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Abstract

Genetic association studies of SLC6A4 (SERT) and OCD have been equivocal. We genotyped 1 

241 persons in 278 pedigrees from the OCD Collaborative Genetics Study for 13 SNPs, the LPR 

indel with molecular haplotypes at rs25531, VNTR polymorphisms in introns 2 and 7, and a 381-

bp deletion 3’ to the LPR. We analyzed using the Family Based Association Test (FBAT) under 

additive, dominant, recessive, and genotypic models, using both OCD and sex-stratified OCD as 

phenotype.

Two-point FBAT analysis detected association with Int2 (p= 0.0089) and Int7 (p= 0.0187) 

(genotypic model). Sex-stratified 2-point analysis showed strong association in females with Int2 

(p< 0.0002), significant after correction for LD, multiple marker- and model testing (pAdj= 

0.0069). The SLC6A4 gene is composed of two haplotype blocks (our data and the HapMap); 

FBAT whole-marker analysis using this structure was not significant.

Several noteworthy non-significant results emerged. We found no evidence for over-transmission 

of the LPR LA allele (GRR= 1.11, 95% CI: 0.77–1.60) (see Hu et al.1), however rare individual 

haplotypes containing LA with p<0.05 were observed. Similarly, 3 individuals (2 with OCD/

OCPD) carried the rare I425V SLC6A4 variant- but none passed it on to their 6 OCD-affected 

offspring, suggesting it is unlikely solely responsible for the “OCD plus syndrome” (see Ozaki et 

al.2).

In conclusion, we found evidence of genetic association at the SLC6A4 locus with OCD. 

Noteworthy lack of association at the LPR, LPR-rs25531, and rare 425V variants suggests 

hypotheses about OCD risk need revision to accommodate these new findings, including a 

possible gender effect.
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Introduction

Twin and family studies suggest that obsessive-compulsive disorder (OCD) has a genetic 

basis, but a major causative gene(s) for the disorder has not yet been identified. Segregation 

analyses suggest that OCD is transmitted as either an autosomal dominant or codominant 

trait, particularly in those with disease onset before adulthood. (3–5) The first linkage study 

of OCD found evidence for suggestive linkage (LOD=2.25) to chromosome 9p24 in 56 

individuals from 7 pedigrees at marker D9S288. (6) Additional evidence of linkage to this 

locus (HLOD=2.26) was observed in a sample of 50 pedigrees with markers D9S1813 and 

D9S1792 which are located within 0.5 cM (<350 kb) of D9S288 (7) and two of the markers 

tested gave modest evidence of association (p= 0.046 and 0.02). The gene encoding the 

neuronal glutamate transporter SLC1A1 is located in the 9p24 linkage region and has been 

found to have genetic association with OCD by several groups (8–10, 69). It is likely that 

there are additional genomic loci for OCD as a substantially larger genome-wide linkage 
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scan observed suggestive linkage to chromosomes 3q, 7p, 15q, 6q, and 1q, although it did 

not strongly support linkage to 9p24. (11)

The gene for another transporter of neurochemical importance, SLC6A4 (serotonin 
transporter, 5-HTT, or SERT), located on chromosome 17q11.1-q12, has also been studied 

extensively for genetic association to OCD. SLC6A4 is the molecular target of the selective 

serotonin reuptake inhibitors (SSRIs), e.g., fluoxetine, fluvoxamine, sertraline, paroxetine, 

and citalopram. SSRIs collectively represent the most clinically effective and widely studied 

pharmacological treatment for OCD; they are effective in reducing both the thought 

(obsessions) and behavioral (compulsions) components of OCD. (12) Imaging studies have 

suggested that individuals with OCD have decreased serotonin transporter availability in the 

midbrain/brainstem. (13–15)

A large amount of genetic variation has been observed in SLC6A4 including both rare and 

common SNPs (16), repeat polymorphisms in introns 2 and 7, and an extensively studied 

functional 44-base pair indel polymorphism in the promoter region (5-HTTLPR). Both the 

5-HTTLPR and the intron 2 polymorphism have been shown to affect transcription of 

SLC6A4. (17–18) While the initial reports suggested association between the LPR and OCD 

(19–20), most subsequent studies have been negative. (21–28) More recently, Dickel and 

colleagues (10) failed to detect association with OCD when examining select 

polymorphisms in SLC6A4, including the LPR. They carried out a meta-analysis constituted 

of five prior reports consisting of both positively and negatively associated findings that did 

not support a combined-sex association for either the long (L) or short (S) allele, after 

correction. However, they found nominally significant excess transmission of the L allele in 

females but not males. Lin (29) expanded the scope of investigation by meta-analysis of 

association findings of the LPR and OCD by pooling results from 13 independent case-

control association studies with 3445 subjects (1 242 OCD patients and 2 203 controls). All 

13 studies used an OR (odds ratio) estimator of risk, and random effects modeling showed 

OCD associated with the SS genotype and inversely associated with the LS genotype 

(OR=1.21 and p=0.04 vs. OR=0.79 and p=0.03, respectively). No association was detected 

for the LL genotype nor solely the allelic L variant.

Most recently, further meta-analysis (18) analyzed a larger set of case-control and, 

additionally, family based association findings. No evidence of association with variation at 

the LPR locus and OCD was detected in the overall meta-analysis. However, stratified meta-

analysis demonstrated significant association between the L allele and OCD in family-based 

association testing and in studies involving children (child-onset OCD) and Caucasians. 

However, the authors note that no adjustments were made to the significance threshold for 

multiple comparisons.

The simple model of the 5HTTLPR having a long allele (L) with higher expression and a 

lower-expressing short (S) allele has been refined with the discovery of additional nearby 

variation that influences transcription. Hu and colleagues (1) showed that a G allele at 

rs25531 located within the LPR on an L background (designated LG) creates a functional 

AP2 transcription-factor binding site and has a serotonin reuptake activity of an S allele. 

This group then found that the gain of function LA/LA genotype was twice as common in 
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OCD cases (n=169) as in ethnically matched controls (n=263) and the LA allele showed a 2-

fold over-transmission in OCD-affected trios (n=175), leading to a 1.8-fold increased risk of 

OCD.

Rare genetic variation in SLC6A4 also has been implicated in the pathogenesis of OCD. A 

SNP in exon 8 alters amino acid 425 from isoleucine to valine (I425V), resulting in a protein 

with an increase in Vmax and decrease in KM. (30) This variation was observed to segregate 

with OCD in two OCD-dense families and all six of the individuals with 425V whom could 

be psychiatrically assessed had either OCD or OCPD. (2) Additional studies have found a 

prevalence of 425V of 1.5% in OCD cases (n=530) as compared to 0.2% in controls (n=1 

300), with p= 0.004 and an OR= 6.54. (31)

Given the large (n=1 241), multi-center US family sample we have collected, we 

investigated comprehensively whether genetic association of OCD to multiple SLC6A4 
polymorphisms and haplotypes are observed using family-based statistical approaches.

Materials and Methods

Human Subjects.

The OCD Collaborative Genetics Study (OCGS) is an ongoing, NIMH-funded collaboration 

among investigators at seven sites in the US (Brown University, Columbia University, 

University of Southern California, Johns Hopkins University, Massachusetts General 

Hospital, University of California at Los Angeles, and the National Institute of Mental 

Health). The methods of the study are described in detail elsewhere (32) and summarized 

below.

The OCGS targeted families containing at least one sibling pair both affected with OCD and 

extended these pedigrees when possible through affected first- and second-degree relatives. 

Family history interviews were conducted to determine that there were at least two OCD-

affected siblings in the family who were willing to participate and to identify additional 

affected relatives. All first- and second-degree relatives were considered for inclusion, and 

families were extended through the first-degree relatives of all affected cases.

To be considered affected, a participant had to meet DSM-IV OCD diagnostic criteria at any 

time in his or her life. Probands were included if, in addition to meeting DSM-IV criteria, 

their first onset of obsessions and/or compulsions occurred before 18 years of age. Probands 

with schizophrenia, severe mental retardation, Tourette’s disorder (TD), or secondary OCD 

(OCD occurring exclusively in the context of depression) were excluded. Participants had to 

be at least 7 years old to participate in the study.

SNP genotyping.

13 SNPs were genotyped using SNPlex chemistry according to manufacturer’s instructions 

(protocol P/N 4360858 Revision B) and genotype calls were made using Applied Biosytems 

(ABI, Foster City, CA) GeneMapper™ v4.0 Software. A SNP set was assembled using data 

from phase I of the HapMap Project (hapmap.org) and a “tag” set of SNPs was generated 

using the Tagger server (broad.mit.edu/mpg/tagger/index.php), using parameters of pairwise 
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tagging, r2 of 0.99, and a MAF threshold of 1%. Additional non-synonymous SNPs were 

selected with preference given to those with reported allele frequencies. Overall genotyping 

completion rate for the 13 SNPlex-assayed SNPs was 98.5% (96.7–99.0%). The discordance 

rate for 48 randomly-plated blind duplicates was 3 genotypes in 624 total genotypes (0.5%).

381-Base pair deletion genomic DNA amplification.

Amplification was performed in a final volume of 5 μL containing 20 ng genomic DNA 

template, 200 uM dNTPs, 1.5 M betaine (Sigma-Aldrich, St. Louis, MO), 50 mM KCl, 20 

mM Tris-HCl (pH 8.4), 2.5 mM MgCl2, 200 nM primers (F-

CTCCAGCATTCTCCTTGCAC and R-TGAGCCCAGGAATTCAAGAC (Invitrogen, 

Carlsbad, CA)), and 0.25 units Platinum Taq DNA polymerase (Invitrogen), then cycled at 

95°C for 1 min, followed by 10 cycles at 95°C for 20 sec, 61°–56°C for 20 sec (decreased 

by 0.5°C intervals per cycle), and 72°C for 1 min, followed by 35 cycles at 95°C for 20 sec, 

56°C for 20 sec, and 72°C for 1 min, with a final 30 min at 72°C on a DNA Engine Dyad 

PTC-220 thermal cycler (MJ Research, Waltham, MA). Amplified samples were run on 2% 

agarose in 1XTBE with EtBr (Cambrex Bio Science, Rockland, ME) and examined under 

UV fluorescence.

Microsatellite and LPR genotyping.

A PCR “triplex” for SLC6A4 LPR, intron 2, and intron 7 was performed in 2.5 μL 

containing 25 ng genomic DNA template, 400 μM dNTPs, 1.5 mM 10X PCR Buffer IV 

(Abgene, Surrey, UK), 3.0 mM MgCl2, 200 nM primers for the LPR (F-FAM-

ATGCCAGCACCTAACCCCTAATGT; R-GGACCGCAAGGTGGGCGGGA), 200 nM 

primers for intron 2 (F-FAM-GTCAGTATCACAGGCTGCGAG and R-

TGTTCCTAGTCTTACGCCAGTG), 100 nM primers for intron 7 (F-HEX-

ACCGCACCCCGTCTCTCTCTTT and R-ACACCTGTAAGCACAGCCACTTG) 

(Invitrogen), and 1.0 unit Platinum Taq DNA polymerase (Invitrogen), then cycled according 

to the following protocol: at 96°C for 5 m followed by 35 cycles of 96°C for 45 s, 68°C for 

30 s and 72°C for 1 m, followed by a final extension at 72°C for 10 m on a DNA Engine 

Dyad PTC-220 thermal cycler. Samples were then subjected to capillary electrophoresis on 

an ABI 3100 fragment analyzer (ABI) and the following size ranges were observed: 5-

HTTLPR, 375 or 419 bp; Int2 VNTR, 260–310 bp; and Int7 GAAA, 263–288 bp. 

Microsatellite genotyping calls were made using Gene Marker v1.5 software (SoftGenetics, 

LLC, State College, PA). Forty-eight randomly distributed blind duplicates revealed no 

discordances. This assay achieved the following genotype completion rates: LPR, 99.6%; 

Int2, 98.2%; and Int7, 99.6%.

LPR-rs25531 (A/G) SNP variant.

Phase-certain haplotyping of the LPR variants LA, LG, SA and the rare SG allele was 

performed by a 2-step protocol: I. determination of the LPR L or S allele, as above; and, II. 

digestion of this amplicon with MspI restriction endonuclease. The assay was designed to 

include an invariant MspI digest site 94 bp from the end of the LPR amplicon to provide an 

internal control for digestion/partial digestion (OS figure 2). After separation of the 

digestion products by capillary electrophoresis and analysis using Gene Marker v1.5, the 

following restriction fragment allele sizes were obtained: SA (281 bp), LA (325 bp), SG and 
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LG (151 bp). When these data are combined with the results from the undigested fragment 

data, unambiguous haplotypes can be deduced (see legend to OS figure 2). All of the rare SG 

alleles were confirmed by capillary DNA sequencing. The 48 randomly distributed blind 

duplicates were 100% concordant. Completion rate for the LPR-rs25531 genotyping (step 

II) was 96.5%.

Statistics.

Family-based association analysis.—We used FBAT and PDT (http://

www.chg.duke.edu/software/pdt.html) (33–35) to run two-point SNP analyses under 

additive, dominant and genotypic models and for haplotype-based association analysis.

Corrections for multiple testing.—Two-point p-values from FBAT were corrected for 

multiple-marker testing in the presence of linkage disequilibrium (LD), and also multiple-

model assessments, but not gender. The PACT (p-values adjusted for correlated tests) 

approach adjusts for multiple comparisons by calculating the null distribution of the test 

statistics through numerical integration of their asymptotic joint distribution. This approach 

has been shown to be reliable and highly efficient for adjustment of multiple-comparisons. 

(36)

Haplotype analysis and haplotype phasing.—We used Haploview 4.1 to assess LD 

structure at the SLC6A4 locus using the OCGS genotype data (17 markers). We adopted 2 

LD blocks defined by the solid spine approach (extension with D’> 0.95) that encompassed 

our set of polymorphic markers for all haplotype analysis in FBAT (OS Figure 3). The 

HapMap phase III dataset supported this LD block structure (OS Figure 4). Haplotype 

analysis was performed on only the Caucasian portion of the sample by removal of 47 

individuals who reported non-Caucasian ethnicity, which included 5 entire pedigrees (see 

Table 4, pedigree ethnicity summary).

In our haplotype analysis we assigned the most likely estimated haplotype to each 

individual. Given that the haplotypes were estimated within haplotype blocks with tight LD 

structure for SNPs within a block, haplotype diversity was low with estimated haplotype 

posterior probabilities within each block greater than 92%. Thus, the method of assigning 

the most likely haplotype yields similar results to an approach using the expectation or 

haplotype dosage (37–39) The permutation method implemented in FBAT was used to 

compute haplotype whole-marker (minimal) p-values (biostat.harvard.edu/~fbat).

Genotype Relative Risk (GRR).—Conditional logistic analysis was carried out using the 

STATA package (http://www-gene.cimr.cam.ac.uk/clayton/software/stata).

Power calculations.—In separate calculations assessed in PBAT (http://

www.goldenhelix.com/SNP_Variation/PBAT/pbat_methodology.html), the power to detect 

association assuming an additive model of inheritance with a disease allele frequency of 

0.05 and a population prevalence of 0.03 using the 278 families (459 nuclear families) 

already collected is roughly 0.60 (if the D’ between the disease locus and candidate SNP is 

1.0).
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Sex-stratified Analyses.—We stratified the dataset by the gender status of male or 

female OCD-affecteds in each family. We coded the affection status of either all female 

OCD-affecteds as “unknown”, or all male affecteds as “unknown,” and analyzed with FBAT. 

P-values for sex-stratified analyses were not corrected for the three hypotheses tested (all, 

male-only, female-only).

Results

We genotyped 278 pedigrees containing 459 nuclear families and 1 241 persons (>96% 

Caucasian pedigrees; see Table 4) with 14 SNPs, the LPR indel and two VNTR 

polymorphisms in introns 2 and 7 within SLC6A4 to determine if they are in linkage 

disequilibrium (LD) with OCD (Table 1, OS Figure 1). Three SNPs, rs6353 (MAF= 0), 

I425V and rs140699 (MAFs= 0.003) with low minor allele frequencies (MAF) did not have 

a sufficient number of families to calculate 2-point results with FBAT and were also 

excluded from the haplotype analysis. In addition, we also failed to detect a 381-bp deletion 

variant immediately 3’ of the LPR (40) in 354 randomly selected samples from 102 families. 

All other SNP data were confirmed to be in Hardy-Weinberg equilibrium (HWE) and were 

used to determine the haplotype structure in the region, which was in agreement with the 

haplotype structure of SLC6A4 observed with HapMap Project phase III data (OS Figures 3 

& 4).

We performed two-point analyses using FBAT under additive, dominant, recessive and 

genotypic models and the results for the additive model are presented in Table 2, parts A and 

C. All allele-model combinations for the whole sample that yielded nominal p-values <0.05 

are presented in Table 3. Specifically, under an additive model we observed nominal 

evidence of positive association with allele 5 of the microsatellite repeat in intron 7 (p= 

0.0330; 14 informative families). Under a genotypic model, the intron 2 genotype containing 

alleles 9/10 showed positive association (p-value= 0.0089; 13 families), and the intron 7 

genotype containing alleles 3/7 was inversely associated with OCD (i.e., reduced risk) (p= 

0.0187; 105 families). Given that a number of correlated tests were performed and that 

significant LD existed within the set of markers (see OS Figure 3), we employed the method 

of Conneely and Boehnke (36) to correct jointly for multiple marker comparisons, in the 

setting of LD. On the full sample, none of the resulting 2-point analysis adjusted P-values 

(PAdj) were <0.05 (Table 3). The results did not change appreciably when analyzed with the 

PDT.

The most notable negative results were at the LPR locus. We found no evidence of 

association to either the LPR polymorphism, or to the molecular haplotype of LPR-rs25531 

with any of the genetic models (additive model data shown in Table 2, OS Table 1). We did 

observe 10 individuals with the SG variant, all of which were confirmed by DNA 

sequencing. Two of these individuals had a LPR variant similar to that as reported previously 

(see variant 14B in (41)) (data not shown). We investigated whether these results were 

influenced by either genotypic (e.g., LPR allele frequencies) or phenotypic heterogeneity 

(e.g., % females, ethnicity, mean age of onset of symptoms) across the different clinical 

sites. No evidence of either genotypic or phenotypic heterogeneity was observed (Table 4). 
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Furthermore, we did not observe association of the LPR-rs25531 haplotype when each site 

was analyzed individually.

Three individuals with the rare 425V variant were detected and we examined their pedigrees 

in greater detail. In all three, the individual with 425V was the biological parent of an OCD 

affected sib-pair. Two of the carriers were fathers: one with OCD (1808–3), one with OCPD 

(2113–69); the third was an unaffected mother (2947–68). However, none of these 

individuals passed the 425V variant to their OCD-affected sibpair offspring (confirmed by 

DNA sequencing). This non-segregation of 425V to the 6 OCD-affected offspring was 

unexpected; such segregation by chance alone should only occur 1/64th of the time. Two of 

the 425V carriers were diagnosed with depressive disorders (1808–3 probable MDD and 

2947–68 recurrent MDD/dysthymia), two had skin picking (1808–3 (probable) and 2947–68 

(definite)); and two had probable alcohol dependence (1808–3 and 2113–69) (see OS Table 

2).

We also analyzed the data stratified by sex by FBAT (similar PDT results), under the 

hypothesis that genetic loci for OCD may be sex-specific (Tables 2 & 3). One SNP, 

rs2020930 located 5’ to the LPR had a nominal p-value of <0.05 in males, but this did not 

withstand correction for multiple testing (PAdj= 0.3379). The most statistically significant 2-

point findings were obtained using a genotypic model and showed association in females 

with intron 2 alleles 9/10 (p-value< 0.0002; 10 informative families). With PAdj= 0.0054, 

this finding withstood the joint correction for multiple marker comparison and LD. We then 

further adjusted the statistical significance for the testing of multiple genetic models, and the 

result remained significant (PMAdj= 0.0069) (Table 3). Even using a conservative Bonferroni 

correction for the testing of 3 sex-based models (all, male-only, female-only) this result is 

still significant after correction for all tests done (p< 0.017).

Lastly, we carried out a haplotype analysis with FBAT for the two observed haplotype 

blocks using the entire and sex-stratified Caucasian sample. The 5’ block 

(rs2020930:rs4392119:LPR-rs25531:rs25533:rs2020933) contained the LPR and the first 

exon while the 3’ block (rs6355:Int2:rs140700:Int7:rs4583306:rs7224199) includes the rest 

of the gene (Table 2, OS Figures 3 & 4). Neither block achieved whole-marker significance 

using a permutation test. In the 5’ block, four individual haplotypes had p<0.05 of the 18 

observed haplotypes. Interestingly, both individual haplotypes containing a high expressing 

LA allele conferred risk (ACLATA and GTLATT, albeit in different sexes), while the two 

individual haplotypes containing low expressing alleles (GTSATT and GCLGTT, principally 

in males) were protective. We note that the individual haplotypes GTLATT and GTSATT are 

identical except at LPR-rs25531, yet have opposite effects on OCD risk. In the 3’ block of 6 

markers (including 2 microsatellites) and 25 observed individual haplotypes, three 

haplotypes with p< 0.05 were observed. Two of these contain the 267 bp allele at intron 2, 

which is part of the 250/267 genotype that was significant after correction. The set of 10 

female families (250/267 genotype, Table 3) overlapped with the set of 8 female families 

(267 bp allele- containing haplotype, Table 4) in only a single female. We note that 

individual haplotype p-values are uncorrected for multiple testing.

Voyiaziakis et al. Page 8

Mol Psychiatry. Author manuscript; available in PMC 2019 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

The serotonin transporter, SLC6A4, is the molecular target of the selective serotonin 

reuptake inhibitors (SSRIs), which are the current medications of choice for the treatment of 

OCD. There have been multiple genetic association studies of OCD and SLC6A4 and while 

some of these have been positive, overall the results have been equivocal. In an effort to 

determine whether variation in SLC6A4 alters the probability of an individual developing 

OCD, we genotyped 1,241 DNA samples from the OCGS OCD-affected sib pair study (278 

pedigrees, 459 nuclear families, 1 598 total persons) with 17 marker loci.

After correction for multiple testing with several models and marker loci, none of the two-

point results using the entire sample remained statistically significant. Given the suggestion 

of gender differences that have been observed in genetic association studies of OCD and 

HTR2A, COMT and MAOA (42–44) and also in segregation studies (3), we also analyzed 

our data stratified by sex, under the hypothesis that genetic loci for OCD may be sex-

specific. In these analyses, genotype 9/10 of the Int2 VNTR was associated with OCD in 

females both before (p< 0.0002), and after correction for LD structure and multiple marker 

comparisons (pAdj= 0.0054). This result remained significant after we further corrected for 

the testing of additive, dominant, recessive and genotypic genetic models (PMAdj= 0.0069). 

There have been suggestions of sex-specific OCD findings for SLC6A4, for the LPR, in a 

Dutch sample (45) and a recent meta-analysis (10); the latter did not withstand multiple-

marker nor multiple-analysis corrections, while the former may have. While we approached 

sex differences in the conferring of OCD risk as separate hypotheses, we note that even with 

additional correction, findings remain significant with p< 0.0167.

In the OCGS sample, there appears to be little difference in the OCD symptomatology 

between males and females. There are no sex differences in YBOCS severity scores, 

numbers of different categories of obsessions or compulsions, or in the proportions treated 

for their OCD symptoms. There are sex differences in prevalence of several Axis I disorders, 

females showing more recurrent major depression (MD), hypomania, dysthymia, 

hypochondriasis, skin picking, panic disorder, agoraphobia, social phobia (SP), generalized 

anxiety disorder (GAD), anorexia and bulimia and less TD, alcohol dependence and 

Asperger’s Syndrome. (32) Serotonin has been hypothesized to play a role in many of these 

disorders. Given that the majority of OCD-affected individuals in the OCGS sample are 

female (66%), it is possible that the observation of the association to alleles 9/10 of the Int2 

VNTR in the OCGS females may be due to presence of co-morbid Axis I disorders, rather 

than OCD.

There have been previous observations of association of alleles at the Int2 marker with a 

number of neuropsychiatric disorders. Allele 9 has been associated with both unipolar 

depression (46–47) and depression in the context of bipolar disorder (BPD). (47) The Int2 

allele 12 has been associated with BPD (48), schizophrenia (meta-analysis) (49), autism 

(50), and anxiety disorders with and without OCD, in Japanese subjects, but not Caucasians. 

(51) Additionally, less favorable SSRI treatment response was observed in Asians with 

major depression and the Int2 10/12 genotype in a meta-analysis. (52) More recently, study 
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of OCD in a Spanish Caucasian sample found an excess of 12/12 and 12/10 genotypes in 

cases. (53)

The functional mechanism driving the associations of these Int2 alleles in vivo may be 

complex and may involve combined effects with the linked polymorphic region (LPR) 

polymorphism. (54) VNTR copy number variation has been shown to have effects on 

transcription (55), as have VNTR sequence variants on differential reporter gene expression. 

(56) Recent investigation of the Int2 VNTR as a target for mediating a transcriptional 

response to LiCl via the transcription factors CTCF and YB-1, found that in vivo 
transcriptional variation was correlated with differential binding of both these transcription 

factors to the three distinct VNTR variants after exposure to LiCl, suggesting differential 

allelic gene expression. (17)

Although there is evidence that the Int2 VNTR can influence the expression of SLC6A4, it 

is the LPR indel that has been most extensively studied. Early studies of the LPR by Lesch 

and colleagues observed that the transcriptional activity of the L allele was 2- to 3 fold 

higher than that of the S allele in lymphoblastoid cell cultures. (57) The L allele was 

associated with higher platelet serotonin uptake. (70–71) Consistent with many prior reports, 

we failed to detect association of the LPR with OCD in the OCGS sample, either in the 

combined-sex data or when analyzing by sex.

It appears that additional variation within the LPR affects the strength of the SLC6A4 
promoter. Hu and colleagues showed that the A to G base change at rs25531 within the LPR 

forms a haplotype (LG) that has comparable low activity to the S allele. (1) They also found 

that the LA allele was associated with OCD in both case-control and trio samples and 

conferred a 1.8-fold increased risk (OR) of developing the disorder. One other published 

report of the haplotype found equivocal replication with LA/LA, or LA alone, in a case-

control study of 347 OCD-affecteds vs. 749 population-matched controls, and results did not 

withstand correction for multiple testing. (58) We generated phase-certain haplotypes of the 

LPR-rs25531, but failed to observe any evidence that the LA/LA genotype conferred risk for 

OCD. In addition, we did not observe an association to either LA or LG under additive, 

dominant models, recessive or genotypic models, either in the total data set or when 

stratified by sex. In our sample the GRR for the LA/LA genotype vs. all others was 1.11 

(95% CI: 0.77–1.60, p= 0.58). While positive, this risk estimate is markedly less than that 

reported by Hu et al (see also OS table 1).

Phenotypic and/or genotypic heterogeneity may have contributed to lack of replication in 

this multi-site association study. Factors such as ethnicity, method of ascertainment, site of 

patient recruitment, mean age at time of patient recruitment, and mean age at onset of OCD 

symptoms all may play a contributory role. We did not observe significant differences when 

analyzing these parameters by site of patient recruitment. We then assessed for genetic 

heterogeneity in our sample by examining LPR L and S allele-, and LPR-rs25531 haplotype 

frequencies in the OCGS sample by site. We did not detect significant differences.

Alternatively, it is possible that our results differ from those of Hu and colleagues (1) due to 

additional unmeasured genetic variation in the SLC6A4 gene that has a functional effect on 
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the promoter of the gene. Two SNPs in the first intron of SLC6A4, rs16965628 and 

rs2020933 were shown correlated with allelic expression imbalances (59) and rs25532 has 

been suggested to affect expression. (58) The latter report described a functional C to T 

single nucleotide polymorphism (rs25532) located near the LPR; its minor allele 

significantly decreased luciferase reporter gene expression levels. Haplotype-based testing of 

rs25532 and all other known non-coding functional SLC6A4 variants revealed significant 

overrepresentation in probands who had the higher-expressing allele at each locus, 

supporting the notion of increased serotonin transporter functioning being pathogenetically 

involved in OCD. Conditional haplotype analyses revealed that this association was driven 

by the LPR, rs25532 and rs16965628 in concert. Finally, our results may differ from those of 

Hu and colleagues due to the characteristics of the respective samples. The OCGS sample is 

composed entirely of familial OCD cases (33), whereas case-control and trio samples will 

contain a higher proportion of sporadic cases that may have a different genetic basis.

We also investigated several rare variants within SLC6A4 to determine if they were 

associated with OCD in our sample. We found no individuals with either rs6353 (T439T) or 

the 381-bp deletion variant immediately 3’ of the LPR that has been previously shown to 

contain several canonical transcription factor binding sites. Rs6353 is thought to be 

functional (56,16) and has been associated with both autism and depression. (61,62) We also 

investigated the rare SNP that causes a non-synonymous change from isoleucine to valine at 

position 425 of SLC6A4 that has been suggested to contribute to an uncommon familial 

form of OCD in two unrelated pedigrees with OCD and other serotonin-related 

comorbidities. (2) We observed three individuals from three pedigrees with 425V, all of 

whom are parents of OCD affected sib-pairs. Collectively, these 3 individuals had 6 OCD 

affected offspring, none of whom received the 425V allele from these parents, a result that 

should occur in only 1/64th of such segregations. These genetic data are not supportive of the 

hypothesis that 425V is solely responsible for the “OCD plus syndrome”. (2,63) We also 

tested the “double-hit” hypothesis proposed by Ozaki and colleagues (2), in which 

homozygosity of the L-allele plus the 425V variant, which increase both transcription and 

functional activity, and hence increases the risk for OCD. Consistent with this hypothesis, 

the single 425V carrier who was affected with OCD is homozygous for the LPR L allele. 

Haplotype analysis of LPR-rs25531 revealed that this individual is LG/LA, and hence a 

functional heterozygote. Haplotype analysis of the three pedigrees segregating the 425V 

variant found that this rare variant was found on an LPR LA background (the other two 

425V carriers were S/LA), suggesting one mutation event, possibly as a shared ancestral 

event in these pedigrees. The 425V allele has been observed in controls (60,63) and in 

another study in families with pervasive developmental disorders, eating disorders and OCD, 

but other large studies on various types of patients and controls have failed to detect it 

(64,65). Non-transmittal of the 425V allele to 6 definite OCD cases proves that those OCD 

cases in high-density OCD families have some other cause of their OCD.

Ozaki and colleagues have suggested the 425V variant as a possible mediator of SSRI 

treatment response or as a mediator/exacerbator of neuropsychiatric comorbidity. (2) They 

hypothesized an “atypical OCD plus”, a syndrome incorporating OCD plus AS/autism/social 

phobia and eating disorders. We failed to find support for either of these hypotheses, as we 

observed no instances of 425V in the 32 self-reported SSRI treatment non-responders, and 
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while each of the three 425V carriers do have a complex neuropsychiatric phenotype, it 

differs from “atypical OCD plus”. We suggest that 425V might predispose to a spectrum of 

complex serotonergic phenotypes that is wider than that observed by Ozaki et al, and that 

OCD may not be a necessary component of this spectrum.

Family-based haplotype reconstruction has demonstrated higher reliability when compared 

to haplotype reconstruction from unrelated individuals. (66) When analyzing haplotypes, we 

excluded the small number of non-Caucasian pedigrees that may have contributed to 

heterogeneity. Several less common individual haplotypes do show the LA allele associated 

with OCD risk, and the SG and SA alleles comparably associated with inverse risk. In 

contrast, 2-pt analysis at the LPR showed no association with OCD. Investigation of the 

COMT gene recently showed that while single variants might fail to show association (e.g., 

COMT V158M), functional haplotypes containing these alleles can show strong association 

(e.g., TMJ disorder and pain sensitivity). (67) The selection of haplotype blocking algorithm 

in the context of degree of LD at the given locus is known to affect association findings and 

type 1-error rates. (68) We noted that several of the blocking algorithms (e.g., Gabriel et al., 

Patil et al.) gave marginally significant findings after correction for the number of LD blocks 

tested in the 3’ haplotype block, notably when a significant portion of the marker set was 

excluded (e.g., Gabriel algorithm) or when haplotype “windows” approached small numbers 

of markers (e.g., Patil algorithm). Hence, the full significance of these individual haplotypes 

has yet to be determined; some may confer appreciable risk in a genotypic subset of this 

sample.

In conclusion, we found evidence of genetic association at the SLC6A4 locus with OCD. 

Noteworthy was the lack of association at the LPR, the LPR-rs25531 haplotype, and the rare 

425V variant. Current hypotheses about the risk of specific variants need revision to 

accommodate these new findings, including a possible gender effect.
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