

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2,3,4,5,6-Pentamethylbenzyl)-2-(pyridin-2-yl)-1H-benzimidazole

Fırat Anĝay,^a Ömer Çelik,^{b,c}* Orhan Barlık^d and Mahmut Ulusov^d

^aDepartment of Physics, Institute of Sciences, Dicle University, 21280, Diyarbakır, Turkey, ^bDepartment of Physics, Faculty of Education, Dicle University, 21280, Diyarbakır, Turkey, ^cScience and Technology Application and Research Center, Dicle University, 21280, Diyarbakır, Turkey, and ^dDepartment of Chemistry, Faculty of Science & Art, Harran University, 63300, Şanlıurfa, Turkey Correspondence e-mail: omer celik@dicle.edu.tr

Received 28 March 2014; accepted 9 April 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.150; data-to-parameter ratio = 14.7.

In the title compound, $C_{24}H_{25}N_3$, the benzimidazole ring system is essentially planar, with an r.m.s. deviation of 0.017 Å, and forms dihedral angles of 7.81 (5) and 87.61 (4) $^{\circ}$ with the pyridine and benzene rings, respectively. An intramolecular $C-H \cdots N$ hydrogen bond is observed. In the crystal, molecules are stacked along the *a* axis by weak $C-H\cdots\pi$ interactions.

Related literature

For the use of 2-(2-pyridyl)benzimidazole in coordination chemistry, see: Sahin et al. (2010); Harkins et al. (1956); Chiswell et al. (1964); De Castro et al. (1991); Maekawa et al. (1994); Khalil et al. (2001); Boca et al. (1997). For the use of N-N-type ligand systems involving 2,2'-bipyridine, see: Lippert (1999); Wong & Giandomenico (1999), Kelland & Farrell (2000). For related structures, see: Celik et al. (2007, 2009, 2014).

Experimental

Crystal data

C24H25N3 $M_r = 355.47$ Monoclinic, $P2_1/n$ a = 5.3470 (3) Å b = 21.0622 (12) Å c = 17.0379 (9) Å $\beta = 97.699(3)^{\circ}$

Data collection

Bruker APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(Blessing, 1995)	
$T_{\min} = 0.982, \ T_{\max} = 0.989$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.150$ S = 1.043741 reflections

Z = 4Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 296 K $0.25 \times 0.20 \times 0.15 \ \mathrm{mm}$

 $V = 1901.50 (18) \text{ Å}^3$

25354 measured reflections 3741 independent reflections 3056 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

254 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.17$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C7-C12 benzene ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13A\cdots Cg^{i}$	0.97	2.91	3.6941 (18)	139
$C13 - H13B \cdot \cdot \cdot N1$	0.97	2.30	3.029 (2)	131

Symmetry code: (i) x - 1, y, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

The authors are indebted to the X-ray laboratory of Dicle University Science and the Technology Application and Research Center, Divarbakir, Turkey, for use of the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5115).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Boca, R., Baran, P., Dlhán, L., Sima, J., Wiesinger, G., Renz, F., El-Ayaan, U. & Linert, W. (1997). *Polyhedron*, **16**, 47–55.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Celik, Ö., Anĝay, F., Gündoĝan, M. & Ulusoy, M. (2014). Acta Cryst. E70, 0485.
- Çelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786.
- Celik, Ö., Ulusoy, M., Taş, E. & Íde, S. (2007). Anal. Sci. 23, 185–186.
- Chiswell, B., Lions, F. & Morris, B. S. (1964). Inorg. Chem. 3, 110-114.

- De Castro, B., Freire, C., Domingues, D. & Gomes, J. (1991). *Polyhedron*, **10**, 2541–2549.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Harkins, T. R., Walter, J. L., Harris, O. E. & Freiser, H. (1956). J. Am. Chem. Soc. 78, 260–264.
- Kelland, L. R. & Farrell, N. (2000). In *Platinum-based Drugs in Cancer Chemotherapy*. Tatowa: Humana Press.
- Khalil, M. M. H., Ali, S. A. & Ramadan, R. M. (2001). Spectrochim. Acta Part A, 57, 1017–1024.
- Lippert, B. (1999). In Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug. Weinheim: Wiley-VCH.
- Maekawa, M., Munakata, M., Kuroda-Sowa, T. & Hachiya, K. (1994). Inorg. Chim. Acta, 227, 137–143.
- Sahin, C., Ulusoy, M., Zafer, C., Ozsoy, C., Varlikli, C., Dittrich, T., Cetinkaya, B. & Icli, S. (2010). Dyes Pigments, 84, 88–94.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451-2466.

supplementary materials

Acta Cryst. (2014). E70, o563-o564 [doi:10.1107/S1600536814007934]

1-(2,3,4,5,6-Pentamethylbenzyl)-2-(pyridin-2-yl)-1H-benzimidazole

Fırat Anĝay, Ömer Çelik, Orhan Barlık and Mahmut Ulusoy

1. Comment

The N—N type ligand system 2-(2-pyridyl)benzimidazole has a venerable history in coordination chemistry (Sahin *et al.*, 2010; Harkins *et al.*, 1956; Chiswell *et al.*, 1964; De Castro *et al.*, 1991; Maekawa *et al.*, 1994; Khalil *et al.*, 2001; Boca *et al.*, 1997). Lots of platinum chemistry bearing N—N type ligand systems involving 2,2'-bipyridine has been reported aimed at the design of drugs having less serious side-effects than those of cisplatin, or which could extend the scope of Pt based chemotherapy to tumours (Lippert, 1999; Wong & Giandomenico, 1999; Kelland & Farrell, 2000).

The molecular structure of the title compound is shown in Fig. 1. Bond lengths and angles are in good agreement with those reported for related structures (Çelik *et al.*, 2007; Çelik *et al.*, 2009; Çelik *et al.*, 2014). The benzimidazole ring system is substantially planar, the maximum deviation being 0.027 (2) Å for atom C8, and forms dihedral angles of 7.81 (5) and 87.61 (4)° with the mean planes through the pyridine (N1/C1–C5) and phenyl (C14–C19) rings, respectively. An intramolecular C—H···N hydrogen bond is present (Table 1). In the crystal structure (Fig. 2), molecules are stacked along the *a* axis by weak C—H··· π hydrogen interactions (Table 1) involving the C7—C12 benzene ring of the benzimidazole moiety.

2. Experimental

NaH (60%) (398 mg, 11.0 mmol) was washed two times with dry hexane, filtered off *via* cannula and a solution of the 2pyridiylbenzimidazole (1.95 g, 10.0 mmol) in dry toluene (10 ml) was added, then the solution was heated at 90°C for 24 h. Evolution of hydrogen was observed at this temperature. 2,3,4,5,6-Pentamethylbenzyl bromide (2.45 g, 10.0 mmol) was added to this mixture at room temperature and then heated again at 90°C for 1 day. Then volatiles were evaporated in vacuum to dryness. The residue was dissolved in CH_2C_{12} and filtered *via* cannula on celite. The desired product was obtained after concentration of CH_2C_{12} (15 ml) and then precipitated with hexane (30 ml). The off-white solid obtained in 86% yield. M. p. 416–418 K. ¹H NMR (400 MHz, CDCl₃, δ p.p.m.): 1.26 (s, 6H, *o*-(CH₃)₂); 1.36(s, 6H, *m*-(CH₃)₂); 2.13– 2.20 (s, 3H, *p*-CH₃); 5.50 (s, 2H, N—CH₂); 6.86 (s, 1H, Ar—CH); 7.11 (s, 1H, Ar—CH); 7.26 (s, 1H, Ar—CH); 7.35 (s, 1H, Ar—CH); 7.49 (s, 1H, Ar—CH); 8.46 (s, 1H, Ar—CH); 10.19 (s, 2H, Ar—CH). ¹³C NMR (100.56 MHz, CDCl₃, δ p.p.m.): 17.0; 17.4; 29.6; 31.7; 34.4; 35.2; 48.7; 49.3; 56.2; 117.9; 121.2; 122.4; 125.5; 126.5; 133.8; 134.0; 137.5; 140.7; 158.0; 167.9.

3. Refinement

All H atoms were placed geometrically and refined using a riding model approximation, with C—H = 0.93–0.97 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms. A rotating group model was applied to the methyl groups.

Figure 2

The stacking of the title compound along the *a* axis with C—H $\cdots\pi$ type hydrogen-bond interactions (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.

1-(2,3,4,5,6-Pentamethylbenzyl)-2-(pyridin-2-yl)-1*H*-benzimidazole

Crystal data	
$C_{24}H_{25}N_3$	Monoclinic, $P2_1/n$
$M_r = 355.47$	a = 5.3470 (3) Å

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.3 - 31.5^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$

Prism, yellow

 $0.25 \times 0.20 \times 0.15$ mm

T = 296 K

Cell parameters from 1276 reflections

b = 21.0622 (12) Å c = 17.0379 (9) Å $\beta = 97.699 (3)^{\circ}$ $V = 1901.50 (18) \text{ Å}^{3}$ Z = 4 F(000) = 760 $D_{x} = 1.242 \text{ Mg m}^{-3}$

Data collection

Bruker APEXII CCD	3741 independent reflections
diffractometer	3056 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 6$
(Blessing, 1995)	$k = -25 \rightarrow 25$
$T_{\min} = 0.982, \ T_{\max} = 0.989$	$l = -21 \rightarrow 20$
25354 measured reflections	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.052$ Hydrogen site location: inferred from $wR(F^2) = 0.150$ neighbouring sites S = 1.04H-atom parameters constrained 3741 reflections $w = 1/[\sigma^2(F_o^2) + (0.0775P)^2 + 0.5927P]$ 254 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.0873 (5)	0.86580 (11)	0.44231 (14)	0.0724 (6)	
H1	1.2174	0.8428	0.4246	0.087*	
C2	1.0060 (5)	0.91952 (12)	0.40152 (14)	0.0737 (6)	
H2	1.0790	0.9327	0.3577	0.088*	
C3	0.8151 (5)	0.95308 (12)	0.42706 (16)	0.0842 (7)	
H3	0.7548	0.9900	0.4011	0.101*	
C4	0.7133 (5)	0.93151 (10)	0.49165 (15)	0.0771 (7)	
H4	0.5809	0.9535	0.5094	0.092*	
C5	0.8068 (3)	0.87716 (7)	0.53054 (11)	0.0465 (4)	
C6	0.6926 (3)	0.85653 (7)	0.60059 (10)	0.0452 (4)	
C7	0.4595 (4)	0.86110 (8)	0.69313 (11)	0.0507 (4)	
C8	0.2891 (4)	0.87790 (10)	0.74483 (13)	0.0658 (6)	
H8	0.2014	0.9161	0.7387	0.079*	
C9	0.2541 (4)	0.83708 (10)	0.80460 (13)	0.0667 (6)	

Н9	0.1414	0.8477	0.8396	0.080*
C10	0.3850 (4)	0.77962 (10)	0.81392 (12)	0.0598 (5)
H10	0.3597	0.7531	0.8558	0.072*
C11	0.5507 (4)	0.76104 (9)	0.76284 (10)	0.0505 (4)
H11	0.6360	0.7225	0.7690	0.061*
C12	0.5841 (3)	0.80251 (8)	0.70185 (10)	0.0432 (4)
C13	0.8894 (3)	0.74472 (7)	0.62583 (10)	0.0422 (4)
H13A	1.0264	0.7410	0.6691	0.051*
H13B	0.9632	0.7525	0.5777	0.051*
C14	0.7459 (3)	0.68215 (7)	0.61734 (9)	0.0370 (4)
C15	0.5434 (3)	0.67529 (7)	0.55618 (9)	0.0391 (4)
C16	0.4047 (3)	0.61901 (8)	0.54888 (10)	0.0452 (4)
C17	0.4753 (3)	0.56796 (8)	0.59946 (11)	0.0471 (4)
C18	0.6838 (3)	0.57318 (7)	0.65801 (10)	0.0448 (4)
C19	0.8190 (3)	0.63066 (7)	0.66771 (10)	0.0412 (4)
C20	0.4783 (4)	0.72858 (9)	0.49769 (10)	0.0511 (4)
H20A	0.406 (3)	0.7111 (2)	0.4472 (7)	0.077*
H20B	0.630 (2)	0.7521 (5)	0.4912 (6)	0.077*
H20C	0.357 (2)	0.7567 (5)	0.5172 (5)	0.077*
C21	0.1762 (4)	0.61342 (11)	0.48609 (14)	0.0703 (6)
H21A	0.2254 (10)	0.5965 (8)	0.4399 (8)	0.105*
H21B	0.106 (2)	0.6535 (6)	0.4754 (8)	0.105*
H21C	0.057 (2)	0.5868 (8)	0.5043 (5)	0.105*
C22	0.3235 (5)	0.50692 (10)	0.59025 (15)	0.0710 (6)
H22A	0.314 (3)	0.4923 (5)	0.5373 (9)	0.107*
H22B	0.158 (3)	0.5146 (2)	0.6025 (10)	0.107*
H22C	0.403 (2)	0.4757 (5)	0.6251 (9)	0.107*
C23	0.7616 (5)	0.51661 (9)	0.71064 (13)	0.0655 (6)
H23A	0.626 (2)	0.5047 (5)	0.7383 (8)	0.098*
H23B	0.904 (3)	0.5276 (3)	0.7476 (8)	0.098*
H23C	0.803 (3)	0.4820 (6)	0.6790 (5)	0.098*
C24	1.0435 (4)	0.63574 (10)	0.73176 (13)	0.0630 (5)
H24A	1.168 (2)	0.6592 (7)	0.7134 (4)	0.094*
H24B	1.104 (2)	0.5960 (6)	0.7452 (7)	0.094*
H24C	0.9950 (10)	0.6551 (7)	0.7754 (7)	0.094*
N1	0.9926 (3)	0.84413 (8)	0.50574 (10)	0.0616 (4)
N2	0.5315 (3)	0.89400 (7)	0.63031 (10)	0.0561 (4)
N3	0.7309 (3)	0.79969 (6)	0.64092 (8)	0.0406 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0797 (15)	0.0651 (13)	0.0780 (14)	0.0052 (11)	0.0312 (12)	0.0205 (11)
C2	0.0844 (16)	0.0737 (14)	0.0641 (13)	-0.0104 (12)	0.0138 (12)	0.0232 (11)
C3	0.1041 (19)	0.0620 (14)	0.0871 (17)	0.0111 (13)	0.0152 (15)	0.0351 (13)
C4	0.0940 (17)	0.0516 (12)	0.0889 (16)	0.0184 (11)	0.0244 (14)	0.0216 (11)
C5	0.0539 (10)	0.0329 (8)	0.0517 (10)	-0.0066 (7)	0.0031 (8)	0.0006 (7)
C6	0.0522 (10)	0.0305 (8)	0.0519 (10)	-0.0019 (7)	0.0034 (8)	-0.0032 (7)
C7	0.0580 (11)	0.0396 (9)	0.0551 (10)	-0.0025 (8)	0.0099 (9)	-0.0119 (8)
C8	0.0756 (14)	0.0522 (11)	0.0726 (13)	0.0050 (10)	0.0212 (11)	-0.0188 (10)

С9	0.0737 (14)	0.0657 (13)	0.0651 (13)	-0.0053 (11)	0.0261 (11)	-0.0210 (11)
C10	0.0732 (13)	0.0590 (11)	0.0490 (10)	-0.0122 (10)	0.0152 (9)	-0.0084 (9)
C11	0.0582 (11)	0.0457 (9)	0.0476 (10)	-0.0050 (8)	0.0070 (8)	-0.0042 (7)
C12	0.0451 (9)	0.0397 (8)	0.0442 (9)	-0.0072 (7)	0.0038 (7)	-0.0087 (7)
C13	0.0405 (9)	0.0345 (8)	0.0514 (9)	0.0012 (6)	0.0059 (7)	0.0014 (7)
C14	0.0395 (8)	0.0319 (7)	0.0407 (8)	0.0008 (6)	0.0096 (6)	-0.0031 (6)
C15	0.0416 (8)	0.0382 (8)	0.0389 (8)	0.0030 (6)	0.0108 (7)	-0.0045 (6)
C16	0.0441 (9)	0.0449 (9)	0.0479 (9)	-0.0036 (7)	0.0108 (7)	-0.0122 (7)
C17	0.0536 (10)	0.0381 (9)	0.0538 (10)	-0.0077 (7)	0.0227 (8)	-0.0116 (7)
C18	0.0574 (10)	0.0339 (8)	0.0473 (9)	0.0041 (7)	0.0230 (8)	-0.0003 (7)
C19	0.0453 (9)	0.0367 (8)	0.0426 (8)	0.0044 (7)	0.0094 (7)	0.0000 (6)
C20	0.0573 (11)	0.0504 (10)	0.0441 (9)	0.0048 (8)	0.0010 (8)	0.0003 (8)
C21	0.0589 (12)	0.0747 (14)	0.0738 (14)	-0.0118 (11)	-0.0033 (11)	-0.0163 (11)
C22	0.0808 (15)	0.0505 (11)	0.0862 (15)	-0.0231 (10)	0.0274 (12)	-0.0111 (10)
C23	0.0940 (16)	0.0398 (10)	0.0665 (13)	0.0052 (10)	0.0247 (11)	0.0093 (9)
C24	0.0675 (13)	0.0540 (11)	0.0624 (12)	0.0037 (9)	-0.0094 (10)	0.0093 (9)
N1	0.0691 (10)	0.0521 (9)	0.0671 (10)	0.0057 (8)	0.0216 (8)	0.0180 (8)
N2	0.0697 (10)	0.0346 (7)	0.0650 (10)	0.0040 (7)	0.0129 (8)	-0.0039 (7)
<u>N3</u>	0.0456 (7)	0.0305 (6)	0.0455 (7)	-0.0029 (5)	0.0056 (6)	-0.0021 (5)

Geometric parameters (Å, °)

C1—N1	1.334 (3)	C13—H13B	0.9700
C1—C2	1.368 (3)	C14—C19	1.405 (2)
C1—H1	0.9300	C14—C15	1.406 (2)
С2—С3	1.360 (4)	C15—C16	1.395 (2)
С2—Н2	0.9300	C15—C20	1.510 (2)
C3—C4	1.369 (3)	C16—C17	1.398 (3)
С3—Н3	0.9300	C16—C21	1.517 (3)
C4—C5	1.382 (3)	C17—C18	1.397 (3)
C4—H4	0.9300	C17—C22	1.517 (2)
C5—N1	1.328 (2)	C18—C19	1.408 (2)
C5—C6	1.477 (3)	C18—C23	1.515 (2)
C6—N2	1.319 (2)	C19—C24	1.514 (3)
C6—N3	1.382 (2)	C20—H20A	0.968 (12)
C7—N2	1.373 (2)	C20—H20B	0.968 (13)
С7—С8	1.395 (3)	C20—H20C	0.968 (12)
C7—C12	1.401 (2)	C21—H21A	0.933 (14)
С8—С9	1.365 (3)	C21—H21B	0.933 (14)
С8—Н8	0.9300	C21—H21C	0.933 (14)
C9—C10	1.396 (3)	C22—H22A	0.948 (14)
С9—Н9	0.9300	C22—H22B	0.948 (14)
C10-C11	1.379 (3)	C22—H22C	0.948 (14)
С10—Н10	0.9300	C23—H23A	0.951 (14)
C11—C12	1.387 (2)	C23—H23B	0.951 (14)
C11—H11	0.9300	C23—H23C	0.951 (13)
C12—N3	1.384 (2)	C24—H24A	0.915 (14)
C13—N3	1.478 (2)	C24—H24B	0.915 (13)
C13—C14	1.522 (2)	C24—H24C	0.915 (13)
С13—Н13А	0.9700		

N1—C1—C2	124.4 (2)	C15—C16—C17	120.14 (16)
N1—C1—H1	117.8	C15—C16—C21	119.82 (17)
C2—C1—H1	117.8	C17—C16—C21	120.05 (16)
C3—C2—C1	117.9 (2)	C18—C17—C16	120.23 (15)
C3—C2—H2	121.0	C18—C17—C22	120.34 (17)
C1—C2—H2	121.0	C16—C17—C22	119.42 (18)
C2-C3-C4	118.7 (2)	C17—C18—C19	119.95 (15)
C2—C3—H3	120.6	C17 - C18 - C23	119 35 (16)
C4—C3—H3	120.6	C19 - C18 - C23	120 69 (17)
C_{3} C_{4} C_{5}	120.0 120.2(2)	C14 - C19 - C18	119.69(17)
$C_3 - C_4 - H_4$	119.9	C_{14} C_{19} C_{24}	120.95(15)
$C_5 C_4 H_4$	110.0	$C_{14} = C_{19} = C_{24}$	120.95(15)
$C_3 - C_4 - H_4$	119.9	$C_{15} = C_{19} = C_{24}$	119.55 (15)
N1_C5_C6	121.30(19) 120.74(15)	$C_{15} = C_{20} = H_{20R}$	109.5
NI = C5 = C6	120.74(13) 117.06(19)	H_{20} H_{20} H_{20} H_{20} H_{20}	109.5
C4 - C5 - C0	117.90 (16)	$H_20A - C_20 - H_20B$	109.5
N2 - C6 - N3	112.86 (16)	C15—C20—H20C	109.5
N2-C6-C5	119.77 (15)	$H_{20}A \rightarrow C_{20} \rightarrow H_{20}C$	109.5
N3—C6—C5	127.37 (15)	H20B—C20—H20C	109.5
N2-C7-C8	129.74 (18)	С16—С21—Н21А	109.5
N2—C7—C12	110.39 (16)	C16—C21—H21B	109.5
C8—C7—C12	119.87 (18)	H21A—C21—H21B	109.5
C9—C8—C7	118.6 (2)	C16—C21—H21C	109.5
С9—С8—Н8	120.7	H21A—C21—H21C	109.5
С7—С8—Н8	120.7	H21B—C21—H21C	109.5
C8—C9—C10	120.93 (19)	C17—C22—H22A	109.5
С8—С9—Н9	119.5	C17—C22—H22B	109.5
С10—С9—Н9	119.5	H22A—C22—H22B	109.5
C11—C10—C9	121.92 (19)	C17—C22—H22C	109.5
C11—C10—H10	119.0	H22A—C22—H22C	109.5
С9—С10—Н10	119.0	H22B—C22—H22C	109.5
C10-C11-C12	116.88 (18)	C18—C23—H23A	109.5
C10—C11—H11	121.6	C18—C23—H23B	109.5
C12—C11—H11	121.6	H23A—C23—H23B	109.5
N3—C12—C11	132.66 (16)	С18—С23—Н23С	109.5
N3—C12—C7	105.53 (15)	H23A—C23—H23C	109.5
C11—C12—C7	121.80 (17)	H_{23B} C_{23} H_{23C}	109.5
N3-C13-C14	113 67 (13)	C19—C24—H24A	109 5
N3-C13-H13A	108.8	C19 - C24 - H24B	109.5
C14— $C13$ — $H13A$	108.8	$H_{24} = C_{24} = H_{24}B$	109.5
N3_C13_H13B	108.8	C19-C24-H24C	109.5
C_{14} C_{13} H_{13B}	108.8	$H_{24A} = C_{24} = H_{24C}$	109.5
$H_{13A} = C_{13} = H_{13B}$	107.7	$H_24R = C_24 = H_24C$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7 110.78 (14)	112+D - C2+ - 112+C	109.5 117.30(17)
$C_{19} = C_{14} = C_{13}$	117./0(14)	C_{5} C_{7}	117.37(17) 105.26(15)
$C_{19} - C_{14} - C_{13}$	120.99 (14)	C_{0} N2 C_{12}	103.20(13)
C15 - C14 - C15	119.19 (14)	C_{0} N2 C12	103.94(13)
10 - 15 - 14	120.00(15)	$\begin{array}{c} C_{12} \\ C_{12$	129.98 (14)
C10-C15-C20	119.99 (15)	U12—N3—U13	124.08 (13)
C14—C15—C20	119.95 (14)		

N1—C1—C2—C3	-0.2 (4)	C15—C16—C17—C22	-179.52 (16)
C1—C2—C3—C4	-0.3 (4)	C21—C16—C17—C22	0.7 (3)
C2—C3—C4—C5	1.0 (4)	C16-C17-C18-C19	1.9 (2)
C3—C4—C5—N1	-1.2 (4)	C22-C17-C18-C19	-178.06 (16)
C3—C4—C5—C6	179.1 (2)	C16-C17-C18-C23	-178.23 (16)
N1-C5-C6-N2	171.36 (17)	C22-C17-C18-C23	1.8 (2)
C4—C5—C6—N2	-9.0 (3)	C15-C14-C19-C18	-1.9 (2)
N1-C5-C6-N3	-9.7 (3)	C13—C14—C19—C18	-179.49 (14)
C4—C5—C6—N3	169.96 (19)	C15—C14—C19—C24	177.28 (16)
N2—C7—C8—C9	-178.4 (2)	C13—C14—C19—C24	-0.3 (2)
С12—С7—С8—С9	1.9 (3)	C17—C18—C19—C14	-1.2 (2)
C7—C8—C9—C10	-0.1 (3)	C23-C18-C19-C14	178.93 (15)
C8—C9—C10—C11	-1.2 (3)	C17—C18—C19—C24	179.62 (16)
C9-C10-C11-C12	0.7 (3)	C23—C18—C19—C24	-0.3 (2)
C10-C11-C12-N3	-179.82 (17)	C4—C5—N1—C1	0.7 (3)
C10—C11—C12—C7	1.1 (3)	C6—C5—N1—C1	-179.67 (18)
N2-C7-C12-N3	-1.48 (19)	C2-C1-N1-C5	0.1 (4)
C8—C7—C12—N3	178.23 (17)	N3—C6—N2—C7	0.2 (2)
N2-C7-C12-C11	177.79 (16)	C5—C6—N2—C7	179.26 (15)
C8—C7—C12—C11	-2.5 (3)	C8—C7—N2—C6	-178.8 (2)
N3—C13—C14—C19	-121.53 (16)	C12—C7—N2—C6	0.8 (2)
N3-C13-C14-C15	60.88 (19)	N2-C6-N3-C12	-1.10 (19)
C19—C14—C15—C16	4.3 (2)	C5—C6—N3—C12	179.91 (16)
C13—C14—C15—C16	-178.05 (14)	N2-C6-N3-C13	178.34 (15)
C19—C14—C15—C20	-174.84 (15)	C5—C6—N3—C13	-0.7 (3)
C13—C14—C15—C20	2.8 (2)	C11—C12—N3—C6	-177.65 (18)
C14—C15—C16—C17	-3.6 (2)	C7—C12—N3—C6	1.50 (17)
C20-C15-C16-C17	175.52 (15)	C11-C12-N3-C13	2.9 (3)
C14—C15—C16—C21	176.10 (16)	C7—C12—N3—C13	-177.98 (14)
C20-C15-C16-C21	-4.7 (2)	C14—C13—N3—C6	-125.33 (17)
C15—C16—C17—C18	0.5 (2)	C14—C13—N3—C12	54.0 (2)
C21—C16—C17—C18	-179.21 (16)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 benzene ring.

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C13—H13 <i>A</i> ··· <i>Cg</i> ⁱ	0.97	2.91	3.6941 (18)	139
C13—H13B…N1	0.97	2.30	3.029 (2)	131

Symmetry code: (i) x-1, y, z.