
efficiency is highly desirable (Shu et al. 2019a). One of 
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the methods that recently attracts significant research 
attention is to use the computational fluid dynamics (CFD) 
to accelerate the design process of PCR devices. Krishnan 
et al. and Chen et al. utilized CFD to provide an insight 
into the buoyancy-driven flow induced in a PCR reactor, 
including velocity and temperature fields (Krishnan et al. 
2002; Chen et al. 2004). Li et al. studied the flow conditions 
of several geometries of PCR capillary reactor design using 
CFD (Li et al. 2016), and Qiu et al. numerically analyzed 
the flow changes inside the PCR reactor in the vertical and 
horizontal positions (Qiu et al. 2019). Yariv et al. developed 
a mathematical model for DNA amplification, applied it to 
a very simple nondimensional geometry, and showed its 
potential to be used for estimating PCR performance (Yariv 
et al. 2005). Allen et al., Muddu et al., and Shu et al. adopted 
Yariv’s mathematical model and applied it to more practical 
problems for DNA amplification (Allen et al. 2009; Muddu 
et al. 2011; Shu et al. 2019b). These studies have made 
exceptional contributions to various aspects of numerical 
analysis of PCR devices, and demonstrated the promise of 
partially replacing experimentation with CFD to improve 
the cost- and time-effectiveness of POC PCR development.

Besides the reduced cost, labor, and time, when combined 
with optimization, numerical simulations can find not only 
a feasible, but an optimal (or at least a pseudo-optimal) 
design with dramatically improved performance. However, 
in many cases the CFD-based design optimization is not 
preferred because each CFD simulation may easily take 
tens of minutes to several hours depending on the system 
complexity, which renders the  unaffordable iterative 
optimization process that needs a large number of function 
calls to CFD. To tackle this issue, fast-running surrogate 
models have been developed to replace the demanding CFD 
simulations, and thus, the optimization can be performed in 
a manageable manner on the resource-limited computing 
platform (Carrillo et al. 2018; Ou et al. 2019; Wang et al. 
2020; Herten et  al. 2017). Among various surrogate 
modeling techniques, the machine learning approach 
based on the artificial neural network (ANN) has won the 
spotlight for their salient applicability and accuracy in high-
dimensional parameter space. In addition, with the advent of 
deep learning, it is possible for the ANN to accurately model 
a highly complex system by utilizing deep architectures, e.g., 
multiple hidden layers (Stoecklein et al. 2017; Malkiel et al. 
2018; Hong et al. 2020; Kasim et al. 2001). ANN-based 
optimization has proved its vast values in diverse areas, 
including hydrogen purification, design of a solar power 
plant, model predictive control, and prediction of smart grid 
energy consumption (Ye et al. 2019; Boukelia et al. 2016; 
Hong et al. 2019; Muralitharan et al. 2018).

In this paper, we propose a framework to construct a 
CFD simulation database for the double-heater convective 
PCR (DH-cPCR) device, to train ANN models using 

the data from the database, and to perform ANN-based 
optimization to search for the optimal device configuration. 
Key optimization parameters, including the diameter, the 
aspect ratio, and the heights of the top and bottom heating 
surfaces that govern the thermofluidic behavior within 
the DH-cPCR and its DNA amplification performance 
(quantified by DNA doubling time), are considered in 
order to examine the feasibility and efficiency of ANN-
based optimization. Contributions of the present study can 
be summarized in three aspects. First, a database of CFD 
simulation is generated using the in-house developed codes, 
which have already been verified by the experiments (Shu 
et al. 2019a, b; Qiu et al. 2019; Shu 2019) in our prior 
studies. The parameter space has been selected carefully 
in the practically relevant ranges (Li et al. 2016; Krishnan 
et al. 2002; Shu et al. 2019b; Qiu et al. 2017; Miao et al. 
2020), and partitioned by the Latin hypercube sampling 
using nearly 10,000 sample points, where CFD simulations 
are conducted. A procedure and numerical programs have 
been developed to automate and parallelize the large number 
of CFD simulations and post-processing of the simulation 
results. Second, the fast-running ANN model is constructed 
based on the CFD database, which captures the varying 
landscape of the underlying CFD data and allows to explore 
the entire design domain continuously and economically, 
leading to an optimal solution. More importantly, a two-
stage ANN modeling approach that includes a classifier 
and a regressor model is developed to analyze the data in 
series and address the issue associated with extreme data 
ranges of CFD database. Specifically, the classifier filters 
out infeasible configurations, and the regressor predicts the 
PCR performance (doubling time) of feasible configurations 
only. The curtailed data range ensures excellent predictive 
accuracy of the ANN model. Third, two device design case 
studies that combine the trained two-stage ANN models 
with different optimization methods are presented. In one 
of them, the genetic algorithm (GA), a global optimization 
technique is used to search for the optimal DH-cPCR 
configuration within the entire parameter space. GA is one 
of the evolutionary algorithms and finds the optimum by 
performing selection, crossover, and mutation on a set of 
population for numerous generations. The optimum and 
the data landscape around its vicinity are portrayed and 
confirmed with additional CFD simulations to ensure the 
robustness and the accuracy of the solution.

It should be noted that generating training CFD 
database and performing ANN-based optimization is more 
computationally efficient than the traditional, brute-force 
optimization method that solely relies on CFD simulation. 
This is because when the cost and constraint functions of the 
optimization are changed, the generated CFD database can 
be re-processed to create new surrogate models accordingly 
without the need for additional simulation, which however is 
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not feasible by the traditional method. CFD simulation when 
combined with the gradient-based optimization is either not 
able to fully exploit the high-performance computing facility 
or computationally prohibitive on the resource-restricted 
platform. In contrast, the process of constructing the CFD 
database for ANN training is highly parallelizable, resulting 
in effective resource utilization. Last, the compact size and 
ultrafast speed of the ANN model renders it well-suited for 
the global optimization method, in which lots of evaluations 
need to be conducted in parallel and in serial, nevertheless 
direct CFD simulation is almost impossible.

The remainder of this paper is organized as follows. 
Section  2  describes in detail the DH-cPCR device and 
its CFD model and numerical simulation. The process to 
construct a database through automated, parallelized CFD 
simulation and analysis is presented in Sect. 3. The two-
stage ANN modeling and training process is introduced 
in Sect. 4. In Sect. 5, two device design case studies are 
presented to validate the proposed ANN-based optimization 
framework. The paper is concluded in Sect. 6.

2 � Numerical simulation

The DH-cPCR device under consideration is composed of 
a capillary tube and a thermal/control module, as depicted 
in Fig. 1. The thermal/control unit has the top and bottom 
heating modules, and the thermal bridges connect the two 

heating modules and transfer heat from the bottom to the top. 
The device is designed to maintain approximately 368.15 K 
near the bottom and 328.15 K near the top. Thermostats are 
utilized to read local temperatures and transmit the signal to 
the thermal controller. Since only one resistive heater is used 
as the heating source, the fan can be turned on to cool down 
the top heating module as needed and to maintain a local 
temperature of 328.15 K. The exposed surface of the capillary 
tube is enclosed by an insulator to minimize heat loss.

DNA amplification using PCR is based on the 
thermal cycling processes of three distinct temperatures: 
(1) denaturation, (2) annealing, and (3) extension. As 
demonstrated in Fig. 1, the denaturation process occurs near 
the bottom of the capillary tube, where the fluid temperature 
is maintained at approximately 368.15 K. During this process, 
a double-stranded DNA is separated into two single-stranded 
DNAs. Next an annealing process takes place near the top of 
the capillary tube, where the temperature is cooled down to 
approximately 328.15 K. At this stage, primers bind to the 
ends of the two single-stranded DNAs. Lastly, an extension 
process occurs in the middle area of the tube with the 
temperature varying between 365.15 K and 350.15 K, where 
enzymes actively support DNA synthesis, transforming 
single-stranded DNAs into double-stranded DNAs.

Two CFD models are then developed to, respectively, capture 
two important phenomena during the PCR amplification, (1) 
momentum and conjugate heat transfer (MCHT), and (2) DNA 
species transport and reaction kinetics. A 3-dimensional (3-D) 

Fig. 1   The double heater convective polymerase chain reaction (DH-cPCR) device and DNA amplification process
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computational domain consisting of structured meshes for fluid 
and solid regions is constructed as shown in Fig. 2. The MCHT 
model is computed in a coupled manner in both the solid and 
fluid regions to obtain the steady-state, spatial distribution 
of flow quantities and temperatures. Specifically, the natural 
convection-induced flow and both convective and conductive 
heat transfer is simulated in the fluid domain. In the solid 
domain, only heat conduction is considered. The temperature at 
the fluid–solid interface is determined by the balanced heat flux 
through the interface. In the second CFD model, the species 
transport and the DNA amplification kinetics are solved to 
determine the spatiotemporal fields of species concentrations 
in the fluid domain.

In the first step of CFD simulation, 3D heat transfer 
equations are used in both the fluid and solid domains, 
while the natural convection flow is only solved in the fluid 
domain. The PCR reagents are pure water basis used for 
DNA amplification (Li et al. 2016); thereby, in the numerical 
simulation, fluid motions are assumed to be Newtonian, 
steady-state, incompressible, and laminar. The fluid is 
governed by continuity, momentum, and energy equations as 
follows (Çengel et al. 2015):
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where ρ denotes the fluid density dependent on the tempera-
ture; u is the flow velocity; x is the spatial coordinate; p is the 
pressure; g is the gravitational acceleration; μ stands for the 
fluid dynamic viscosity; Cp is the isobaric specific heat, which 
is temperature dependent; Tf  is the fluid temperature; κf  repre-
sents the fluid thermal conductivity, which is a function of the 
temperature; the subscripts i and j are based on the Einstein 
notation. All thermal properties (i.e., ρ , μ , Cp , and κf  ) used  
for the fluid domain are treated as the polynomial functions 
of the temperature, as shown in Table 1 (Shu et al. 2019a, b).

The heat transfer in the solid domains is solved by the 
thermal conduction equation (Holman 2002)

where κs and Ts denote the constant thermal conductivity and 
temperature applied for the solid domain, respectively. Note 
that both κs and Ts are a scalar quantity, and the subscript 
s does not imply Einstein summation. The capillary tube 
used in this study is made of the polymethyl methacrylate 
(PMMA), and therefore, a constant thermal conductivity of 
0.22 W/(m K) is applied (Shu et al. 2019a, b).

The following boundary conditions are employed to solve 
Eqs. (1) to (4)

1.	 No-slip flow velocity condition at wall, uwall = 0;
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Fig. 2   Computational domains 
made up of structured meshes in 
both the solid and fluid regions
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2.	 Isothermal and isoflux conditions at the interface 
between the fluid and solid domains, i.e., Tf = Ts and 
q̇f = q̇s at the interface, where q̇ is the heat flux and the 
subscript f  and s denotes the fluid and the solid, respec-
tively;

3.	 Constant temperature Ts = 368.15K and Ts = 328.15K 
at the bottom and top boundaries of the solid domain, 
respectively;

4.	 Zero temperature gradient along the outer surface of the 
tube due to insulation, ∇Ts = 0.

In the second step of CFD simulation, the unsteady 
convection–diffusion-reaction equations are solved to produce  
the spatiotemporal field of species concentrations and 
evaluate the performance of a convective PCR reactor. The 
equations are given by (Shu et al. 2019a; Yariv et al. 2005; 
Allen et al. 2009)

where c is the DNA species concentration; D denotes 
the diffusive coefficient; k is the constant rate of reaction 
kinetics, f (�⃗x) is the reaction intensity at a local position of 
�⃗x =

(

x1, x2, x3
)

 ; the subscripts ss , a , and ds denote the single-
stranded, annealed, and double-stranded DNAs, respectively; 
the subscripts d , a , and e represent the denaturation, 
annealing, and extension processes, respectively.

The diffusivity of typical DNA templates (100 base-pairs) 
is approximately 10–7 cm2/s (Yariv et al. 2005). The constant 
rates of the denaturation, annealing, and extension processes are 
0.1 s−1, 0.1 s−1, and 0.05 s−1, respectively for a conventional 
PCR cycle (Yariv et al. 2005). A Gaussian function is employed 
to map the reaction intensities onto the temperature field in the 
fluid domain (Allen et al. 2009). The details can be found in the 
authors’ previous work (Shu et al. 2019a, b).
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The initial and boundary conditions applied to Eqs. (5) 
through (7) are as follows:

1.	 The initial concentrations of the double-stranded, single-
stranded, and annealed DNAs are 100, 0, and 0 copies, 
respectively.

2.	 The species concentration do not penetrate the wall: 
n̂ ∙ ∇ci = 0 , where the subscript i denotes the individual 
DNA species.

Once Eqs. (5)–(7) are solved to produce the species con-
centrations, the doubling time can be computed as follows 
(Allen et al. 2009; Shu et al. 2019b):

where Δt is the duration, and cds,t=tf  and cds,t=0 denote the 
concentrations for the double-stranded DNA at the final and 
initial time, respectively. The DNA doubling time is utilized 
to evaluate the performance of convective PCR reactors. The 
physical time simulated by the CFD model is set to 30 min 
(Shu et al. 2019a, b).

3 � CFD database construction and analysis

As stated in the previous section, there are four optimization 
parameters of the double-heater cPCR (DH-cPCR) 
considered in this research: (1) diameter (DI) and (2) aspect 
ratio (AR) of the capillary tube, (3) top heater height (THH), 
and (4) bottom heater height (BHH). AR is defined as the 
ratio of the tube height to the diameter, and both heater 
heights are measured in percentage with respect to the 
height. For example, if THH and BHH are 10% and 5%, 
the height of THH and BHH is 10% and 5% of the tube 
height, respectively. The parameter space of the DH-cPCR 
is summarized in Table 2, and selected in such a manner that 
the doubling time of the majority of the configurations falls 
into the feasible category. Within this parameter space, Latin 
hypercube sampling technique was implemented to select 
9,555 samples, which were processed by CFD simulations 
to compute the doubling time and evaluate the performance.

(8)td =
ln(2)Δt

ln
(

cds,t=tf

cds,t=0

)

Table 1   Temperature-dependent 
fluid thermal properties in 
polynomials

Thermal Properties Unit Polynomial Coefficients

0th 1st 2nd 3rd 4th

Density,ρ kg/m3 784.5 1.673 -3.234e-03 - -
Specific Heat,Cp J/(kg K) 2.665e + 04 -2.567e + 02 -1.099 -2.097e-03 1.507e-06
Dynamic Viscosity,μ Pa s 8.764e-02 -7.216e-04 -1.993e-06 -1.840e-09 -
Thermal Conductivity,κf W/(m K) 4.581 -5.784e-02 2.895e-04 -6.071e-07 4.603e-10
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Scripts and application programming interfaces (API) were 
developed to automate the entire process of mesh generation, 
CFD simulation, and database construction to reduce manual 
efforts and time. Specifically, a script developed using Pointwise 
Glyph 2 generates a total of 9,555 computational meshes at a 
speed of approximately 10 s/mesh, one for each configuration. 
Then, a bash script creates a number of file structures 
corresponding to each configuration, including the mesh and 
model configuration files for the first step of the CFD simulation, 
where the MCHT equations are solved. The script automatically 
runs chtMultiRegionSimpleFoam, one of the OpenFOAM 
CFD solvers to obtain temperature and velocity fields inside 
capillary tubes. Similarly, another group of file structures are 
automatically created using the script to prepare for the second 
step of CFD simulations. The temperature and velocity fields 
obtained from the first step are transferred to the directory of the 
second CFD simulation and used as the background flow and 
thermal field for the PCR amplification reaction. The bash script 
automatically runs convDiffFoam, OpenFOAM based in-house 

CFD code, and the DNA doubling time is computed based on 
the DNA concentration as discussed above. High performance 
computing (HPC) was utilized to perform such a large number of 
computations. The hardware is made up of Intel® Xeon® CPU 
@ 2.1 to 2.5 GHz of 16 to 32 processors per node with 128 GB 
of RAM. In this study, a single CFD simulation employed 16 
processors for parallel computing.

Then the library of DH-cPCR CFD simulation was 
constructed, which consists of various device configurations and 
their corresponding doubling time, td. As discussed previously, 
configurations with shorter td is preferred since the purpose of 
a PCR is to duplicate DNAs rapidly, and therefore, the speed 
is the primary measure of its performance. It is also essential 
to examine if the selected parameter space is targeted towards 
the smaller td since it is not worthwhile to have a database full 
of infeasible device designs that cannot duplicate DNAs within 
a reasonable amount of time. Figure 3 presents the histogram 
of the sampled CFD simulations, i.e., the number of samples 
in different groups of the doubling time stored in the database. 
Considering the fact that the shortest td is approximately 20 s, 
device designs with the doubling time less than 60 s will be of 
our interest. From Fig. 3, we can observe that approximately 
85% of the total samples fall into this region. This ensures that 
the selected parameter space was able to generate the database of 
sampled CFD simulations that are mostly useful. It is important 
to note that there are samples with td larger than 110 s, which 
are not shown in the figure. They are omitted since they only 

Table 2   Optimization parameter space of the DH-cPCR

Diameter 
(mm)

Aspect Ratio Top Heater 
Height (%)

Bottom 
Heater 
Height 
(%)

Minimum 1.5 8 5 15
Maximum 2.0 12 35 35

Fig. 3   Histogram of the number 
of samples in different catego-
ries of doubling time
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make up of approximately 7.4% of the entire data, the highest of 
which reaches up to 200,000 s and loses the practical relevance.

In order to have more insight into the database, the 
relationship between the optimization parameters and the 
doubling time is analyzed in four sections/sub-ranges as 
shown in Fig. 4. The four sub-ranges are: (1) td ≤ 30 s; (2) 
30 s < td ≤ 40 s; (3) 40 s < td ≤ 60 s; and (4) 60 s < td, which are 
colored in red, green, blue, and cyan, respectively. Figure 4a 
shows the scatter plots of the diameter and the aspect ratio of the 
sampled designs in the four sub-ranges, and Fig. 4b is for the top 
and bottom heater heights. It indicates that td less than 60 s can 
be achieved with any size of the capillary tube explored in this 
study. However, it is evident from Fig. 4 that to achieve td less 
than 30 s, a smaller diameter is preferred. Moreover, fewer cases 
with large td (greater than 60 s) is observed near the diameter of 
1.6 mm. This is important since it not only provides key insight 
into the design factors, leading to a shorter td, but also identifies 
the regions within the parameter space where the designs are 
more robust, and large td is less likely to occur. Similar trends 
can be observed with heater heights. Although it is possible to 
achieve feasible td for various heater heights, for the desirable 
td (less than 30 s), the top heater height must be larger than 
approximately 15%. Also for small values of the top heater 
height, it is likely that the design will yield td larger than 60 s.

4 � Artificial neural network modeling

As described in Sect. 3, analysis of the scatter plots showing the  
relationship between the sampled optimization parameters 
and the doubling time using the CFD simulation data, 
implies the qualitative rules how the DH-cPCR needs to be 

designed. Nevertheless, building machine learning models 
using the library of CFD data allows accurate and quantitative 
representation of the relationship, which is fast-to-evaluate and 
can be integrated with optimization engines to iteratively search 
for optimal configuration. Among various machine learning 
techniques, artificial neural network (ANN) has emerged as one 
of the most popular and reliable approaches due to its ability 
to identify complex behaviors for a variety of engineering 
applications. Consequently, CFD database above is employed 
to construct the ANN model that can predict DH-cPCR 
performance at different optimization parameters. The methods 
and procedures for ANN model construction is detailed below.

4.1 � Data preprocessing

Upon ANN training, it is necessary to examine and pre-process 
the data to improve the model accuracy. Figure 5 shows td of 
all the sampled CFD simulations in an ascending order. The 
largest td of the samples has the value close to 260,000 s, which 
is too large relative to the feasible design objective. In addition, 
beyond the data index of 9,000, td begins to rise substantially, 
even when the figure is plotted in a log scale. This small portion 
of unrealistic data with excessively large td has no utility to 
practically relevant design and could even jeopardize the 
model accuracy if included. Therefore, it is beneficial to build a 
classifier and filter out samples and corresponding data that are 
distant from the regime of feasible device configuration before 
quantitative modeling. Therefore, the first step is to identify 
and filter out the distant samples. Here, a K-means clustering 
algorithm is applied, which clusters the data into groups in 
an unsupervised fashion based on the sample distances from 
the cluster centers. Moreover, it is able to identify the outliers. 
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Figure 5 also portrays six different groups of td classified by 
the K-means clustering algorithm. The total number of clusters 
was chosen simply by repeating the K-means clustering while 
increasing the number of clusters, until the range of feasible 
configuration is reduced by at least two orders of magnitude and 
the number of infeasible samples (outliers) remains less than 
1% of the entire dataset. Samples in the 1st cluster that make up 
99% of the dataset and accommodate the feasible configuration 
regime were labeled positive, and used to build a quantitative 
regression model. Samples from other 5 clusters were labeled 
negative, filtered out, and excluded from the regression 
model training. Furthermore, data was also normalized since 
all optimization parameters have distinctly different ranges. 
Min–max scaling was performed on all the parameters to put 
them in the range of 0 and 1. However, for the doubling time, 
which is the output of the regression model, log scaling was 
performed before min–max scaling to more evenly distribute 
the data in the normalized range.

4.2 � ANN model training

As described in Sect.  4.1, two different ANN models; 
classifier and regressor, were trained sequentially in two 
stages. Again the former is used to filter out unrealistic 
device configuration candidates; and only the performance 
(doubling time) of the realistic configuration is predicted 
by the regressor. The structures of ANN models trained 
are illustrated in Fig. 6. Since the classifier is comparably 
easier to model, it is assigned with only one hidden layer, 
whereas three hidden layers are used for the regressor 
because the quantitative relationship between the inputs and 
the output is more complicated. In fact, a simple iterative 
analysis (not shown) was performed and it was found that 
three hidden layers produced better predictions compared 
to one or two hidden layers. For both ANNs, inputs are the 
four optimization parameters. The output of the classifier 
represents a probability of being in Cluster 1, denoted as 
PC1. If PC1 is greater than or equal to a threshold value, the 
configuration belongs to Cluster 1 and vice versa. On the 
other hand, the output of the regressor is td, which is the 
performance metric of the DH-cPCR. Activation functions 
of all hidden layers are hyperbolic tangent functions. A 
sigmoid activation function is implemented for the output 
layer of the classifier to restrict the range to be between 0 
and 1. No activation function is applied to the output layer 
of the regressor since the output value of the doubling time 
must be continuous.

For both training processes, the Levenberg–Marquardt 
optimization algorithm was used with a maximum of 500 
training epochs. In addition, the training process was 
designed to stop whenever the validation performance 
stops improving for 6 consecutive iterations to prevent 
from overfitting. From the entire data set, 8,122 samples 
(equivalent to 85%) were used for training, and 1,433 
samples (remaining 15%) were used for testing. Within 
the training set, 80% and 20% were used for training and 
validation, respectively. Due to the randomness of ANN 
training associated with network weight initialization, the 
training process was repeated 100 times (for both classifier 
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and regressor) and the networks with the best accuracy 
were selected in order to mitigate the issue of the local 
minima.

The test accuracy of the ANN classification model 
is shown by a confusion matrix in Table  3. If the 
configuration belongs to Cluster 1, then it is classified 
as positive. Otherwise, it is classified as negative. 
As seen from the table, only two configurations are 
misclassified, resulting in an accuracy of greater than 
99%. The two misclassified configurations possess 
td of 634 and 1,176  s, which are far away from the 
doubling time of interest. The result of td prediction by 
the ANN regression model is depicted in Fig. 7, where 
the actual td is graphed against the predicted value. In 
other words, close alignment of the scatter points along 
y = x line (solid black curve) indicates salient accuracy 
of prediction. Figure 7 shows the result over the entire 
range on the left, and on the right, it illustrates the 
solution within the range of interest, which is less than 
60 s. Within the range up to approximately 1,000 s, the 
predictions are accurate with a mean absolute error 
(MAE) of less than 1 s. Within the range of interest (less 
than 60  s), some outliers of prediction are observed. 
However, the majority of the predictions remain within 
a small distance from the black curve and the MAE of 
these points is evaluated to be less than 0.5 s.

5 � Results and discussion

In this section, two different case studies are presented 
that combine the two-stage ANN models trained in Sect. 4 
with different optimization techniques to obtain optimal 
configuration of DH-cPCR. For the first case study, the task 
is to find the optimal THH and BHH based on an existing 
capillary tube. In other words, variables DI and AR are fixed 
to be 1.6 mm and 10, respectively. The second case study 
aims to find the optimal configuration that treats all four 
parameters as device design variables. Moreover, a volume 
constraint is applied during the optimization to place it within 
the practical bounds of the capillary tube configurations.

5.1 � Case study 1: optimal configuration of heater 
heights

First, the response surface of the trained ANN model is 
depicted over the entire parameter range of THH and BHH. 
Since DI and AR are fixed, the dimension of the optimization 
parameter space is only 2, and the response can be visualized 
easily through the surface plot as presented in Fig. 8. From the 
figure, it can be observed that the optimal configuration, i.e., the 
smallest doubling time is favored by comparably large THH and 
small BHH. Furthermore, the surface seems smooth enough to 
implement gradient based optimization to locate the minimum, 
which eliminates the need for global optimization techniques 
that rely on randomization to avoid local optima. Consequently, a 
constrained gradient-based optimization algorithm − a sequential 
quadratic programming (SQP) is implemented directly on the 
ANN model to find the optimum. The optimization problem is 
formulated as follows:

(9)min
x

f (c, x) s.t. xmin ≤ x ≤ xmax

Table 3   Confusion matrix for feasibility classification; positive if fea-
sible and negative if infeasible

Actual Positive Actual 
Negative

Predicted Positive 1417 1
Predicted Negative 1 14
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Fig. 7   Doubling time predictions of the ANN regression model
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where f is the trained ANN model, c is the constant value of DI 
and AR, and x is the vector of optimization parameters: THH 
and BHH, and their bounds for optimization is listed in Table 2.

It took 14 iterations to reach the minimum with 46 function 
evaluations in total. The minimum doubling time is found to 
be 23.50 s and the corresponding optimal heights are 35.00% 
and 19.98% for top and bottom heaters, respectively. In order 
to confirm the optimal solution found by the ANN- and 

gradient-based optimization, the optimum and 20 points in 
its vicinity were sampled randomly and the CFD simulations 
were performed on these samples. It is essential to note that 
the neighboring points near the solution must be confirmed 
by CFD simulation as well to ensure the robustness of the 
configuration and evaluate model uncertainties. In Fig. 9, we 
can visualize the surface plot predicted by the ANN model, in 
which the results of CFD validation are also plotted in circles. 

Fig. 8   The surface plot of dou-
bling time vs. THH and BHH 
for fixed DI and AR

Fig. 9   CFD validation of the 
ANN-based SQP optimiza-
tion result. The surface plot 
represents the ANN-predicted 
doubling time and the circle 
markers are the results of CFD 
validation points. The red 
marker indicates the optimal 
configuration and black markers 
are randomly sampled points in 
the vicinity of the optimum
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The red circle represents the CFD simulation of the optimal 
configuration and the black circles are for sample points in the 
vicinity of the optimum. Compared to the response surface of 
the ANN model, the CFD validations tend to provide slightly 
smaller doubling time, as all the circles are below the surface. 
Despite the minor error, the ANN response surface follows the 
same trend of the CFD simulations. The average MAE of the 
validation points is found to be 0.21 s, which is almost negligible 
relative to the true value, 23.25 s of the doubling time of the 
optimal configuration. In addition, compared to the optimal 
configuration, all its neighboring points exhibit larger values of 
the doubling time, which confirms that the optimal configuration 
yields the best performance.

Figure 10 shows the result of the CFD simulation at the 
optimal configuration point in this case study. As seen in the 
velocity contour plot, a single convection loop is developed in 
the clockwise direction. The strongest local velocity is created 
in the middle and lower regions, which is approximately 
2.92 mm/s. Stationary flow, known as the dead zone causing 
degraded performance, is observed near the top due to the 
negligible local temperature gradient in order to maintain 
the isothermal condition. The maximum and minimum 
temperatures are found to be 364.63 K and 328.35 K in the 
vicinity of the bottom and the top, respectively.

5.2 � Case study 2: optimal configuration 
of the whole DH‑cPCR with volume constraint

In the second case study, all four device configurations are 
optimized to find the DH-cPCR that results in the shortest 
doubling time. At the same time, a nonlinear constraint of the 
reactor volume is imposed. The new optimization problem is 
formulated as follows:

where f is the ANN model; x is the vector of all four optimization 
parameters, DI, AR, THH, and BHH; and V is the function of 
the capillary tube volume. Again, the bounds of all variables 
are listed in Table 2. For this particular problem, a genetic 
algorithm (GA) was selected for use rather than the gradient-
based optimization algorithms to ensure the global optimal 
solution can be found. This is because a higher dimensional 
space is prone to multiple local optima, and the gradient-
based approaches may not reach the global optimum. GA 
was performed for 50 generations with a population size of 
50. In addition, scattered crossover, Gaussian mutation and 
stochastic uniform selection approaches were implemented for 
the GA process. The solution, however, converged after the 3rd 
generation with a total number of 7718 function evaluations. 
The optimal configuration found is listed in Table 4 with the 
predicted doubling time.

In order to validate the solution, optimal configuration 
and the points in its vicinity were selected and confirmed 
by the CFD simulation, which are shown in Fig. 11. Two 
surface plots are graphed with two pairs of optimization 
parameters while keeping the other two constant to 
facilitate visualization of the responses. For each plot, 
20 randomly selected neighboring points for validation 
are presented. Similar to the previous case study, the 
ANN predictions tend to overestimate the doubling time 
slightly. Despite a small bias error, the ANN model 

(10)min
x

f (x) s.t.xmin ≤ x ≤ xmax 25 �l ≤ V (x) ≤ 40 �l

Fig. 10   Results of CFD simula-
tion at the optimal configuration 
point: (a) velocity contour, and 
(b) temperature contour
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Table 4   Optimal configuration found by GA using the ANN model

DI (mm) AR THH (%) BHH (%) Volume (μl) Estimated td(s)

1.56 8.01 35.00 25.81 25.02 21.31
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captures the trend of both response surfaces. Moreover, 
the doubling time of the optimal configuration is found 
to be smaller than any neighboring points that satisfies 
the volume constraint. The average MAE computed for 
all validation points is 0.26 s and the true doubling time 
of the optimum is 20.99 s. It should be noted that the 
doubling time in this case study is shorter than that in the 
previous study because two additional parameters, i.e., 
DI and AR are included in the optimization, allowing 
broader search in higher dimensional parameter space for 
better device design. The results confirm that the ANN 

model in combination with GA is able to find the optimal 
solution.

Figure 12 illustrates the CFD results of the optimal 
configuration specified in this case study. Again a single 
convection loop is clearly observed in the fluid domain. 
The maximum flow velocity is detected in the middle of 
the capillary tube with a value of 3.0 mm/s. It is found 
that the area of the stationary flow is relatively smaller 
than that in the first case study, which again indicates 
that this configuration outperforms the one in the first 
case study where only two parameters are included in 

Fig. 11   CFD validation of the GA optimization result: (a) td against 
THH and BHH, and (b) td against DI and AR. The surface plot repre-
sents the ANN predicted doubling time and the circle markers are the 

CFD validation points. The red marker indicates the optimal configu-
ration and black markers are its vicinity points

Fig. 12   Results of CFD simula-
tion at the optimal configuration 
point: (a) velocity contour, and 
(b) temperature contour
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optimization. In addition, the temperature is distributed 
in a desired manner over the entire domain, leading to 
the shorter DNA doubling time. In this case study, the 
maximum and minimum temperatures are found to be 
364.07 K and 329.19 K, respectively.

6 � Conclusion

This paper presents a framework for automated and efficient 
optimization of the POC DH-cPCR device using CFD 
simulation database and ANN model to reduce the development 
cost and efforts. Within DH-cPCR the temperature variation 
that induces stable single convection loop for DNA 
amplification is controlled by two heaters located at the top 
and the bottom of the capillary tube. Thus, four optimization 
parameters including the diameter (DI) and aspect ratio (AR) 
of the capillary tube, and the top heater height (THH) and 
bottom heater height (BHH) are considered. The parameter 
space is then partitioned by the Latin hypercube sampling, 
yielding a total of 9,555 DH-cPCR reactor configurations that 
are evaluated by CFD simulation. A fully automated process is 
established to streamline multi-blocked mesh generation, model 
configuration, parallel CFD computation, and post-processing 
to fully utilize the computing resources and enhance device 
efficiency. Each configuration is assessed by a two-step CFD 
simulation, first of which obtains the flow profiles induced by 
the temperature distributions within the reactor; and the second 
quantifies the DNA concentrations and doubling time of the 
individual device configuration. To make best use of the CFD 
database, a machine learning model, specifically, an artificial 
neural network (ANN) is developed using the CFD data. The 
ANN model builds the mapping relationship between the device 
configuration and the doubling time, which can be evaluated at 
extremely fast speed (a fraction of a second) to replace CFD 
simulations during the device optimization. The ANN consists 
of two sub-models, a classifier and a regressor, which are 
trained and used in two stages. The classifier first identifies 
infeasible configurations that manifest inordinately large 
doubling time and excludes them from the second regressor 
stage. Then the regressor model evaluates the doubling time of 
the configurations that are classified as feasible in the first stage. 
The classification accuracy is > 99%, and the mean absolute 
error (MAE) of the doubling time prediction is less than 1 s.

Two case studies are carried out to verify the automatically 
constructed CFD database and ANN-based optimization. 
The first aims to find the optimal heater heights given a fixed 
configuration of the capillary tube. A sequential quadratic 
programming is implemented to search for the configuration 
with the minimum doubling time. The optimal THH and BHH 
are found to be 35.00% and 19.98%, respectively. Additional 
CFD simulations are also conducted at the vicinity of the 
optimal configuration to verify robustness and accuracy of the  

proposed approach, and it is found that the average MAE of 
predicted doubling time is 0.21 s. The second case study is more  
challenging and seeks the optimal configuration within the four  
parameter space along with a practical volume constraint of  
the capillary tube. Because of the ultrafast speed of the ANN 
model, a GA is adopted for this study. It identifies an optimal 
solution of DI = 1.56 mm, AR = 8.01, THH = 35.00%, and 
BHH = 25.81%. Likewise, the optimal solution and the response 
surface around its vicinity are verified by the CFD simulations 
and the MAE of doubling time is 0.26 s. The results of both case 
studies verify the accuracy of the CFD database and the ANN 
models, and demonstrate that the optimal device configuration 
of the DH-cPCR can be successfully found by the ANN-based 
optimization. The proposed method and framework represents 
an accurate and efficient solution to accelerate DH-cPCR device 
design, and can potentially, be extended to different types of 
POC PCR devices.
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