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Abstract. Renal cell carcinoma (RCC) is the most common 
type of kidney cancer in adults and accounts for ~80% of all 
kidney cancer cases. However, the pathogenesis of RCC has 
not yet been fully elucidated. To interpret the pathogenesis 
of RCC at the molecular level, gene expression data and 
bio‑informatics methods were used to identify RCC associ-
ated genes. Gene expression data was downloaded from Gene 
Expression Omnibus (GEO) database and identified differen-
tially coexpressed genes (DCGs) and dysfunctional pathways 
in RCC patients compared with controls. In addition, a regula-
tory network was constructed using the known regulatory data 
between transcription factors (TFs) and target genes in the 
University of California Santa Cruz (UCSC) Genome Browser 
(http://genome.ucsc.edu) and the regulatory impact factor of 
each TF was calculated. A total of 258,0427 pairs of DCGs 
were identified. The regulatory network contained 1,525 pairs 
of regulatory associations between 126 TFs and 1,259 target 
genes and these genes were mainly enriched in cancer path-
ways, ErbB and MAPK. In the regulatory network, the 10 most 
strongly associated TFs were FOXC1, GATA3, ESR1, FOXL1, 
PATZ1, MYB, STAT5A, EGR2, EGR3 and PELP1. GATA3, 
ERG and MYB serve important roles in RCC while FOXC1, 
ESR1, FOXL1, PATZ1, STAT5A and PELP1 may be potential 
genes associated with RCC. In conclusion, the present study 
constructed a regulatory network and screened out several TFs 
that may be used as molecular biomarkers of RCC. However, 
future studies are needed to confirm the findings of the present 
study.

Introduction

Kidney cancer that forms in tissues of the kidney is not a 
single disease, instead it comprises a number of different 
types of cancer of which renal cell carcinoma (RCC) is 
the most common type in adults, responsible for ~80‑90% 
of cases (1,2). The diagnosis of RCC is a challenging and 
difficult task, and RCC is one of the most therapy‑resistant 
types of cancer. RCC is regarded as a highly lethal cancer 
and ~35% of patients succumb to the disease after 5 years (3).

Understanding the pathogenesis and biological mecha-
nism of RCC may improve the current diagnosis, treatment 
and prognosis of RCC. However, the pathogenesis of RCC 
is extremely complex and remains to be fully elucidated. 
Smoking, obesity and mutations in specific genes increase 
the risk of developing RCC (4‑6). The best characterized 
oncogenic gene in human RCC is the tumor suppressor 
gene von Hippel‑Lindau (VHL). VHL along with elongin B, 
elongin C and cullin 2 form a E3 ubiquitin‑ligase complex, 
and are considered to serve an important role in RCC (7,8). 
The VHL complex targets hypoxia‑inducible factor (HIF) for 
ubiquitin‑mediated degradation (9). Mutations in VHL can 
result in the over accumulation of HIF, and its target genes 
such as VEGF (vascular endothelial growth factor), PDGF 
(platelet derived growth factor) and EGRF (epidermal growth 
factor receptor), thus resulting in carcinogenesis  (10‑12). 
Mutations of either tuberous sclerosis 1 (TSC1) or TSC2 
are associated with aberrant activation of mammalian target 
of rapamycin (mTOR) pathway, which increases the risk of 
RCC (13,14). Owing to the above reasons, VEGF, PDGF, 
EGRF and mTOR may serve as potential target molecules for 
the treatment of RCC. In addition, dysregulation of membrane 
MHC class I chain‑related gene A (MICA), cyclooxygenase‑1 
(COX1), TGF‑β‑activated Kinase‑1 (TAK1), and cell division 
cycle 25B (CDC25B) serve critical roles in RCC progres-
sion (15‑18). Previous studies have predominantly focused 
on single genes, and paid little attention to the dysregulation 
of transcription factors or differentially coexpressed genes; 
therefore the present study aimed to address this issue to 
provide novel insights into RCC.

DNA microarray has previously been used to identify 
gene expression patterns in RCC (19,20). In order to achieve a 
more comprehensive understanding of the molecular mecha-
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nisms underlying RCC, gene expression profiling analysis 
was applied to identify DCGs and regulatory network 
analysis was used to identify potential associations.

Materials and methods

Affymetrix microarray data. The gene expression profile 
dataset GSE6344  (21), including 10  RCC samples and 
10 patient‑matched normal control samples, was obtained from 
the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo/) database. The probe‑level data was converted into 
the corresponding gene symbol using the annotation informa-
tion derived from platform GPL96. For genes corresponding 
with multiple probe sets that had multiple expression values, 
the mean expression values of those probe sets were obtained. 
As a result, 12,754 genes were obtained from this dataset.

Construction of regulatory network. The data of TF binding 
sites of human genome hg18 and the coordinates of genes were 
downloaded from UCSC (http://genome.ucsc.edu). TF binding 
sites within the area from 1 kb upstream to 0.5 kb downstream 
of the transcription initiation site of target genes were selected 
to construct the regulatory network.

Differentially coexpressed genes analysis. For any pair of 
genes (X,Y), the absolute difference (Diff) of the Pearson's 
correlation coefficient in the normal state (P‑normal) and 
in the cancer state (P‑tumor) was calculated. The pair of 
genes was regarded as DCGs only when their Diff was >1. 
Diff value >1 indicated that the pair of genes had a negative 
correlation (P‑normal ∈ [‑1,0] ) and a positive correlation 
(P‑tumor ∈ [0,1]) under the normal and tumor state respec-
tively, or vice versa. The difference was calculated using the 
following equation 1: Diff=abs (r1ij‑r2ij ). In this equation, r1ij 

and r2ij indicate the Pearson correlation coefficients between 
gene  i and gene  j under the normal state and the state of 
cancer, respectively.

Measurement of RIF. Regulatory impact factors (RIF) (22), 
which is a robust and effective methodology to identify the 
regulatory impact factor of TF, was applied to identify the 
TF with the largest contribution to differential expression of 
genes in two biological conditions. RIF was calculated using 
the following equation 2:

In this equation, nde is the number of DEGs; e1j and e2j indi-
cate the expression value of the DEG in conditions 1 and 2, 
respectively; r1ij and r2ij indicate the correlation coefficient 
for the i TF and the j DEG in conditions 1 and 2, respectively.

Pathway enrichment analysis. For functional analysis of the 
large gene lists in the regulatory network, the DCGs were 
inputted into Database for Annotation, Visualization and 
Integrated Discovery (DAVID) (23) for Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (24) pathway enrichment 
analysis. By calculating the hypergeometric test P‑value for 

probability of random association between a given list of 
genes and a pathway, DAVID identifies canonical pathways 
associated with this set of genes. FDR <0.05 was used as the 
cutoff criteria.

Results

Identification of differentially coexpressed genes in RCC. 
The gene expression profile dataset GSE6344 was down-
loaded from the GEO database and formula 1 was used to 
identify DCGs with Diff >1 between 10 RRC samples and 
10 control samples. Finally, a total of 2,580,427 DCGs were 
screened out (Table I).

Construction of regulatory network. Based on the known 
regulatory data from UCSC, TFs and their corresponding 
target genes from DCGs were selected to construct a regula-
tory network. The network contained a total of 1,525 pairs 
of regulatory associations between 126 TFs and 1,259 target 
genes. Using Cytoscape  (25), the regulatory associations 
were integrated and visualized in Fig. 1.

KEGG pathway enrichment. The DCGs with FDR <0.05 
were inputted into DAVID for KEGG pathway enrichment 
analysis. The results are presented in Table II, from which 
it was identified that DCGs were predominantly enriched 
in cancer pathways, ErbB, mitogen‑activated protein kinase 
(MAPK) and other important pathways.

Table I. Part of the differentially co‑expressed genes.

Gene1	 Gene2	 Diff

AAGAB	 A1CF	 1.031645
ABCD4	 A1CF	 1.0116908
ACCN2	 A1CF	 1.071472
ACTR5	 A1CF	 1.039394
ADAM22	 A1CF	 1.014619
AHCTF1	 A1CF	 1.194273
AIP	 A1CF	 1.130951
AK2	 A1CF	 1.069488
ALKBH1	 A1CF	 1.034613
AMD1	 A1CF	 1.083589
AMELX	 A1CF	 1.278415
AMH	 A1CF	 1.040918
ANKRD12	 A1CF	 1.137963

Diff indicates the absolute difference of Pearson's correlation 
coefficient. AAGAB, α- and γ-adaptin binding protein; ABCD4, ade-
nosine triphosphate binding cassette subfamily D member 4; ACCN2, 
acid-sensing (proton-gated) ion channel  1; ACTR5, ARP5  actin-
related protein 5 homolog (yeast); ADAM22, ADAM metallopeptidase 
domain  22; AHCTF1,  AT-hook containing transcription factor  1; 
AIP, aryl hydrocarbon receptor interacting protein; AK2,  adenylate 
kinase  2; ALKBH1, AlkB homolog  1, histone H2A dioxygenase; 
AMD1, adenosylmethionine decarboxylase 1; AMELX, amelogenin, 
X-Linked; AMH, anti-mullerian hormone; ANKRD12, ankyrin 
repeat domain 12; A1CF, APOBEC1 complementation factor.
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Analysis of transcription factor impact. First, total 
4,793 differentially expressed genes (DEGs) with FDR <0.05 
were identified between normal and tumor samples by linear 
models for microarray data (limma) method (26). Subsequently, 
469 overlapping DEGs were collected by comparing these 
4,793 DEGs with the 1,259 target genes in the network. To 
further investigate which TFs were significant, the RIF of 
each TF targeting to the overlapping DEGs was targeted. 
The top 10 were forkhead box C1 (FOXC1), GATA‑binding 
protein 3 (GATA3), estrogen receptor 1 (ESR1), FOXL1, POZ 

(BTB) and AT hook containing zinc finger 1 (PATZ1), v‑myb 
avian myeloblastosis viral oncogene homolog (MYB), signal 
transducer and activator of transcription 5A (STAT5A), early 
growth response 2 (EGR2), EGR3 and proline, glutamate 
and leucine rich protein 1 (PELP1) (Table III). Of these TFs, 
GATA3, MYB, EGR2, and EGR3 have previously been identi-
fied to be associated with RCC and the regulatory associations 
of them with their targets are presented in Fig. 2. Occurrence 
of RCC is likely caused by the abnormal changes of these 
regulatory associations.

Figure 1. Regulatory network among TFs and their target genes. The green nodes indicate TF. The pink nodes indicate target genes. The lines indicate regula-
tory associations. TF, transcription factors.
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Discussion

Molecular biomarkers are useful to improve diagnosis, clinical 
predictive capability and novel therapeutic efficacy. Because 
the emergence of microarray technology makes it possible to 
investigate the expression levels of thousands of genes simul-
taneously (27), it has been widely used in discovery of disease 
biomarkers (28‑30). However, the majority of previous studies 
are based on a single gene differential expression analysis. In 
the current study, differentially coexpressed genes analysis was 
used to find the dysregulated gene pairs in RCC. The differ-

entially coexpressed genes analysis provides novel analytical 
perspective to studies including identification of differentially 
coexpressed genes and marker genes of disease, construction of 
differential coexpression network and analysis of module (31,32). 
Besides, a regulatory network was constructed and the RIF 
score of each TF targeting to the DEGs with FDR <0.05 was 
calculated. Finally, the top 10 ranked TFs were identified which 
were FOXC1, GATA3, ESR1, FOXL1, PATZ1, MYB, STAT5A, 
EGR2, EGR3 and PELP1. They may be potential molecular 
biomarkers of RCC.

FOXC1 is one of the forkhead transcription factor family, 
which is characterized by a unique DNA‑binding domain. 
Although the specific function of this gene has not yet been 
determined, it is known that the gene is associated with the 
occurrence of a number of types of cancer, such as breast cancer, 
lung cancer, prostate cancer, bile duct cancer (33‑36). FOXC1 
appears to be a cancer‑associated gene. FOXL1 and FOXC1 
belong to the same family and have similar functions. So these 
genes may serve important roles in the pathogenesis of RCC.

The transcription factor encoding by GATA3 belongs to 
the GATA family, and it contains two GATA‑type zinc fingers 
which serve an important role in regulating T cell development 
and the biology of endothelial cell. Cooper et al (37) demon-
strated that GATA3 was methylated in clear cell RCC patients 
and its mRNA expression level was downregulated in all stages 
of clear cell RCC (37), which indicated the critical role of 
GATA3 in RCC.

As an estrogen receptor, ESR1, which contains a number of 
important structural domains such as the DNA‑binding domain, 
transcriptional activation domain and hormone binding domain, 
is a TF activated by its corresponding ligand. It is known that 
ESR1 serves an important role in breast cancer (38). Although it 
has not yet been reported that this gene is associated with RCC 
at present, it is likely to be a potential factor because its RIF 
ranks third.

Among PATZ1, MYB, STAT5A, EGR2/EGR3 and PELP1, 
it is known that MYB and EGR2/EGR3 (39) are RCC associ-

Table III. The top 10 ranked TFs.

TF	 RIF score	 RIF rank

FOXC1	 7.804438725	   1
GATA3	 6.908779522	   2
ESR1	 6.32301186	   3
FOXL1	 4.242514268	   4
PATZ1	 3.800727043	   5
MYB	 3.507929833	   6
STAT5A	 3.467483166	   7
EGR2	 3.361578969	   8
EGR3	 3.337751915	   9
PELP1	 2.818195935	 10

TF represents the transcription factor in the regulatory network. 
RIF represents the regulatory impact factor of TF. Rank represents 
the impact rank of TF. TF, transcription factor; FOXC1, fork-
head box  C1; GATA3, GATA‑binding protein  3; ESR1, estrogen 
receptor 1, FOXL1, forkhead box L1; PATZ1, POZ (BTB) and AT 
hook containing zinc finger  1; MYB, v‑myb avian myeloblastosis 
viral oncogene homolog, STAT5A, signal transducer and activator 
of transcription 5A, EGR2/3, early growth response 2 or 3; PELP1, 
proline, glutamate and leucine rich protein 1.
  

Table II. The enriched KEGG pathways.

Category	 Term	 FDR (%)

KEGG PATHWAY	 has05200:Pathways in cancer	 0.012504
KEGG PATHWAY	 has05215:Prostate cancer	 0.028298
KEGG PATHWAY	 has04710:Circadian rhythm	 0.147888
KEGG PATHWAY	 has04012:ErbB singling pathway	 0.185805
KEGG PATHWAY	 has05220:Chronic myeloid leukemia	 0.192832
KEGG PATHWAY	 has05221:Acute myeloid leukemia	 0.218097
KEGG PATHWAY	 has05222:Small cell lung cancer	 0.323675
KEGG PATHWAY	 has05212:Pancreatic cancer	 1.018255
KEGG PATHWAY	 has04010:MAPK singling pathway	 1.268065
KEGG PATHWAY	 has05214:Glioma	 1.84753
KEGG PATHWAY	 has05213:Endometrial singling pathway	 2.33947
KEGG PATHWAY	 has04062:Chemokine singling pathway	 3.258893
KEGG PATHWAY	 has05120:Epithelial cellsignaling in Helicobacter pylori infection	 4.078908

KEGG, Kyoto Encyclopedia of Genes and Genomes.
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ated genes, and the PATZ1, STAT5A and PELP1 are hormone 
associated genes. The latest article reported that hormones may 
inhibit the occurrence of renal carcinoma (40), so that PATZ1, 
STAT5A and PELP1 may serve as potential renal cancer-
associated genes.

Table II identifies genes of the regulatory network which 
were enriched in various cancer pathways, just as the above 
discussion that the top 10 TFs were involved in a number 
of types of cancers. In addition, ErbB and MAPK pathways 
were overrepresented. The MAPK signaling pathways 
serve vital roles in cell proliferation and differentiation. 
Recently, Huang et al (41) reported that suppression of one 
or more MAPK signaling pathways by inhibitor of MAPK 
kinases (MKKs) reduced RCC cell proliferation in vitro and 
inhibited RCC growth in vivo. The ErbB protein family is 
a family containing 4 structurally associated receptor tyro-
sine kinases, ErbB1 (also termed EGFR), ErbB2, ErbB3 and 
ErbB4. ErbB signaling pathway has been implicated in the 
development of a wide variety of types of tumor, including 
RCC  (42,43). Further analysis of these pathways will 

contribute to an improved understanding of the roles of the 
differentially expressed genes and the underlying molecular 
mechanism of RCC.

In conclusion, the present study used microarray gene 
expression profiling and regulatory network analysis to 
explore the molecular mechanism of RCC. The top 10 ranked 
TFs were identified, which were FOXC1, GATA3, ESR1, 
FOXL1, PATZ1, MYB, STAT5A, EGR2, EGR3 and PELP1. 
GATA3, ERG and MYB are considered RCC associated 
genes while FOXC1, ESR1, FOXL1, PATZ1, STAT5A and 
PELP1 may also be potential genes associated with RCC. 
The present study indicates that the above TFs may be used 
as biomarkers of RCC for accurate diagnosis, prognosis or as 
predictive markers for treatment efficiency. However, further 
experiments are needed to confirm these result.
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