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1 |  INTRODUCTION

Obesity is defined as a body mass index (BMI) of 30 kg/m2  
or above, and is characterized by excessive expansion of 
white adipose tissue (WAT) mass. The global trend in the 
prevalence of obesity represents a major public health prob-
lem, with more than 700 million children and adults affected 
worldwide.1-3 Obesity predisposes to multiple comorbidities, 
like insulin resistance and type 2 diabetes mellitus (T2DM), 
cardiovascular disease (CVD) and various types of cancer,2,4-8 

although 10%‐30% of the obese individuals will not be pres-
ent with a pathological metabolic profile.9 Nevertheless, this 
phenotype, often referred to as metabolically healthy obe-
sity,9-12 carries an increased risk to develop CVD and T2DM 
later in life as compared to normal weight individuals.13-16 
This has led to the view that the pathophysiology of obesity 
and its complications is driven by WAT dysfunction rather 
than an increase in WAT mass only.10,17-19

Dysfunctional WAT is characterized by adipocyte hyper-
trophy, impairments in lipid metabolism (including a reduced 
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Abstract
Obesity is a complex disorder of excessive adiposity, and is associated with adverse 
health effects such as cardiometabolic complications, which are to a large extent 
attributable to dysfunctional white adipose tissue. Adipose tissue dysfunction is 
characterized by adipocyte hypertrophy, impaired adipokine secretion, a chronic 
low‐grade inflammatory status, hormonal resistance and altered metabolic responses, 
together contributing to insulin resistance and related chronic diseases. Adipose tis-
sue hypoxia, defined as a relative oxygen deficit, in obesity has been proposed as 
a potential contributor to adipose tissue dysfunction, but studies in humans have 
yielded conflicting results. Here, we will review the role of adipose tissue oxygena-
tion in the pathophysiology of obesity‐related complications, with a specific focus 
on human studies. We will provide an overview of the determinants of adipose tissue 
oxygenation, as well as the role of adipose tissue oxygenation in glucose homeosta-
sis, lipid metabolism and inflammation. Finally, we will discuss the putative effects 
of physiological and experimental hypoxia on adipose tissue biology and whole‐
body metabolism in humans. We conclude that several lines of evidence suggest that 
alteration of adipose tissue oxygenation may impact metabolic homeostasis, thereby 
providing a novel strategy to combat chronic metabolic diseases in obese humans.
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capacity to buffer the daily influx of dietary lipids, thereby 
contributing to ectopic fat accumulation), decreased adipose 
tissue blood flow and a state of chronic low‐grade inflamma-
tion (Figure 1).18,20,21 The presence of adipose tissue (AT) 
inflammation in obesity is well established, and several fac-
tors that contribute to the sequence of events leading to a 
pro‐inflammatory phenotype of obese AT have been identi-
fied, as extensively reviewed elsewhere.10,22-24 Interestingly, 
more recent findings have provided evidence that the amount 
of oxygen in the adipose tissue microenvironment may also 
impact AT metabolism and inflammation, and WAT oxygen-
ation may, therefore, be a key factor in the pathophysiology 
of AT dysfunction and related chronic diseases.18,25,26

In this review article, we will consider the role of WAT 
oxygenation in WAT dysfunction and its putative impact 
on the pathophysiology of obesity‐related metabolic and 

inflammatory diseases, with a focus on human studies. First, 
we will present a brief overview of the different aspects of 
WAT dysfunction in obesity. Thereafter, the oxygenation of 
WAT in obesity as well as the determinants of WAT oxygen-
ation will be discussed. Next, the effects of WAT oxygen-
ation on tissue (dys)function will be described, particularly in 
relation to inflammation and substrate metabolism. Finally, 
we will explore the effects of moderate hypoxia exposure on 
whole‐body physiology in humans.

2 |  ADIPOSE TISSUE 
DYSFUNCTION IN OBESITY

One of the main functions of WAT is the preservation of en-
ergy in the form of triacylglycerol (TAG) in response to a 

F I G U R E  1  Characteristics of lean healthy and obese dysfunctional white adipose tissue. Adipose tissue dysfunction is characterized by 
adipocyte hypertrophy, impaired adipokine secretion, a chronic low‐grade inflammation, apoptosis, extracellular matrix remodelling, hormonal 
resistance, vascular rarefaction, decreased adipose tissue blood flow and altered metabolic responses, together contributing to insulin resistance and 
related chronic diseases. ER, endoplasmic reticulum

Lean healthy fat 

↔ Fat cell size
↔ Hormonal responses
↔ Adipokine secretion
↔ Inflammation and ER stress
↔ Mitochondrial function
↔ Angiogenesis/capilllary density
↔ Blood flow
↔ Extracellular matrix

Obese dysfunctional fat  

↑ Fat cell size
↓ Hormonal responses
   Impaired adipokine secretion
↑ Inflammation and ER stress
↓ Mitochondrial function
↓ Angiogenesis/capilllary density
↓ Blood flow
   Extracellular matrix remodelling
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chronic‐positive energy balance.27 Adipose tissue has the ca-
pacity to expand at the cellular level by recruiting stem cells/
pre‐adipocytes from the stroma‐vascular fraction (SVF) re-
sulting in more adipocytes (hyperplasia), or by enlargement 
of existing adipocytes (hypertrophy).28,29 However, it has 
been suggested that there is a set number of pre‐adipocytes 
that can be recruited, which seems to be genetically deter-
mined.30 Adipocytes can substantially increase in size but do 
have a certain expansion limit, implying that these cells have 
a maximum capacity of storing TAG.23,25,31,32 What seems to 
be even more important than the maximal storage capacity 
is the ability to dynamically store lipids in the postprandial 
phase, the so‐called lipid buffering capacity, and to release 
fatty acids under fasting conditions.33 Hypertrophic WAT 
has been shown to have an impaired capacity to store meal‐
derived fatty acids.34 As a consequence, more dietary lipids 
are diverted through the circulation to be stored in other tis-
sues, which results in ectopic fat accumulation when lipid 
uptake exceeds lipid oxidation.35 The storage of excess lipids 
in non‐adipose tissues in obesity has important metabolic 
consequences, since this is closely associated with insu-
lin resistance.17,23,31 Furthermore, hypertrophic adipocytes 
are characterized by a pro‐inflammatory phenotype, which 
may further aggravate insulin resistance.24,36 Importantly, 
however, adipocyte inflammation also seems essential for 
healthy adipose tissue expansion and remodelling,37 suggest-
ing that inflammation is not solely a pathological phenom-
enon. Noteworthy, medication used to treat type 2 diabetes 
may alleviate inflammation by reducing hyperglycaemia. 
However, the anti‐inflammatory effects of these agents are 
inconsistent, and it remains to be established whether their 
beneficial metabolic effects are mediated via modulation of 
chronic low‐grade inflammation.38

WAT inflammation is not only caused by secretion of pro‐
inflammatory factors by adipocytes, but is also determined 
by infiltration of various populations of specialized, pro‐in-
flammatory immune cells 39,40 such as macrophages.27,41-44 

In rodents, macrophages can be divided into two major 
phenotypes, the pro‐inflammatory M1 and anti‐inflamma-
tory M2 macrophages.45 M1 macrophages are activated by 
damage‐associated molecular patterns (DAMPs), cytokines 
such as IFN‐γ, and free fatty acids (FFA), acting as a major 
source of pro‐inflammatory cytokines, including tumour ne-
crosis factor (TNF)‐α, interleukin (IL)‐1β, IL‐6, IL‐12 and 
IL‐23.44,46-49 In contrast, M2 macrophages play a role in tis-
sue remodelling, and it seems that the M1/M2 ratio in WAT 
is critical in the pathophysiology of obesity, since M2 mac-
rophages act as regulators and suppressors of inflammation, 
counterbalancing the pro‐inflammatory effects of M1 macro-
phages.23,50-53 Noteworthy, the macrophage phenotypes seem 
more complex, especially in humans where no clear division 
in M1/M2 macrophages is apparent.54,55

In obesity, changes occur not only in the inflammatory 
cell population, but also in the extracellular matrix (ECM) 
of adipose tissue. The ECM consists of collagens, glycopro-
teins and proteoglycans, providing mechanical support and 
protection.27,56 At the same time, the ECM interacts directly 
with the adipocytes’ signalling pathways in a dynamic way, 
affecting differentiation and expansion of the tissue.22,57 The 
latter requires remodelling and alterations in the ECM com-
position, which has been associated with fibrosis and adipose 
tissue dysfunction in individuals with insulin resistance.57,58

More recently, evidence has emerged that the oxygenation 
of WAT is altered in obesity, which may impact several as-
pects of WAT function and whole‐body physiology.

3 |  ALTERED ADIPOSE TISSUE 
OXYGEN PARTIAL PRESSURE IN 
OBESITY

Since alterations in the oxygenation of WAT may contribute 
to WAT dysfunction, as will be discussed later in this review, 
adipose tissue oxygen partial pressure (AT pO2) has been 
assessed in both rodents and humans. In addition to direct 
measurements of pO2, indirect methods to estimate WAT  
oxygenation have been applied (Table 1). The direct stud-
ies on WAT oxygenation have yielded conflicting findings, 
which are summarized in Table 2..25,34,59-66

The presence of hypoxia in obese adipose tissue was orig-
inally shown in murine models of obesity.18,25 Direct mea-
surements of pO2 using needle‐type O2 electrodes showed 
that WAT oxygenation is lower in ob/ob, KKAy and diet‐in-
duced obese mice as compared to lean controls.18,63-67 In line, 
gene expression of several hypoxia‐related genes, including 
hypoxia‐inducible factor‐1 alpha (HIF‐1α), were also in-
creased. Moreover, using pimonidazole hydrochloride, which 
stains hypoxic areas, it has been demonstrated that hypoxic 
areas were more prevalent in WAT of obese rodents.18,63-67 
However, it is worth mentioning that these rodent models of 

T A B L E  1  Direct methods and surrogate markers used to 
determine adipose tissue oxygenation

Methods applied to assess adipose tissue oxygenation

Direct

Silastic tonometer69-72

Polarographic micro clark‐type electrode60

Optochemical, continuous monitoring via microdialysis59,73,74,116

Combined oxygen and temperature probe57

Needle‐type fibre‐optic oxygen sensor (rodents)64,65,85

Indirect

Arterio‐venous difference technique34

Gene expression of hypoxia‐responsive genes/proteins63

Pimonidazole hydrochloride63,66
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obesity are characterized by a rapid and massive gain in ad-
ipose tissue mass because of genotype and/or the diet that 
these animals received, which is not comparable to the more 
gradual development of obesity in most humans.63-66,68

So far, not many human studies examining WAT pO2 have 
been performed, and the results on WAT oxygenation are 
somewhat contradictory.18,59 The first direct measurements 
of WAT pO2 in humans were made in individuals undergoing 
surgery.69,70 It was found that morbidly obese individuals had 
lower pO2 levels in subcutaneous WAT (sWAT) of the upper 
arm as compared to lean subjects, determined the morning 
after surgery.69,70 However, other studies in which sWAT ox-
ygenation has been measured both during and after surgery 
showed opposite results, with increased or no significant dif-
ference in WAT pO2 between obese and lean individuals.71,72 
Notably, these initial studies assessed oxygenation in WAT of 
the upper arm, which is not of crucial importance for whole‐
body metabolism. Moreover, the O2 levels measured in these 
studies could have been affected by the applied anaesthesia, 
and other factors related to morbid obesity.

Pasarica and colleagues 60 were the first to measure 
abdominal sWAT pO2 in humans, using a polarographic 
micro Clark‐type electrode. Overweight and obese partici-
pants, including patients with T2DM, had a lower AT pO2 
compared to lean controls, which is in line with findings 
in rodents.25 Furthermore, it has been found that abdom-
inal sWAT pO2 was higher in obese insulin sensitive and 
obese insulin resistant as compared to lean subjects, with 
no significant differences between the obese groups.57 
Noteworthy, only four lean individuals were included in 
the latter study.

The presence of hypoxia in sWAT in obesity has been 
challenged by recent studies in humans. We have demon-
strated a higher rather than lower pO2 in obese subjects with 
impaired glucose metabolism as compared to lean healthy, 
age‐matched individuals, despite lower adipose tissue blood 
flow (oxygen supply) in obesity.59 These findings of higher 
abdominal sWAT pO2 in obesity have been confirmed by 
very recent studies.73,74 Abdominal sWAT pO2 was found 
to be higher in obese insulin resistant as compared to lean 
and obese insulin‐sensitive men, with no significant differ-
ences in WAT oxygenation between obese insulin‐sensitive 
and lean insulin‐sensitive men.73 Furthermore, this study 
demonstrated that AT oxygenation was positively associated 
with insulin resistance, even after adjustment for age, sex and 
body fat percentage, suggesting that AT pO2 may be more 
closely related to insulin sensitivity than obesity per se.73 To 
date, only one study investigated the effects of weight loss on 
sWAT pO2 in humans. In this study, overweight and obese 
individuals underwent a dietary intervention, consisting of a 
5‐week very low calorie diet (VLCD, 500 kcal/d) and a sub-
sequent 4‐week weight stable diet. It was found that VLCD‐
induced weight loss markedly decreased abdominal sWAT 

pO2, which was paralleled by improved whole‐body insulin 
sensitivity.74

The striking differences in findings on sWAT pO2 between 
studies may be attributed to differences between study popu-
lations in terms of the onset and physical history (eg, weight 
cycling) of obesity and other subjects’ characteristics (eg, 
age, sex, ethnicity, presence of type 2 diabetes), the sWAT 
depot studied, and variation in the methodology used.25,59,60

In addition to direct measurements of sWAT pO2 in hu-
mans, several studies have used alternative approaches to 
indirectly estimate tissue oxygenation, including metabolic 
profiling of sWAT in vivo and the assessment of hypoxia‐
responsive WAT gene expression. Hodson and co‐workers34 
have measured metabolic fluxes across abdominal sWAT in 
vivo in lean, overweight and obese humans, and their find-
ings strongly argue against any functional consequences 
of WAT hypoxia in obesity; in fact, the opposite might be 
true. More specifically, these authors demonstrated that the 
fasting lactate‐to‐pyruvate ratio, which is a potential meta-
bolic signature of “hypoxia,” in arterial blood, was inversely 
correlated with adiposity. Using arteriovenous difference 
methodology with selective venous catheterization of ab-
dominal sWAT, no significant association was found between 
WAT‐specific changes in lactate‐to‐pyruvate ratio and BMI. 
However, the proportion of glucose released as lactate and 
pyruvate in sWAT was strongly negatively correlated with 
BMI.34 Observational human studies examining hypoxia‐re-
lated genes as surrogate markers of WAT oxygenation have 
shown increased HIF‐1α expression in sWAT in humans with 
morbid obesity.57,75,76 Interestingly, HIF‐1α expression was 
higher in the SVF than in adipocytes, which might imply 
that the SVF is more sensitive to changes in oxygenation.77 
Importantly, however, HIF‐1α mRNA expression seems not 
an appropriate marker for hypoxia.78 Also, upregulated genes 
in subcutaneous and visceral WAT of severely obese subjects 
that are under control of HIF were not responsive to hypoxia 
in adipocytes,79 which raises the question what pO2 thresh-
old is required for activation of the HIF pathway in adipose 
tissue.60 Furthermore, genome‐wide association studies have 
shown a correlation between epigenetic methylation of the 
HIF3α gene in sWAT and BMI and WAT dysfunction mark-
ers.80-83 Following bariatric surgery, there was a reduction 
in HIF‐1α mRNA expression in WAT.84 On the contrary, 
HIF‐1α gene expression was upregulated during weight loss 
induced by a low caloric diet.74

It is important to emphasize that a stronger mechanis-
tic link exists between hypoxia and the spatial presence of  
HIF-1α protein rather than its mRNA expression.85,86 
Further, HIF‐1α is not only regulated by oxygen levels, but 
also by growth factors including insulin.87 Therefore, met-
abolic disturbances such as insulin resistance and/or hyper-
glycaemia may also have marked effects on HIF‐1α protein 
stability,87 and may affect epigenetic modifications. This 
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implies that one should be cautious when drawing conclu-
sions about WAT oxygenation based on gene expression of 
classical hypoxia‐responsive genes such as HIF-1α, GLUT1 
and VEGF.25

Taken together, recent cross‐sectional and intervention 
studies that we have performed in our laboratory demonstrate 
higher rather than lower WAT pO2 in obese insulin resistant 
individuals, but findings on sWAT oxygenation (markers) in 
humans with obesity are conflicting. Thus, further investiga-
tion of determinants of sWAT oxygenation may help to better 
understand these discrepant findings.

3.1 | Determinants of adipose tissue 
oxygenation in humans
WAT pO2 is the result of a delicate balance between O2 sup-
ply and consumption, which both seem to be altered in obe-
sity. More specifically, differences in angiogenesis, capillary 
density and vascular function, together determining adipose 
tissue blood flow (ATBF), and the cellular demands affecting 
O2 consumption contribute to changes in WAT pO2.

18,25,68

3.1.1 | Adipose tissue oxygen supply
Both structural (ie, capillary density) and functional (ie, 
vascular tone) aspects of the vasculature determine ATBF 
and, therefore, oxygen supply to WAT. There is substantial 
evidence that there is insufficient angiogenesis in WAT de-
pots in obesity. Obese individuals show decreased adipose 
tissue mRNA expression of VEGF, the master regulator of 
angiogenesis and a HIF‐1α target protein.59,60,88 Pasarica 
and colleagues60 showed that capillary density was lower in 
overweight/obese humans, and found a positive correlation 
between VEGF expression and capillary density. The lower 
capillary density in WAT of obese individuals has been con-
firmed by our laboratory.59 Furthermore, it has been shown 
that obese insulin resistant subjects had fewer capillaries and 
a greater number of large vessels in WAT as compared to 
lean individuals.89 Together, these findings are indicative of 
vascular rarefaction and decreased vascular remodelling in 
WAT in obese humans. Thus, the lower capillary density may 
reflect higher WAT oxygenation in obesity. Alternatively, if 
WAT oxygenation would be lower in obesity, the pro‐angio-
genic response is not effectively propagated.90

In addition to a lower capillary density in WAT of obese 
individuals, an increased vascular tone may impair ATBF, 
which ultimately determines tissue oxygen delivery. It is well 
established that ATBF is impaired in human obesity. Fasting 
ATBF is lower in obese compared to lean individuals and has 
been linked to insulin resistance.59,91-95 Furthermore, in the 
postprandial period as well as during insulin stimulation (ie, 
hyperinsulinemic‐euglycemic clamp), the increase in ATBF 
is blunted in obese vs lean subjects.59,95,96 These impairments 

seem to be related to impaired beta‐adrenergic responsive-
ness and increased activity of the renin‐angiotensin system in 
obesity.68,94,97,98 We have previously shown that both pharma-
cological and physiological manipulation of ATBF induced 
concomitant alterations in WAT pO2 in humans,59 suggesting 
that decreased ATBF in obesity indeed reduces AT oxygen 
supply. Importantly, however, WAT pO2 is not only deter-
mined by oxygen supply to the tissue but is also dependent on 
WAT oxygen consumption, as discussed in more detail below.

3.1.2 | Adipose tissue oxygen 
consumption and mitochondrial function
In normal weight individuals, WAT oxygen consumption 
is relatively low as compared to other tissues, accounting 
for approximately 5% of whole‐body oxygen consump-
tion.34,62,99 It has been estimated that mitochondrial oxygen 
consumption accounts for up to 85%, while non‐mitochon-
drial oxygen consumption may be responsible for 10%‐15% 
of total oxygen consumption in WAT under steady‐state 
conditions.100,101 Both mitochondrial and non‐mitochondrial 
oxygen consumption may change during the marked WAT 
remodelling occurring in obesity and may induce alterations 
in WAT oxygenation.

It is well established that mitochondrial morphology, mass 
and function are impaired in multiple adipose tissue depots in 
obese rodents.102-106 Interestingly, it has been reported that 
early in the development of obesity, enhanced mitochondrial 
metabolism, biogenesis and reactive oxygen species (ROS) 
production seem critical to initiate and promote adipocyte 
differentiation.107,108 In line with findings in animals, several 
human studies have reported impaired mitochondrial capac-
ity and reduced expression of genes/proteins related to mito-
chondrial metabolism (eg, peroxisome proliferator‐activated 
receptor gamma coactivator 1‐alpha and nuclear respiratory 
factor 1) in WAT in states of obesity, insulin resistance and 
T2DM.34,59,109-112 Furthermore, it has been shown that mito-
chondrial proteins are downregulated not only at whole WAT 
level, but also in adipocytes from obese individuals.113,114 In 
line, mitochondrial density and oxygen consumption rates 
are lower in adipocytes derived from obese vs lean subjects, 
independent of adipocyte size.113-115 Of note, there also ap-
pear to be sWAT depot‐specific differences in oxygen con-
sumption rates in obesity, since basal respiration was lower 
in abdominal as compared to femoral differentiated human 
multipotent adipose‐derived stem cells.116 The latter finding 
may underlie the higher AT pO2 in abdominal than femoral 
subcutaneous adipose tissue.116

In accordance with impaired mitochondrial density and 
oxygen consumption in obese WAT in humans, there are in-
dications that weight loss may evoke beneficial changes in 
WAT mitochondrial function. Following bariatric surgery, 
both mitochondrial respiratory capacity and biogenesis were 
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increased in WAT.117,118 We have recently shown that diet‐in-
duced weight loss increased WAT gene expression of mito-
chondrial biogenesis markers and non‐mitochondrial oxygen 
consumption pathways in humans, which may have contrib-
uted to the reduction in WAT pO2 following weight loss.74 In 
contrast, instead of improving WAT mitochondrial abnormal-
ities, weight loss downregulated mitochondrial gene expres-
sion and density, and had neither effects on mitochondrial 
DNA transcripts nor OXPHOS proteins.119 Interestingly, 
the latter study showed that a higher initial mitochondrial 
number and gene expression was related to more successful 
weight loss after 12‐month follow‐up. Importantly, however, 
changes in gene expression do not necessarily translate into 
functional alterations. Taken together, it appears that oxygen 
consumption is impaired in obese WAT in humans, which 
may contribute to increased WAT pO2 in human obesity.

4 |  ALTERED ADIPOSE TISSUE 
OXYGENATION MAY CONTRIBUTE 
TO TISSUE DYSFUNCTION AND 
METABOLIC IMPAIRMENTS

In cell culture experiments investigating the molecular and 
cellular responses to hypoxia, cells are usually exposed to a 
substantially reduced level of oxygen (1% O2 is frequently 
employed) as compared to “normoxia” (ambient air, 21% 
O2). The normal physiological range of AT pO2 in human 
WAT is ~3%‐11% O2 or ~23‐84 mmHg.57,59,60,73 Therefore, 
the outcomes of experiments comparing the effects of pO2 
below and well‐above these physiological levels should be 
interpreted with caution, since results may not directly trans-
late to the human in vivo situation. Moreover, it is important 
to distinguish between acute (<24  h) and more prolonged 
exposure to different pO2 levels, since this seems to have a 
major impact on the metabolic and inflammatory responses, 
as will be discussed later in this section.

4.1 | The cellular response to low 
oxygen levels
As any other cell type, adipocytes must maintain and adjust 
their metabolic and physiological regulation in response to 
fluctuations in the local microenvironment, including vari-
ation in oxygen levels.25,120 The main regulators of oxygen 
sensing are the oxygen sensitive HIFs. HIFs are transcription 
factors, binding to the DNA and changing gene expression in 
response to alterations in oxygen levels.121 HIFs consist of 
two subunits, α and β, with the former being the oxygen sen-
sitive molecule and HIF‐1β being constitutively expressed 
by cells.67 The HIF family consists of three members based 
on the three α‐subunits, HIF‐1α, HIF‐2α and HIF‐3α, with 
the predominant members being HIF‐1α and HIF‐2α.27,120,122 

HIF‐1α has received the most attention, and this transcription 
factor has been described as the master regulator of oxygen 
homeostasis. HIF‐1α is continuously synthesized and rapidly 
degraded in the presence of oxygen but is stabilized when 
oxygen levels are low, and the functional HIF‐1α transcrip-
tion factor is then recruited. More specific, during sufficient 
oxygenation of the cells, HIF‐1α is enzymatically degraded 
by prolyl‐4‐hydroxylases through the proteasome.121 During 
“hypoxic” conditions, which are tissue‐dependent, but usu-
ally defined as <1% of oxygen in most in vitro studies, the 
prolyl hydroxylase domain enzymes are inactivated, and 
HIF‐1α is not subject to rapid degradation. Instead, HIF‐1α 
then forms a heterodimer with the β subunit, acting on DNA 
binding areas called hypoxia‐responsive elements, thus regu-
lating gene expression of many different genes.10,22,25,121,123 
These genes encode proteins involved in a multiplicity of 
cellular processes, including glucose and lipid metabolism, 
inflammation, ECM metabolism and apoptosis.25 Thus, 
changes in tissue oxygenation seem to affect many physi-
ological processes in WAT, and the metabolic and inflamma-
tory effects will be discussed in more detail below (Figure 2).

4.2 | Metabolic effects of altered adipose 
tissue oxygenation

4.2.1 | Glucose metabolism
Under hypoxic conditions, a shift from aerobic to anaerobic 
metabolism occurs, with glucose becoming the major sub-
strate for ATP generation.25,67,68,121 In vitro studies have 
demonstrated an increase in basal glucose uptake in human 
and rodent adipocytes treated acutely, up to 24 hours, with 
1% vs 21% O2.

65,124,125 Furthermore, it has been shown that 
glucose uptake in human adipocytes is inversely related to 
O2 levels (1, 3, 5, 10, 15% vs 21% O2), peaking at 1% O2.

126 
In accordance with these findings, prolonged exposure (14 d) 
to low (5% O2) but not high (10% O2) physiological pO2 lev-
els tended to increase basal glucose uptake in differentiated 
human multipotent adipose‐derived stem cells.116

Conflicting findings, however, have been reported regard-
ing the effects of pO2 on insulin‐mediated glucose uptake. 
Acute exposure to 1% O2 (up to 24 h) reduced insulin‐medi-
ated glucose uptake in human adipocytes,125 indicative of im-
paired insulin signalling, an effect that was reversible.125 This 
was further illustrated by decreased phosphorylation of the 
insulin receptor, IRβ and IRS‐1 proteins as well as protein ki-
nase B.65,125 In contrast, another study found that acute 1% O2 
exposure increased insulin‐dependent and insulin‐indepen-
dent glucose uptake in 3T3‐L1 adipocytes.127 Interestingly, it 
was shown that multiple exposures of differentiating 3T3‐L1 
adipocytes to transient hypoxia (1% O2, 4 h/d, 4‐8 d) enhanced 
insulin signalling, illustrated by increased phosphorylation of 
Akt (T308 and S473 residues) and GSK3β.127



8 of 17 |   LEMPESIS Et aL.

Alterations in glucose uptake are because of changes in 
the expression and localization of the glucose transporters 
(GLUTs). GLUT‐1 mRNA levels were increased following 
exposure to acute, severe hypoxia (1%‐2% pO2, up to 24 h) in 
both murine (3T3‐L1) and human (pre)adipocytes.67,126,128-133 
In contrast, insulin‐dependent GLUT‐4 mRNA expression in 
human adipocytes remained unchanged 124 or was signifi-
cantly reduced by acute exposure to 1% O2.

124,126,129,132 In line 
with improved insulin‐stimulated glucose uptake, GLUT‐4 
but not GLUT‐1 expression was elevated in murine adipo-
cytes exposed to transient hypoxia.127 During and after dif-
ferentiation of human preadipocytes under low (5% O2) and 
high (10% O2) physiological pO2 levels, basal GLUT‐1 ex-
pression was not changed 134 or decreased,116 while GLUT‐4 
mRNA expression remained unchanged.116,134

Acute hypoxia exposure to 1% O2 for 24  hours also in-
creased gene and protein expression of enzymes involved in 
glycolytic metabolism in human adipocytes, including glu-
cose phosphate isomerase, pyruvate kinase and 6‐phosphof-
ructo‐2‐kinase/fructose‐2,6‐biphosphatase.128,133,135-137 In 
accordance with these findings, the end‐product of the gly-
colytic pathway, lactate and the expression of genes encod-
ing monocarboxylate transporters (MCT) mediating lactate 
transport were found to be increased in rodent and human 
adipocytes under hypoxic conditions.67,138,139

In conclusion, in vitro findings indicate that exposure to 
severe hypoxia (1%‐2% O2), and likely also low physiological 
pO2 (5% O2), increases basal glucose uptake and induces a 
switch towards glycolytic metabolism in rodent and human 
adipocytes, while effects on insulin‐mediated glucose uptake 
are conflicting (Figure 2).

4.2.2 | Lipid metabolism
Few studies examined whether and how pO2 influences lipid 
metabolism in WAT, yielding conflicting results. FFA uptake 
and oxidation were significantly reduced by acute, severe 
hypoxia exposure (1% O2, 24 h) in 3T3‐L1 adipocytes.65,127 
Reduced uptake may be explained by reduced expression of 
fatty acid transport proteins, as illustrated by decreased ex-
pression of FATP and CD36 in these cells.65 Lipid storage, 
assessed by TAG accumulation, was reduced both by chemi-
cally induced hypoxia with CoCl2 and prolonged severe hy-
poxia exposure in 3T3‐L1 adipocytes (1% O2 for 14 d).140,141 
In accordance with these observations, 1% O2 exposure for 
14  days decreased lipogenesis in 3T3‐L1 adipocytes.140,141 
However, 14  days of exposure to mild hypoxia exposure 
(4% O2), which reflects low physiological pO2, markedly 
increased lipogenesis and the formation of large lipid drop-
lets in 3T3‐L1 adipocytes.140 Furthermore, another study has 

F I G U R E  2  Adipocyte substrate metabolism, adipocyte gene expression and adipokine secretion are affected by alteration of oxygen partial 
pressure (pO2). Both the severity and the duration of hypoxia exposure seem to impact cellular processes, as explained in more detail in the 
text. Panel A shows the effects of acute exposure to severe hypoxia (usually 1% O2 for <24 h), while panel B illustrates the putative effects of 
prolonged, mild hypoxia exposure (usually 5%‐10% O2 for 7‐14 d) on adipocyte biology. ER, endoplasmic reticulum; FA, fatty acids; FATP/CD36, 
fatty acid transporters; GLUT, glucose transporter; IR, insulin receptor; MCTs, monocarboxylate transporters; pO2, oxygen partial pressure; TAG, 
triacylglycerol. ↑, increase; ↓, decrease; ↔, unchanged; ?, not determined
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shown that exposure of differentiating human adipocytes to 
high (10% O2) but not low (5% O2) physiological pO2 for 
14 days increased TAG accumulation.134 Taken together, it 
seems that exposure of adipocytes to severe hypoxia may re-
duce lipogenesis, while prolonged exposure to physiological 
pO2 may increase lipogenesis, but these effects need to be 
studied in more detail to better understand the opposing re-
sults (Figure 2).

The amount of oxygen in the microenvironment also seems 
to impact adipocyte lipolysis. Several studies have shown that 
acute exposure to severe hypoxia (1% O2) increased basal li-
polysis in 3T3‐L1 adipocytes.65,68,125 Moreover, prolonged 
exposure (14 d) to severe hypoxia modestly increased basal 
lipolysis, while low physiological pO2 (4% O2, 14 d) expo-
sure increased lipolysis to a much greater extent in 3T3‐L1 
adipocytes.

140 In theory, insulin resistance in adipocytes 
might explain the increased basal lipolytic rate because of 
reduced insulin‐mediated suppression of lipolysis. However, 
since improved insulin sensitivity has also been found follow-
ing hypoxia exposure, as discussed in the previous section, 
alternative mechanisms are likely involved in the pO2‐in-
duced effects on basal adipocyte lipolysis. Furthermore, iso-
proterenol‐induced lipolysis was also significantly elevated 
in human adipocytes differentiated at high (10% O2) and 
low (5% O2) physiological pO2 as compared to exposure to 
ambient air (21% O2), which was accompanied by increased 
protein expression of the lipolytic enzyme HSL and the lipid 
droplet‐coating protein perilipin.134 In conclusion, hypoxia 
seems to increase lipolysis in rodent and human adipocytes, 
with more pronounced effects found under physiological pO2 
(Figure 2). Clearly, more studies are required before strong 
conclusions can be drawn regarding the effects of oxygen-
ation on lipid metabolism in human WAT, and to unravel un-
derlying mechanisms.

4.3 | Adipokines and inflammatory factors
Several studies have demonstrated that the expression and 
secretion of many adipokines are sensitive to pO2 levels. 
Most in vitro studies have shown that acute exposure to 
severe hypoxia (1% O2, up to 24  h) induces a pro‐inflam-
matory expression and secretion profile in (pre)adipocytes, 
with increased levels of TNF‐α, IL‐1, IL‐6, monocyte che-
moattractant protein‐1 (MCP‐1), plasminogen activator 
inhibitor (PAI)‐1, macrophage‐migration‐inhibition fac-
tor and inducible‐nitric oxide synthase, in both adipocytes 
and SVF cells derived from human adipose tissue, as well 
as in murine adipose tissue resident macrophages.25,41,64,142 
Furthermore, several studies found that acute exposure to 
severe hypoxia decreased adiponectin and increased leptin 
expression and secretion in human and murine (pre)adipo-
cytes.25,63-66,129,132,133,143 Adiponectin, which is often reduced 
in individuals with obesity, is an important adipokine that has 

beneficial metabolic and anti‐atherogenic properties.144,145 
Leptin, the concentrations of which are strongly positively 
correlated to adipose tissue mass, is an important regulator 
of food intake and energy expenditure, providing important 
feedback in relation to energy storage in the body.146

As with other in vitro studies applying acute and severe 
hypoxia over 1‐24  hours,25,64,66,129,132,133 these findings 
should be interpreted with some caution, underlining the im-
portance of applying more physiological conditions in cell 
culture experiments. Few in vitro studies have tried to better 
mimic physiological conditions in vivo in terms of oxygen 
partial pressure as well as the duration of exposure to altered 
pO2.

116,134 The effects of modest, rather than severe, hypoxia 
have also been investigated, showing a concentration‐depen-
dent change in adipokine expression and secretion in human 
adipocytes.126 Interestingly, prolonged exposure of human 
adipose tissue‐derived mesenchymal stem cells to physio-
logical pO2 levels (ie, 5% and 10% O2) during differentia-
tion towards mature adipocytes appears to elicit a different 
expression and secretion profile as observed following acute 
(severe) exposure to hypoxia. More specific, we have re-
cently demonstrated that low physiological pO2 decreased 
pro‐inflammatory gene expression (ie, IL‐6, PAI‐I, TNFα, 
MCP‐1 and dipeptidyl‐peptidase‐4 [DPP‐4]) in differenti-
ated human adipocytes as compared to 21% and/or 10% O2, 
whereas more heterogeneous effects on adipokine secretion 
were found.116 Exposure of these cells to low physiologi-
cal pO2 (5% O2) for 14  days resulted in a reduced secre-
tion of leptin and increased adiponectin and IL‐6 secretion 
in these adipocytes, while no significant effects on DPP‐4 
and MCP‐1 secretion were found.116 In contrast, exposure 
to high physiological pO2 (10% O2) increased leptin and 
DPP‐4, but reduced IL‐6 and MCP‐1 secretion.116 Famulla 
and colleagues 134 have shown increased DPP‐4, adiponectin 
and IL‐6 following prolonged exposure to high physiolog-
ical pO2 (10% O2), while low physiological pO2 (5% O2) 
tended to reduce the secretion of adiponectin. These differ-
ences between studies suggest that donor characteristics may 
also influence the effects of pO2 on the adipocyte secretory 
profile.

Taken together, oxygen levels and pattern of exposure 
seem to have a significant impact on adipocytokine expres-
sion and secretion (Figure 2). However, many aspects of 
exposure have not been examined in human cells, which is 
important to elucidate in future experiments.

5 |  ALTERED TISSUE 
OXYGENATION IMPACTS WHOLE‐
BODY PHYSIOLOGY IN HUMANS

As indicated in the previous section, the cellular response to 
altered oxygen levels seems to depend to a large extent on 
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the severity and duration of exposure. Not surprisingly, the 
effects of changes in oxygenation on whole‐body homeosta-
sis also seems to be determined by these factors, next to the 
oxygenation pattern.147 The clinical consequences of severe 
chronic hypoxia, as observed in patients with severe chronic 
obstructive pulmonary disease (COPD), and severe intermit-
tent hypoxia as seen in patients with obstructive sleep apnoea 
syndrome (OSAS) are outside the scope of this review and 
have been discussed elsewhere.148-152 In this section, we will 
provide a brief overview of findings on the effects of altered 
(adipose) tissue oxygenation through physiological or exper-
imental conditions on body weight and parameters related to 
cardiometabolic health.

Living at high‐altitude represents a condition of hypobaric 
hypoxic exposure (ie, around 15% O2 at ~3000 m) as oxygen 
partial pressure is relatively lower compared to sea level.147 
The impact of high‐altitude habitation on chronic diseases is 
dependent on several factors such as ethnicity, environmental 
and behavioural factors that may vary across mountain dwell-
ers.147,153 It has been suggested that living at high‐altitude 
is associated with improved cardiovascular and pulmonary 
function.154 Many studies have demonstrated a lower preva-
lence of obesity, cardiovascular diseases, T2DM and cancer 
in populations living at high altitude.147,153,155-157 For ex-
ample, a cross‐sectional study including 422,603 adults has 
shown an inverse relationship between elevation and obesity 
prevalence, after adjusting for temperature, diet, physical ac-
tivity, smoking and demographic factors, in both males and 
females,158 which is in line with other studies demonstrating 
an inverse association between altitude and the prevalence of 
obesity.159-161 Interestingly, a lower prevalence of the meta-
bolic syndrome, lower reduced fasting glucose levels and dia-
betes incidence have been found among highlanders.156,162-165 
Noteworthy, from most of these observational studies, it can-
not be concluded that exposure to lower pO2 levels has ben-
eficial health effects, since many potential confounders such 
as the diet and physical activity level may have affected these 
findings.

Several intervention studies have been performed to elu-
cidate the impact of exposure to altered pO2 on body weight 
and metabolic homeostasis (Figure 3). We have previously 
demonstrated that chronic exposure to hypoxia (8% vs 21% 
O2, 21 d) improved the WAT phenotype in C57Bl/6J mice, 
evidenced by decreased adipocyte size, decreased macro-
phage infiltration and inflammatory markers and increased 
expression of mitochondrial function and biogenesis mark-
ers in visceral and subcutaneous AT.166 More recently, the 
same concept has been applied to humans. Exposure to mod-
erate hypoxia (15% O2) for 10 subsequent nights increased 
whole‐body insulin sensitivity in eight obese men.167 Since 
moderate hypoxia exposure also tended to reduce AT pO2

167, 
these findings may imply that lowering of AT pO2 by mod-
erate hypoxia exposure may have contributed to improved 

insulin sensitivity.168 Furthermore, exposure to hypoxia 
under resting conditions increased energy expenditure and 
lipid metabolism, and reduced appetite and food intake.169,170 
Based on a recent systematic review, it was concluded that 
normobaric hypoxic conditioning, lasting from 5 days up to 
8 months, may have beneficial effects on insulin levels, en-
ergy expenditure, body weight and blood pressure in rodents 
and humans, which may contribute to improved cardiometa-
bolic health and body weight management in obesity.155 The 
putative effects of (severe) hypoxia exposure on orexigenic 
(ie, ghrelin) and anorexigenic (ie, leptin) peptides affecting 
appetite and food intake may, at least partially, underlie the 
effects on body weight and metabolic outcomes, as reviewed 
elsewhere.171,172

Interestingly, the combination of hypoxia exposure and 
exercise may have additive beneficial health effects in hu-
mans.147,173 A greater decrease in total body weight, body 
fat mass and waist/hip ratio was found when exercise was 
performed under hypoxia compared to normoxia,170,174-176 
and appeared to be maintained following the intervention.177 
Interestingly, hypoxia exposure also seems to exert effects on 
substrate oxidation but findings are conflicting, with some 
studies showing increased fat oxidation,178,179 while others 
demonstrating increased carbohydrate oxidation both during 
and post‐exercise.180,181 Furthermore, exercise training under 
hypoxic conditions induced a more pronounced increase 
in adiponectin levels compared to normoxic exercise.182 
Moreover, hypoxic exercise decreased insulin levels in obese 
individuals, and acutely improved insulin sensitivity in 
T2DM patients compared to normoxic exercise.175,183,184 The 
mechanisms underlying improvements in glucose homeosta-
sis following hypoxia exposure remain to be elucidated, but 
may involve insulin‐independent mechanisms. Importantly, 
the impact of hypoxia on cardiometabolic health may also be 
because of effects of altered pO2 on other organs than adipose 
tissue, especially during exercise.

The beneficial effects of hypoxic exercise may be medi-
ated to a large extent by alterations at the level of skeletal 
muscle. During contraction, glucose uptake in skeletal mus-
cle is increased in an insulin‐independent manner, likely 
involving independent effects of 5' AMP‐activated protein 
kinase (AMPK), mechanical stress and Ca2+/calmodulin‐de-
pendent protein kinase kinases (CaMKKs).185 Interestingly, it 
has been demonstrated that hypoxia exposure increased glu-
cose uptake in skeletal muscle cells through AMPK signal-
ling. Therefore, hypoxia exposure during exercise might have 
additive or synergistic effects on peripheral glucose uptake. 
Indeed, exposing human myotubes to 7% O2 in combination 
with electrical pulse stimulation (EPS), to mimic exercise, in-
creased glucose uptake to a higher extent than EPS under 21% 
O2, which seems at least partly because of an insulin‐sensi-
tizing effect of hypoxia.186 Taken together, hypoxia exposure 
may improve glucose homeostasis via insulin‐dependent and 
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insulin‐independent effects, but more studies in humans on 
putative underlying mechanisms are needed.

6 |  CONCLUSIONS AND FUTURE 
PERSPECTIVES

The obesity epidemic presents a major public health chal-
lenge. Novel preventive measures and treatment alternatives 
are urgently needed to combat obesity and its complications. 
Adipose tissue dysfunction in obesity is related to a plethora 
of metabolic and endocrine disturbances, contributing to 
impairments in lipid and glucose metabolism as well as im-
mune homeostasis. It is well established that adipose tissue 
dysfunction has a central role in the aetiology of obesity‐re-
lated comorbidities and chronic diseases, including T2DM 
and cardiovascular diseases. A reduced lipid buffering capac-
ity of hypertrophic adipose tissue in obesity results in lipid 
accumulation in key metabolic organs such as the liver and 
skeletal muscle (ie, ectopic fat storage), which is strongly as-
sociated with insulin resistance. Moreover, adipose tissue in 
obesity is characterized by a pro‐inflammatory phenotype. 
This is reflected by a phenotypic shift towards a higher abun-
dance of pro‐inflammatory macrophages and other adaptive 
and innate immune cells in obese adipose tissue, leading to 

the production and secretion of a multitude of pro‐inflamma-
tory cytokines, which in turn may induce insulin resistance. 
Besides inflammation, a disproportionate deposition of ECM 
components during the development of obesity may contrib-
ute to adipose tissue fibrosis and insulin resistance (Figure 1).

Adipose tissue oxygen partial pressure, determined by 
the balance between oxygen supply and consumption, may 
have a key role in the metabolic and inflammatory pertur-
bations seen in most obese individuals. Animal models 
have shown lower pO2 in obese WAT (“hypoxia”). Findings 
in humans are conflicting, which may be because of dif-
ferences between study populations in terms of the onset 
and physical history (eg, weight cycling) of obesity and 
other subjects’ characteristics (eg, age, sex, ethnicity, pres-
ence of type 2 diabetes), the WAT depot studied, and the 
methodology used. Nevertheless, several studies performed 
in our laboratory indicate that AT pO2 is higher in obese 
insulin resistant individuals, is positively related to insu-
lin resistance (independently of adiposity), and is reduced 
after diet‐induced weight loss, which is paralleled by im-
proved insulin sensitivity. Adipose tissue mitochondrial 
dysfunction (ie, reduced O2 consumption) may contribute 
to higher AT pO2 in obesity. There is no strong evidence 
to suggest that differences in pO2 within the human phys-
iological range (ie, because of impaired blood flow) have 

F I G U R E  3  Putative impact of 
(moderate) hypoxia exposure on whole‐
body, skeletal muscle and adipose tissue 
physiology. O2, oxygen; pO2, oxygen partial 
pressure

Whole body
Body weight
Fat mass
Lean body mass
Substrate oxidation
Metabolic homeostatis

pO2

pO2

Skeletal muscle
Angiogenesis / blood flow
Mitochondrial respiration
Substrate metabolism
Insulin sensitivity

Adipose tissue
Angiogenesis / blood flow
Mitochondrial respiration
Substrate metabolism
Inflammation
Insulin sensitivity
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marked effects on mitochondrial respiration. Interestingly, 
many in vitro experiments have demonstrated that changes 
in oxygen levels impact the functionality of (pre)adipocytes 
and immune cells, leading to alterations in glucose and 
lipid metabolism, as well as inflammation in adipose tissue 
(Figure 2). Clearly, altered pO2 may not only affect adipose 
tissue physiology but also whole‐body metabolic homeo-
stasis (Figure 3). In this respect, it remains to be elucidated 
whether AT pO2 exerts a crucial role in the development and 
progression of obesity‐related complications in humans. 
Although several lines of evidence suggest that exposure to 
lower levels of oxygen may enhance whole‐body metabolic 
homeostasis and body weight regulation, intervention stud-
ies in humans are warranted to further investigate whether 
changes in tissue oxygenation may improve cardiometa-
bolic health, thereby providing a novel strategy to combat 
chronic cardiometabolic diseases in obese humans.
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