MURINE V_{κ} GENE EXPRESSION DOES NOT FOLLOW THE V_{H} PARADIGM By AZAD KAUSHIK,* DAN H. SCHULZE,‡ CONSTANTIN BONA,* AND GARNETT KELSOE‡ From the *Department of Microbiology, Mount Sinai School of Medicine, New York 10029; and the Department of Microbiology, University of Texas Medical Branch, Galveston, Texas 77550 The germline V gene segments from which the functional H and L chain genes are constructed have been classified into families based upon the amino acid sequence of mAbs (1, 2) and by DNA sequence homology (3, 4). Thus, the estimated 100-1,000 H chain V gene segments (V_H) have been classified into 11 families (3, 5-7), while the 100-300 V gene segments (8) of the κ L chain (Vκ) have been divided into 29 subgroups or families (2, 9). Analysis by a variety of independent methods (10-15) indicates that, in general, the frequencies at which V_H families are used in adult mice is proportional to each V_H family's size. However, this does not seem to be the case in the murine fetal liver and neonatal spleen where biased usage of 3' V_H gene families, those nearest the D and J loci, is found (16, 17). It has been suggested that these differences in V_H expression reflect developmentally controlled changes in the accessibility of the V_H locus to a recombination mechanism that exhibits a 3' \rightarrow 5' tracking behavior (15). In contrast, little is known about V_κ usage. Since 95% of all murine antibodies bear the κ L chain (18), the role of V_{κ} exons in the generation of antibody diversity almost equals that of the V_H gene segments. The mode of V_K expression in adult and neonatal mice is also unknown. For these reasons, we have determined the frequencies at which 10 V_{κ} families are expressed in adult and neonatal C57BL/6 mice. #### Materials and Methods Mice. Neonatal (6-8 d old) and adult (14-24 wk old) C57BL/6 mice were obtained from The Jackson Laboratories (Bar Harbor, ME) and maintained at the University of Texas Medical Branch. Thymocyte donors were sex-matched, young (5-8 wk) C57BL/6 mice. DNA Probes. 10 V_{κ} gene probes, each a prototype of the $V_{\kappa}1$, -2, -4, -8, -10, -19, -21, -22, or -24 families as well as a C_{μ} -specific probe have been described (12, 19). A C_{κ} -specific probe, a 3.1-kb Bam HI, Hind III fragment containing the genomic C_{κ} sequence was derived from the plasmid pC_{κ} , the generous gift of Dr. P. Tucker (University Texas Health Science Center, Dallas, TX). B Lymphocyte Cloning. Colonies of B cells, representing the progeny of single mitogenreactive lymphocytes, were grown in vitro on filter paper discs as described (20). Briefly, splenocytes were plated at low densities (10^5 cells) onto filter paper discs and cultured in the presence of 20 μ g/ml LPS and 3 × 10^7 isologous thymocyte feeder cells. After 5 d of culture, discs were fixed in neutral buffered formalin, washed in $0.1 \times PBS$ and air dried. In Situ Hybridization. Briefly, discs were rinsed in chloroform/isoamyl alcohol (24:1), washed three times in $0.1 \times PBS/0.1\%$ SDS, and prehybridized overnight (50% formamide, $5 \times SSC$, $5 \times Denhardt's$ solution, 50 mM phosphate buffer (pH 6.5), 1% glycine, 0.5% SDS and $50 \mu g/ml$ salmon sperm DNA). Subsequently, a 48-h hybridization was performed with $1-2 \times 10^{-2} M_{\odot}$ 10^5 cpm/ml of 32 P-oligolabeled V_{κ} -specific DNA probes. After stringent washing, discs were autoradiographed for 7 d on Kodak films as described (12). After stripping bound counts (12), the same discs were again hybridized with C_{μ^-} or C_{κ^-} -specific probes to reveal all B cell colonies. The frequency of V_{κ} families was determined by scoring the number of clones hybridizing with a particular V_{κ} probe divided by total number of C_{μ^+} or C_{κ^+} clones. ### Results Hybridizations using either the C_{μ} or C_{κ} probes show no significant differences in the expression of the $V_{\kappa}1$ gene family (Table I), indicating that either probe serves equally well to detect B cell colonies. This result is expected since LPS-driven colony formation predominantly expands IgM-bearing (C_{μ}^{+}) B cells (21) and since the κ isotype is expressed on $\geq 95\%$ of all murine B lymphocytes (18). Thus, we shall describe colonies hybridizing with either the C_{κ} - or C_{μ} -specific probe as "C+". Nonstoichiometric V_{κ} Gene Expression in Adult Mice. Frequencies at which 10 V_{κ} gene families are expressed among B cell colonies derived from C57BL/6 mice are presented in Table II. Large numbers (28,106) of C⁺ colonies were screened in four independent experiments to ensure detection of infrequently expressed V_{κ} families and to establish the degree of intrastrain variability. The $V_{\kappa}1$ gene family is most prevalent, expressed in more than one-quarter of all B cell colonies. In contrast, V_x24 gene segments are expressed in only 0.3% of C⁺ colonies, a frequency almost 100fold below that for $V_{\kappa}1$ (Table II). Surprisingly, unlike V_{H} expression, utilization of V_{κ} gene families does not approximate stoichiometric use. Of the V_{κ} families examined in this census, the V_K8, -9, -19, and -21 families are the largest as determined by their genomic complexity (12, 11, 10, and 10 members respectively; Table II). However, none of these families are expressed at frequencies >10% in adult mice (Table II). Indeed, the most and least frequently expressed V_{κ} families, $V_{\kappa}1$ and $V_{\kappa}24$, have similar complexities, 3 and 2, respectively. Finally, the 10 V_{κ} gene family probes used in these experiments accounted for about 60% of all C+ LPS-induced B colonies derived from adult mice. V_{κ} Gene Expression in Neonates Is not Biased for 3' Families. Analysis in three experiments of 18,462 colonies of B cells taken from neonatal mice (Fig. 1) revealed several important differences. First, significant increases in the frequencies of $V_{\kappa}1$ and $V_{\kappa}9$ (~2-fold and 5-fold, respectively [$p \le 0.05$]) were seen along with less dramatic increases in the expression of $V_{\kappa}8$ and $V_{\kappa}4$ exons (Table II). Second, the $V_{\kappa}19$ and $V_{\kappa}22$ gene families were observed at lower frequencies (~5-fold and 40-fold, respectively [$p \le 0.01$]) in neonatal vs. adult mice. Interestingly, the 10 V_{κ} probes used accounted for 89% of all C⁺ colonies screened. However, our most striking observation was the failure to detect expression of $V_{\kappa}21$ exons (0/4,490; Table II) among colonies of B cells derived from neonates. The $V_{\kappa}21$ gene family has been mapped most proximal to the J_{κ} locus (11) and might have been expected to enjoy the biased expression of the analogous 3' $V_{\rm H}$ gene family, $V_{\rm H}$ 7183 (16, 17). ## Discussion Among murine antibodies, the κ L chain is dominant (18); thus V_{κ} exons are virtually equal in importance to the V_{H} exons in creating antibody diversity. The murine $Ig\kappa$ locus is located on chromosome 6 and is thought to contain some 100-300 V_{κ} exons that are organized into discrete families of reiterated homologous sequences (9). We have used 10 gene probes specific for the $V_{\kappa}1$, -2, -4, -8, -9, -19, -21, -22, Comparison of V_k1 Expression Among C_k⁺ or C_µ⁺ Colonies TABLE I | Average | | 33 ± 8% | | $32 \pm 9\%$ | | |---------|---|---------|----------------------|--------------|----------| | | κ ⁺ Nos. Cμ ⁺ | ı | | 942 | | | | 1 ⁺ Nos. C _k ⁺ | 648 | ++ | l | ((| | | Nos. V _K 1 ⁺ | 211 | $(n = 7)^{\ddagger}$ | 303 | (n = 10) | ^{*} Represents the mean (\pm SD) frequency of $V_\kappa I$ expression. † *, Number of discs screened. V. Gene Family Use Among LPS-activated Splenocyte Colonies from Adult and Neonatal C57BL/6 Mice TABLE II | | | 6 | 0 | , | , | , | | | | | |---|-----------------------|------------------------------------|---|--------------------|---------------------|----------------------|-------------------|------------------------|--|--| | Gene order:* centromere Hd-/ | I-/ V _K 2; | $V_{\kappa}22/$ -($V_{\kappa}11;$ | V _K 24; V _K 9-26)- (V _K 1; | (V _k 1; | V _k 9) - | - (V _K 4; | V, 8; | $V_{k}10; V_{k}12-13;$ | V _K 19)-(V _K 28; Rn7s-6)-V _K 23-(| $V_{\kappa}21$ - J_{κ} - C_{κ}) | | Genomic complexity: [‡] | S | 7 | 2 | 33 | 11 | 8 | 12 | 2 | 10 | 10 | | | $V_{\mathbf{k}}2$ | $V_{\kappa}22$ | | $V_{\mathbf{k}}$ 1 | $V_{\mathbf{k}}9$ | $V_{\kappa}4$ | $V_{\mathbf{k}}8$ | | $V_{\kappa}19$ | $V_{\mathbf{k}}21$ | | V_{κ} expression $(V_{\kappa}/C_{\mu} \text{ or } C_{\kappa})$ | 35 | 47 | , | 924 | 105 | 93 | 371 | · | , | 63 | | Adult: | 2,126 | 1,090 | | 3,582 | 2,064 | 2,848 | 4,125 | | | 2,429 | | | 1.7% | 4.3% | • | 25.8% | 5.1% | 3.3% | %0.6 | | | 7.6% | | Neonatal: | 44 | ĸ | 0 | 616 | 241 | 59 | 162 | 3 | , | 0 | | | 928 | 2,929 | ' | 1,538 | 1,049 | 1,093 | 1,174 | | | 1,490 | | | 4.7% | 0.2% | • | 10.1% | 23.0% | 5.4% | 13.8% | | | 1 | | | | | | | | | | | | | Neonatal mice 6-8 d old; adult mice 14-24 wk old. * From reference 9. Gene order within parentheses is not known. The V_k2 and V_k22 families are unmapped. Hd, Hypodactyly. Rn7s-6, 7s ribonucleoprotein. † From reference 19. Complexities determined by RFLP analyses of genomic DNA cut with Bam HI, HinD III, or both. FIGURE 1. Sequential hybridizations of the $V_{\kappa}1$ or $V_{\kappa}22$ and C_{μ} probes to LPS-induced B cell colonies from neonatal C57BL/6. Note that the frequency of $V_{\kappa}1^+$ (a and b) greatly exceeds $V_{\kappa}22^+$ colonies (c and d). Disc A was probed with $V_{\kappa}1$ (a) followed by C_{μ} (b) after stripping. Similarly, disc B (c and d) was hybridized to $V_{\kappa}22^-$ and C_{μ} -specific probes. or $V_{\kappa}24$ gene families to investigate V_{κ} expression in C57BL/6 mice. By RFLP analysis of genomic DNA (19), our probes account for 73 of the 100–300 V_{κ} exons. Thus, while not exhaustive, this study addresses a meaningful fraction of the V_{κ} gene segments. Our census of some 4.7×10^4 B cell colonies derived from neonatal and adult C57BL/6 mice has identified age-specific patterns of V_{κ} expression (Table II). In adult C57BL/6 mice the 10 V_{κ} gene families studied accounted for about 60% of all C⁺ colonies screened, a value consistant with estimates of the number of V_{κ} exons. Most of the 10 V_{κ} gene families were expressed at levels <10%. The exception, $V_{\kappa}1$, was transcribed in almost 26% of colonies ($V_{\kappa}1 > V_{\kappa}8 > V_{\kappa}19 \ge V_{\kappa}9 \ge V_{\kappa}22 \ge V_{\kappa}42 \ge V_{\kappa}21 \ge V_{\kappa}22 \ge V_{\kappa}10 > V_{\kappa}24$). This observation is in agreement with the higher than expected frequency of $V_{\kappa}1$ expression among myeloma libraries (21) and within certain responses to self antigens (22). In contrast, the same 10 V_{κ} gene families accounted for almost 90% of B cell colonies derived from 6–8-d-old C57BL/6 mice. Three V_{κ} gene families, $V_{\kappa}1$, $V_{\kappa}9$, and $V_{\kappa}8$, alone made up the majority (77%) of early κ L chain expression ($V_{\kappa}1 > V_{\kappa}9 > V_{\kappa}8 > V_{\kappa}4 \sim V_{\kappa}2 > V_{\kappa}19 > V_{\kappa}10 \ge V_{\kappa}22 > V_{\kappa}24 \sim V_{\kappa}21$). This circumscription of V_{κ} usage and the contemporary bias for the expression of 3' $V_{\rm H}$ gene segments (16, 17) is likely to be an important element in the limited antibody diversity found in neonatal mice (23). Our results also illustrate that V_{κ} gene family expression differs from that of $V_{\rm H}$ expression in at least two important respects. First, in adult C57BL/6 mice, V_{κ} family expression is not correlated to family size. This is in contrast to $V_{\rm H}$ expression in adult mice where $V_{\rm H}$ family usage and genomic complexity correlate well (11, 12). However, we stress that measures of genomic complexity are not an enumeration of V_{κ} segments and may not precisely reflect the number of functional exons within a V_{κ} family (8). In addition, we can not formally exclude biased expansion of certain B cells (e.g., $V_{\kappa}1^+$) by LPS or inappropriate hybridization by some number of our probes. However, LPS has not been found to bias $V_{\rm H}$ expression (10, 12–14) and with Southern blots no cross (interfamily) hybridization was observed between the 10 V_{κ} probes used (data not shown). For these reasons, we are convinced that V_{κ} expression in adult mice is not stoichiometric. Second, V_{κ} usage in neonatal C57BL/6 mice does not reflect a positional bias for the expression of J_{κ} -proximal exons. Although the organization of the $Ig\kappa$ locus has not yet been precisely defined, recombinational analyses by D'Hoostelaere et al. (9) have generated the genetic map depicted in Table II. The $V_{\kappa}1$, -9, and -8 gene families, which alone account for almost 80% of the early κ L chains, map near the center of the $Ig\kappa$ -V locus. Indeed, the V_{κ} family mapped most proximal to the J_{κ} locus, $V_{\kappa}21$, is rarely, if at all, expressed (<1/4,490) in the neonate. These contrasts imply that the mechanisms for V_{κ} gene rearrangement and expression may differ from those controlling the V_{H} locus. For example, unlike the Igh locus, analyses of plasmacytomas suggest that many V_{κ} exons lie in a transcriptional orientation opposite that of the J_{κ} locus (24). Although the import of such findings remains unclear, Alt and his colleagues have proposed a model for Ig rearrangement and expression (15) based upon a universal recombinase that tracks across "accessible" portions of the Ig loci in a 3' \rightarrow 5' direction. As the two V_{κ} families most frequently expressed in neonates, $V_{\kappa}1$ and $V_{\kappa}9$, map adjacent to one another, positional bias may influence early V_{κ} expression. However, the process of developmentally regulated V_{κ} expression is undoubtedly more complex than can be explained by the linear tracking models currently proposed. ## Summary V_{κ} gene family expression among LPS-reactive murine B lymphocytes, unlike that of V_{π} gene families, is not proportional to genomic complexity, i.e., nonstoichiometric. Furthermore, no positional bias for the overexpression of J-proximal V_{κ} genes $(V_{\kappa}21)$ is observed among neonatal B lymphocytes. Yet, the $V_{\kappa}1$ and $V_{\kappa}9$ families located in the center of V_{κ} locus are preferentially used by neonatal B splenocytes. Thus, the mechanisms of V_{κ} gene rearrangement and expression appear to differ significantly from those controlling the V_{π} locus. Received for publication 1 February 1989. #### References - Kabat, E. A., T. T. Wu, M. Reid-Miller, H. M. Perry, and K. S. Gottesman. 1987. In Sequences of Proteins of Immunological Interest. U. S. Department of Health and Human Services. 45-64. - 2. Potter, M., J. B. Newell, S. Rudikoff, and E. Haber. 1982. Classification of mouse VK groups based on the partial amino acid sequence to the first invariant tryptophan: impact of 14 new sequences from IgG myeloma proteins. *Mol. Immunol.* 12:1619. - 3. Brodeur, P. H., and R. Riblet. 1984. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse I. One hundred Igh-V genes comprise seven families of homologous genes. *Eur. J. Immunol.* 14:922. - 4. Gough, N. M., E. A. Webb, S. Cory, and J. M. Adams. 1980. Molecular cloning of seven mouse immunoglobulin κ chain messenger ribonucleic acids. *Biochemistry*. 19:2702. - Winter, E., A. Radbruch, and U. Krawinkel. 1985. Members of novel V_H gene families are found in VDJ regions of polyclonally activated B-lymphocytes. EMBO (Eur. Mol. Biol. Organ.) J. 4:2861. - 6. Kofler, R. 1988. A new murine Ig V_H family. J. Immunol. 140:4031. - 7. Reininger, L., A. Kaushik, S. Izui, and J. C. Jaton. 1988. A member of a new V_H gene - family encodes anti-bromelinised mouse red blood cell autoantibodies. Eur. J. Immunol. 18:1521. - 8. Cory, S., B. M. Tyler, and J. M. Adams. 1981. Sets of immunoglobulin V_{κ} genes homologous to ten cloned V_{κ} sequences: Implications for the number of germline V_{κ} genes. J. Mol. Appl. Genet. 1:103. - 9. D'Hoostelaere, L. A., K. Huppi, B. Mock, C. Mallet, and M. Potter. 1988. The immunoglobulin kappa light chain allelic groups among the Igκ haplotypes and Igκ crossover populations suggest a gene order. J. Immunol. 141:652. - 10. Manser, T., S.-Y. Huang, and M. L. Gefter. 1984. Influence of clonal selection on the expression of immunoglobulin variable region genes. *Science (Wash. DC)*. 226:1283. - 11. Dildrop, R., U. Krawinkel, E. Winter, and K. Rajewsky. 1985. V_n-gene expression in murine lipopolysaccharide blasts distributes over the nine known V_n-gene groups and may be random. *Eur. J. Immunol.* 15:1154. - 12. Schulze, D. H., and G. Kelsoe. 1987. Genotypic analysis of B cell colonies by in situ hybridization. Stoichiometric expression of three V_H families in adult C57BL/6 and BALB/c mice. J. Exp. Med. 166:163. - 13. Jeong, H. D., J. L. Komisar, E. Kraig, and J. M. Teale. 1988. Strain-dependent expression of V_H gene families. *J. Immunol.* 140:2436. - 14. Alt, F. W., T. K. Blackwell, and G. D. Yancopoulos. 1987. Development of the primary antibody repertoire. *Science (Wash. DC)*. 238:1079. - 15. Yancopoulos, G. D., B. A. Malynn, and F. W. Alt. 1988. Developmentally regulated and strain-specific expression of murine V_H gene familes. *J. Exp. Med.* 168:417. - Yancopoulos, G. D., S. V. Desidero, M. Paskind, J. F. Kearney, D. Baltimore, and F. W. Alt. 1984. Preferential utilization of the most J_H-proximal V_H gene segments in pre-B-cell lines. *Nature (Lond.)*. 311:727. - 17. Perlmutter, R. M., J. F. Kearney, S. P. Chang, and L. E. Hood. 1985. Developmentally controlled expression of immunoglobulin V_H genes. *Science (Wash. DC)*. 227:1597. - 18. McIntire, K. R., and M. Rouse. 1970. Mouse immunoglobulin light chains: alteration of the kappa:lambda ratio. Fed. Proc. 29:704. (Abstr.). - 19. Kasturi, K., M. Monestier, R. Mayer, and C. Bona. 1988. Biased useage of certain V_{κ} gene familes by autoantibodies and their polymorphism in autoimmune mice. *Mol. Immunol.* 25:213. - 20. Kelsoe, G. 1987. Cloning of mitogen- and antigen-reactive B lymphocytes on filter paper discs: phenotypic and genotypic analysis of B-cell colonies. *Methods Enzymol.* 150:287. - 21. Gibson, D. M. 1984. Evidence for 65 electrophoretically distinct groups of κ light chains in BALB/c and NZB myelomas. *Mol. Immunol.* 21:421. - Shlomchik, M. J., D. A. Nemazee, V. L. Sato, J. Van Snick, D. A. Carson, and M. G. Weigert. 1986. Variable region sequences of murine IgM anti-IgG monoclonal antibodies (rheumatoid factors). A structural explanation for the high frequency of IgM anti-IgG B cells. J. Exp. Med. 164:407. - 23. Sherwin, W. K., and D. T. Rowlands. 1975. Determinants of the hierarchy of humoral immune responsiveness during ontogeny. *J. Immunol.* 115:1549. - 24. Shapiro, M. A., and M. Weigert. 1987. How immunoglobulin V_{κ} genes rearrange. J. Immunol. 139:3834.