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Abstract
Background: Cigarette smoking is one of the greatest preventable risk factors for
developing cancer, and most cases of lung squamous cell carcinoma (lung SCC) are
associated with smoking. The pathogenesis mechanism of tumor progress is unclear.
This study aimed to identify biomarkers in smoking-related lung cancer, including
protein-coding gene, long noncoding RNA, and transcription factors.
Methods: We selected and obtained messenger RNA microarray datasets and
clinical data from the Gene Expression Omnibus database to identify gene
expression altered by cigarette smoking. Integrated bioinformatic analysis was
used to clarify biological functions of the identified genes, including Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the
construction of a protein–protein interaction network, transcription factor, and
statistical analyses. Subsequent quantitative real-time PCR was utilized to verify
these bioinformatic analyses.
Results: Five hundred and ninety-eight differentially expressed genes and 21 long
noncoding RNA were identified in smoking-related lung SCC. GO and KEGG
pathway analysis showed that identified genes were enriched in the cancer-
related functions and pathways. The protein–protein interaction network
revealed seven hub genes identified in lung SCC. Several transcription factors
and their binding sites were predicted. The results of real-time quantitative PCR
revealed that AURKA and BIRC5 were significantly upregulated and LINC00094
was downregulated in the tumor tissues of smoking patients. Further statistical
analysis indicated that dysregulation of AURKA, BIRC5, and LINC00094 indi-
cated poor prognosis in lung SCC.
Conclusion: Protein-coding genes AURKA, BIRC5, and LINC00094 could be
biomarkers or therapeutic targets for smoking-related lung SCC.

Introduction

Lung cancer is the leading cause of cancer-related death
worldwide.1 Prognosis of lung cancer patients remains unsat-
isfactory, with a five-year overall survival rate of less than
15%.2 Lung squamous cell carcinoma (SCC) is a common his-
tological type of non-small cell lung cancer (NSCLC) and
occurrence is highest in countries where smoking began ear-
lier, such as in Europe and North America.3 Smoking-
associated excess relative risk is significantly greater for lung
SCC than for adenocarcinoma.4

Previous studies have explored the relationship between
differentially expressed genes (DEGs) and cigarette smok-
ing. For instance, EPHA4, FGFR2, and EGFR are differen-
tially expressed in lung cancer tissues in cigarette smokers.5

Additionally, the polymorphism of P73 is suggested to be
highly associated with susceptibility to smoking-related
lung cancer.6 Moreover, transcription factors (TFs) have
been identified in lung SCC.7 In spite of these findings, lung
cancer prognosis in clinical practice has not improved. Cur-
rently, there are no identified molecular targets for therapy
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of smoking-related lung cancer. Consequently, afatinib is
still the first choice for treatment of lung SCC.8

Nowadays, the use of a gene expression microarray pro-
vides a more feasible and effective method for diagnosis
and treatment of any disease. When differentially expressed
genes are identified during any disease condition, they can
further be target genes for treatment of disease. In a recent
study, preliminary results revealed the potential roles of

long noncoding RNAs (lncRNAs) in tumor progression.9

lncRNA can also be used as a good biomarker for cancers
because of its specified expression profile.10 In this study,
we performed data mining of GSE43346 and GSE 50081
datasets11,12 and two lung SCC associated datasets, which
included gene expression data of smokers and non-
smokers, to screen the differentially expressed protein-
coding genes and lncRNAs between them. Function and

Figure 1 A heat map of differentially expressed gene analysis between smoking-related lung squamous cell carcinoma and normal tissues in
GSE43346 and GSE50081: 419 upregulated and 179 downregulated genes. Red, upregulation; green, downregulation.
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pathway enrichment analyses were conducted and we con-
structed a protein–protein interaction (PPI) network of the
DEGs. Static analysis and functional annotation revealed
that AURKA, BIRC5, and LINC00094 could be biomarkers
for lung cancer. Additionally, candidate biomarkers were
tested through quantitative real-time PCR (qRT-PCR).

Methods

The study was conducted with the approval of the Ethics
Committee of the Affiliated Hospital of Qingdao University.
Patients were informed of the use of their tissue specimens.

Identification of feature genes

The expression profile datasets were downloaded from the
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.

gov/geo/).13 We selected two gene expression profile data-
sets, GSE43346 and GSE50081. We used the GPL570 plat-
form to analyze microarray data, and 1125 lncRNA
completely matched with probe sets were identified. The
Affymetrix Human Genome U133 Plus 2.0 Array (Thermo
Fisher Scientific, Waltham, MA, USA), which is extensively
used in many research areas, was utilized in the GSE 43346
and GSE50081 data sets.14 GSE43346 contained 70 samples,
including 43 normal and 23 tumor tissues (only 40 samples
were used); GSE50081 contained 181 lung cancer samples,
including lung adenocarcinoma and lung SCC, 71 smokers,
24 non-smokers, and 21 others (only 20 samples were used).
R version 3.3.3 (R Foundation for Statistical Computing,

Vienna, Austria) is a free software environment for both
statistical computing and graphics. All data processing was
accomplished using the R package limma. After back-
ground subtraction and normalization using Robust Multi-
chip Averaging, GEO data was divided into two groups: a
control (40 normal tissues) and a disease group (20 malig-
nant tissues). The Limma algorithm was then used to clas-
sify DEGs in disease.15 |logFC| > 2 and P < 0.05 were
considered significant. A heat map of DEGs was drawn
with the R package pheatmap (R Foundation for Statistical
Computing).

Co-expression network construction

We constructed the PPI network using the STRING database
and Cytoscape software (www.cytoscape.org). Hub genes were
identified from PPIs between DEGs and we obtained the edge
length between nodes from these hub genes.

Bioinformatic analysis

Using the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) (https://david.ncifcrf.gov/), we
performed GO and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis for
DEGs.16 Disease association analysis among hub genes was
also conducted.

Table 1 Differentially expressed lncRNAs

Gene symbol Fold change P Length Chr

Downregulated lncRNA
LINC00842 −7.2065916 3.09E−11 489 chr10
LINC00094 −6.2065916 2.20E−07 1099 chr9
LINC01590 −5.2065916 1.75E−12 624 chr5
LINC00342 −4.2065916 2.50E−08 3233 chr1
LINC00339 −3.2065916 6.51E−15 2131 chr9
LINC00626 −2.2065916 1.03E−07 2342 chr4
LINC01420 −1.2065916 8.62E−15 773 chr4
LINC00152 −0.2065916 2.86E−12 524 chr20
LINC00511 −0.7934084 4.22E−17 1879 chr2
LINC01355 −1.7934084 5.66E−10 3425 chr10
LINC01503 −2.7934084 9.99E−14 423 chr21
LINC01614 −3.7934084 1.40E−09 1509 chr15
LINC00844 −4.7934084 2.47E−05 908 chr4
LINC01296 −5.7934084 1.58E−09 2098 chr1
LINC00537 −6.7934084 8.84E−04 2231 chr9

Upregulated lncRNA
LINC01560 2.379167 1.88E−18 1992 chr10
LINC01133 2.270887 7.46E−04 598 chr2
LINC01296 8.611893 3.48E−14 1123 chr14
LINC00847 2.00837 2.15E−11 3412 chr16
LINC01206 2.152284 1.07E−12 3222 chr5

Figure 2 The top eight terms of biological processes of (a) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and (b) Gene Ontology
(GO) enrichment analysis in differentially expressed genes.
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Transcription factor (TF) analysis

EpiTect ChIP qPCR Primers (http://sabiosciences.com/
chipqpcrsearch.php), a free online tool, is specifically
designed for the analysis of ChIP-enriched genomic
DNA.17 It is a DNA-binding domain that you can use to
determine which TFs may bind to cis-acting elements in
DNA. Such binding can either enhance or inhibit gene
expression. Using EpiTect ChIP qPCR Primers, we
extracted several TFs of hub genes from public resources.

Statistical analysis

In order to identify the prognostic value of differentially
expressed coding genes or lncRNAs, Kaplan–Meier survival
and Cox regression analyses were conducted. Samples were
sorted into two groups as “high expression” and “low
expression,” and survival analysis was performed between
the groups. All statistical analyses were conducted using
the ONCOMINE database (https://www.oncomine.org)
and Kaplan–Meier Plotter database.18,19 Statistical signifi-
cance was examined using a Student’s t-test and P < 0.05
or P < 0.01 was statistically significant.

Quantitative real-time PCR (qRT-PCR)

Twelve pairs of lung cancer tissues and matched adjacent
normal tissues were collected from smoking patients. Speci-
mens were all snap-frozen in liquid nitrogen immediately
after resection and stored at −80�C until used. Total RNA
was then reverse transcribed to cDNA using the Reverse
Transcription Kit (Roche, Basel, Switzerland). qRT-PCR

reactions were performed using an ABI StepOnePlus Ther-
mocycler using a SYBR Green PCR Kit (Thermo Fisher Sci-
entific). Primer sequences are shown in Table S1. Each
sample was run in triplicate for analysis. Data were calcu-
lated using the comparative 2 − ΔΔCT method.

Results

Identification and analysis of differentially
expressed genes

There were a total of 598 DEGs, including 179 downregulated
and 419 upregulated DEGs. The top differentially expressed
genes are shown in a heat map (Fig 1). Five lncRNAs were
upregulated and 16 were downregulated in smoking-related
lung SCC (with the threshold P < 0.01) (Table 1). KEGG anal-
ysis indicated that the altered genes were significantly enriched
in cancer pathways, such as PI3K-Akt, focal adhesion, and
other cancer-related pathways (Fig 2a). Functional analysis of
GO annotation showed that the DEGs were associated with cell
adhesion, regulation of transcription, apoptotic process, and
other cancer-related biological processes (Fig 2b).

Hub gene analysis

A PPI network was created for all 609 DEGs using the
STRING database to identify the key hub gene with an adja-
cent P value of < 0.05. Consequently, only seven out of the
609 DEGs, MCM5, CDC6, RRM2, CCNB2, AURKA, BIRC5,
and PIK3CA, significantly interacted. The PPI network of
hub genes obtained from STRING is shown in Figure 3.

Figure 3 Protein–protein interaction network of hub genes obtained using Cytoscape software. (a) There is a strong interaction between MCM5,
CDC6, RRM2, CCNB2, AURKA, and BIRC5. (b) PIK3CA does not interact with any of the genes.
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Survival analysis

Using the ONCOMINE and Kaplan–Meier-plotter data-
bases, we performed a Kaplan–Meier curve and Cox
regression for the three genes and differentially expressed
lncRNAs, and results indicated that AURKA and BIRC5
were obviously associated with survival in lung carcinoma
patients. Higher AURKA and BIRC5 expression indicated
shorter overall survival (hazard ratio = 1.62, 1.63,

respectively) (Fig 4a,b). Because of the unique nature of
lncRNA expression, differentially expressed lncRNAs may
be a predictive biomarker of cancer. Meanwhile, a novel
lncRNA was found; LINC00094 expression could predict
lung cancer survival, especially in lung cancer patients with
lower LINC00094 expression, which indicated shorter over-
all survival (hazard ratio = 0.81) (Fig 4c). Additionally,
using the ONCOMINE database, AURKA and BIRC5 were
significantly highly expressed in lung cancer tissues (Fig 5).

Figure 4 Kaplan–Meier plots for (a) AURKA, (b) BIRC5, and (c) LINC00094 in lung squamous cell carcinoma. Log-rank P values and hazard ratios
(HR, 95% confidence intervals in parentheses) are shown.
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Further verification through qRT-PCR

In order to verify our bioinformatic analyses, qRT-PCR
was performed to quantify the expression level of AURKA,
BIRC5, and LINC00094 in primary tumor tissues of smok-
ing lung SCC patients. As shown in Figure 6a,b, AURKA
and BIRC5 were significantly upregulated and LINC00094
was downregulated in the lung SCC tumor samples com-
pared to normal tissues (all P < 0.001, Fig 6c).

Hub gene-related TFs

Using EpiTect ChIP qPCR Primers, we identified the TFs
and binding sites of AURKA and BIRC5 for lung cancer
associated key hub genes. The predicted TFs for AURKA
are p53, NF-kappaB and NF-kappaB1. TFs of BIRC5 are
p53, STAT3, NF-kappaB, NF-kappaB1, Egr-1, HNF-
4alpha2, HNF-4alpha1, Sp1, p300 and IRF-1. The results
are shown in Table 2 and Figure 7.

Discussion

Small cell lung cancer and SCC cells show the strongest
association with cigarette smoking.20 Cigarette smoke is
composed of a mixture of chemicals, which cause direct or
indirect damage to respiratory epithelium and its
genome.21 As a result, it is of paramount importance to
characterize the genetic alterations and identify useful bio-
markers predictive of survival and chemotherapy, which
will help us understand the molecular mechanisms of
smoking-related lung cancer.
In this study, we compared gene expression profiles

between lung cancer tissues from smoking patients and
normal tissues (n = 60). A total of 598 DEGs were
obtained in lung SCC tissues. To date, GO and KEGG
pathway analyses are the most common and effective data
mining tools used. Through KEGG and GO analyses, we
discovered and revealed the various altered pathways in
lung cancer patients. Our work may help to determine the

Figure 5 Figures were derived from gene expression data in the ONCOMINE database comparing expression levels in normal (left plot) and
cancer tissues (right plot) in (a) AURKA and (b) BIRC5. The Y-axis represents the median intensity, 10th, and 90th percentile data.
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molecular mechanisms of lung cancer. Functional GO
enrichment showed that DEGs were enriched in the bio-
logical process of “regulation of transcription” and “cell
adhesion,” which indicates a close association with cancer
invasion, growth, and metastasis. Analysis revealed that
many DEGs were enriched in cancer-related pathways,
such as PI3K-Akt signaling, focal adhesion molecules, and
p53 signaling pathways. This suggests that gene expression
profiles were indeed different in smoking-related cancer
tissues. Seven key hub genes (MCM5, CDC6, RRM2,
CCNB2, AURKA, BIRC5, and PIK3CA) were identified in
our PPI network. Further evidence of their association with
lung cancer was then supported by KEGG, GO, and sur-
vival analyses, which showed that AURKA and BIRC5 may
be responsible for lung cancer.
Aurora kinase A is an enzyme encoded by the AURKA

gene in humans, also known as threonine-protein kinase
6.22 Aurora A belongs to the family of mitotic threonine
kinases and is reported to perform important processes
during mitosis and meiosis, the proper function of which
is integral for healthy cell proliferation. Aurora A is moti-
vated by various phosphorylations23 and activity reaches a
peak during G2 to M phase transition in the process of a
cell cycle.24 Aurora A is associated with a higher occur-
rence of cancer. Low expression of Aurora A can lead to
cancer, as Aurora A is essential for the completion of cyto-
kinesis. A previous study reported that smoking may con-
tribute to oral cancer occurrence by modifying the AURKA
level.25 Further study is needed to explore the mechanism
by which smoking regulates AURKA expression in lung
cancer. In this study, qRT-PCR analyses confirmed the

results of our bioinformatics analysis regarding AURKA.
Once the cell begins mitosis and duplicates its DNA, it
becomes aneuploid-containing, with more chromosomes
than normal cells, and cannot then separate into two dif-
ferent cells. Aneuploidy is a trait in a number of cancerous
tumors.26 Generally, Aurora A expression levels are held
back by the tumor suppressor, protein p53.
BIRC5, also named baculoviral inhibitor of apoptosis

repeat-containing 5 or survivin, is a protein encoded by
the BIRC5 gene and is a member of the inhibitor of apo-
ptosis family.27 BIRC5 can inhibit caspase activation, con-
sequently leading to negative progress of apoptosis and
programmed cell death. It has been proven that when
BIRC5 is disrupted, apoptosis increases, leading to a
decrease in tumor growth. Our qRT-PCR results regarding
BIRC5 were consistent with our previous study. The survi-
vin protein is highly expressed in many human tumors
and fetal tissue, but is rare in terminally differentiated
cells.28 This data suggests that BIRC5 may become a new
target for cancer therapy that could distinguish between
cancer and normal cells. A recent study determined that
BIRC5 was only expressed in the G2-M phase and is also
highly associated with the cell cycle.29 The study results
also indicated that cigarette smoking influences nuclear
BIRC5 expression in lung cancer at the early developmen-
tal stage.29 Another study showed that BIRC5 is a relevant
and reproducible biomarker of severe rheumatoid arthritis
and persistently high levels of BIRC5 are associated with
smoking.30 The molecular mechanism of BIRC5 regulation
is still not clear, but regulation seems to be related to p53
protein.31 This indicates that AURKA and BIRC5 are
potential prognostic biomarkers of lung SCC, and may be
involved in the p53 signal pathway. However, more work
is required to clarify how smoking regulates AURKA and
BIRC5 expression and eventually leads to lung cancer.
At present, high-throughput transcriptomes are rapidly

developing, and recent evidence shows that more than 90%
of all mammalian genomes are positively transcribed;

Figure 6 Verification of messenger RNA expression levels of differentially expressed genes and long noncoding RNA between lung squamous cell
carcinoma and normal tissues through quantitative real-time PCR. (a) AURKA, (b) BIRC5, (c) LINC00094. **P < 0.01; ***P < 0.001.

Table 2 Genes and their corresponding transcription factors

Gene Transcription factor

AURKA p53, NF-kappaB, NF-kappaB1
BIRC5 p53, STAT3, NF-kappaB, NF-kappaB1, Egr-1, HNF-4alpha2,

HNF-4alpha1, Sp1, p300, IRF-1
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however less than 2% of the entire genome sequence con-
tains protein-coding genes.32 As various noncoding RNAs
are transcribed from genomes, most studies focus on
microRNAs and lncRNAs from transcribing genomes.33

Abnormal regulation of lncRNA has been found in some
types of cancer, for instance, oral,34 gastric,35 and prostate
cancers.36 Among these differentially expressed lncRNAs, a
novel lncRNA, LINC00094, was discovered, which was
obviously highly expressed in lung cancer tissues compared
to normal tissues and could be a prognostic biomarker of
lung cancer. Further in vitro studies are needed to discover
the underlying molecular mechanism. To date, many func-
tional lncRNAs have been characterized in the cancer pro-
cess, many of which are associated with clinical prognosis
or treatment.
Using EpiTect ChIP qPCR Primers, which has a text

mining-based function, we determined that three common
TFs, namely p53, NF-kappaB1, and NF-kappaB, are asso-
ciated with AURKA and BIRC5, and three common TFs,
namely E2F, E2F-1, and p53 are associated with RRM2
and CDC6. The E2F family plays an important role in the
cell cycle process, acting as a tumor suppressor protein,
and is associated with both cell proliferation and p53-
dependent apoptosis.37 E2F promoter sites have been
linked to transcriptional repression in resting cells and
activation during the cell cycle.38 Further study showed
that heavy-ion irradiation could induce p53 cancer cell
apoptosis through the E2F1 signal pathway. p53 is crucial

in multicellular organisms, because it prevents cancer for-
mation and consequently functions as a tumor suppres-
sor.39 Equally, p53 has been named as “the guardian of
the genome” as a result of its role in conserving stability
and preventing genome mutation.40 Once we determine
how to control TF function, we can then control expres-
sion of the identified genes, namely AURKA, BIRC5,
RRM2, and CDC6 that lead to lung cancer. As these genes
and their TFs may act as potential drug targets, investiga-
tion is worthy to further characterize the mechanisms of
lung carcinoma.
To summarize, we performed data mining of a data set

of 60 microarrays and found that a set of protein-coding
genes and lncRNAs was differentially expressed between
lung cancer and normal tissues. Additionally, AURKA,
BIRC5, and LINC00094 were significantly associated with
lung cancer survival.
In conclusion, our study results indicate that AURKA,

BIRC5, and LINC00094 expression may play an important
role in diagnosis and prognosis and could be biomarkers
or therapeutic targets for smoking-related lung SCC.
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