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A variety of statistical methods, such as admixture models, have been used to estimate

genomic breed composition (GBC). These methods, however, tend to produce non-zero

components to reference breeds that shared some genomic similarity with a test animal.

These non-essential GBC components, in turn, offset the estimated GBC for the breed to

which it belongs. As a result, not all purebred animals have 100% GBC of their respective

breeds, which statistically indicates an elevated false-negative rate in the identification of

purebred animals with 100% GBC as the cutoff. Otherwise, a lower cutoff of estimated

GBC will have to be used, which is arbitrary, and the results are less interpretable. In

the present study, three admixture models with regularization were proposed, which

produced sparse solutions through suppressing the noise in the estimated GBC due

to genomic similarities. The regularization or penalty forms included the L1 norm penalty,

minimax concave penalty (MCP), and smooth clipped absolute deviation (SCAD). The

performances of these regularized admixture models on the estimation of GBC were

examined in purebred and composite animals, respectively, and compared to that of

the non-regularized admixture model as the baseline model. The results showed that,

given optimal values for λ, the three sparsely regularized admixture models had higher

power and thus reduced the false-negative rate for the breed identification of purebred

animals than the non-regularized admixture model. Of the three regularized admixture

models, the two with a non-convex penalty outperformed the one with L1 norm penalty.

In the Brangus, a composite cattle breed, estimated GBC were roughly comparable

among the four admixture models, but all the four models underestimated the GBC for

these composite animals when non-ancestral breeds were included as the reference.

In conclusion, the admixture models with sparse regularization gave more parsimonious,

consistent and interpretable results of estimated GBC for purebred animals than the non-

regularized admixture model. Nevertheless, the utility of regularized admixture models for

estimating GBC in crossbred or composite animals needs to be taken with caution.
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INTRODUCTION

The estimation of genomic breed composition (GBC)
of individual animals is useful in many aspects, such as
predicting heterosis (Akanno et al., 2018), correcting population
stratification effects in genetic association studies (Jiang et al.,
2010; Mebratie et al., 2019), understanding the population
structure and breeding history of the breeds of interest
(Gobena et al., 2018), and making management decisions for
crossbreeding programs (Pickrell and Pritchard, 2012; Akanno
et al., 2018). In the past decades, pedigree information has
been used to determine the breed composition of animals
(Frkonja et al., 2012). The reliability of pedigree-estimated
breed composition, however, can be compromised by missing,
inaccurate, or incomplete records (vanRaden and Cooper, 2015).
Another advantage with a pedigree-based estimator is that it
yields the same GBC estimates for full-sib progenies of the
same family. In reality, they can vary drastically in their actual
genomic composition inherited from ancestors as the result
of crossing-overs and chromosomal assortments taking place
during meiosis. Instead, GBC can be estimated more accurately
using genomic data, such as SNPs (Chiang et al., 2010; Kuehn
et al., 2011; He et al., 2018) and sequence data (Bansal and
Libiger, 2015; Taliun et al., 2017).

A variety of statistical methods and software packages have
been developed to estimate GBC (Alexander et al., 2009; Kuehn
et al., 2011; Frkonja et al., 2012; Bansal and Libiger, 2015).
For example, a likelihood-based admixture model (vanRaden
and Cooper, 2015; He et al., 2018) has been widely used. It
postulates that a genotype of an SNP for a given animal is a
random event following a probability being a mixture of the
corresponding allele frequencies of its ancestors or ancestral
breeds (Bansal and Libiger, 2015). A challenge with this model
is that it tends to produce non-zero GBC components produced
to reference breeds that shared genomic similarities with a test
animal, which in turn offsets the estimated GBC for the breed
to which this animal belongs. The consequence is that not all
purebred animals have 100% estimated GBC of their respective
breeds, which we refer to as the “Impure purebred Paradox.”
Statistically, it indicates an elevated false-negative rate in the
identification of purebred animals. The same situation happens
with other statistical models such as linear regression. In dairy
cattle, for example, the Council of Dairy Cattle Breeding (CDCB)
in the USA has established a procedure termed Breed Base
Representation (BBR) representing five dairy purebred reference
groups (PRG): Ayrshire, Brown Swiss, Guernsey, Holstein, and
Jersey. The measure of the same name estimated the genomic
breed composition of individual animals using linear regression,
with the estimates restricted to be between 0 and 100% for each
PRG and summed up to 1 per genotyped animal. Their results
showed that the mean BBR percentages were 94.8, 97.0, 97.8,
99.0, and 96.5%, respectively for all males genotyped for these
breeds (201,283 animals), and 95.0, 97.1, 96.9, 98.9, and 96.5%,
respectively, for all genotyped females (994,949 animals). Similar
results were reported in beef cattle as well by Kuehn et al. (2011),
who estimated GBC in seven breeds using linear regression. Their
results showed that the regression coefficients varied from 0.737

(Angus) to 0.981 (Hereford). The regression coefficients were low
for Angus (0.737) and Red Angus (0.883) because these two beef
breeds share a high genetic similarity.

In the present study, regularized admixture methods were
utilized to produce sparse solutions of admixture coefficients,
thus imposing penalties on small, non-essential components due
to genomic similarity. Three forms of sparse regularization were
incorporated into the admixture models, which included the L1
norm penalty, minimax concave (MCP) penalty, and smooth
clipped absolute deviation (SCAD). The L1 norm is the most
commonly used convex surrogate (Tibshirani, 1996), whereas
the other two are non-convex (Fan and Li, 2001; Zhang, 2010).
The difference between convex optimization and non-convex
optimization is that the former has one minimum, and hence the
local optimum is also the global optimum. However, the latter
can have multiple local minima, which are not all the same as
the global minimum (Zhao et al., 2018). Nonconvex penalties
can often lead to a better recovery in signals or variable selection
in machine learning but at the expense of introducing a more
challenging optimization problem (Jiao et al., 2016). The purpose
of the present study was to evaluate the performance of the three
sparsely regularized admixture models in the estimation of GBC
for purebred and composite animals, respectively, in comparison
with the non-regularized admixture model as the baseline model
(Bansal and Libiger, 2015).

MATERIALS AND METHODS

Animals and Genotype Data
The dataset used in the present study included 107,593 animals
from ten breeds, nine pure breeds, and one composite breed. All
these animals were genotyped on the GeneSeek Genomic Profiler
(GGP) bovine 50K version 1 SNP chip (49,463 SNPs), except
that 349 Brahman animals were genotyped on the Illumina 777K
bovine SNP chip (777,962 SNPs). The reference populations
consisted of eight Bos taurus taurus breeds and one Bos taurus
indicus cattle breed. The former included two dairy breeds
(Holstein and Jersey) and six beef breeds (Angus, Hereford,
Limousine, Shorthorn, Simmental, and Wagyu). Brahman is the
only indicus cattle breed used in the present study. Summary
statistics of the reference animals and their genotypes were shown
in Table 1.

Genomic breed composition was estimated based on SNP
panels. The largest panel had 15,708 SNPs (referred to as the 16K
SNP panel) which were common SNPs across five commercial
bovine SNP chips, namely, Illumina Bovine high-density (HD
or 777K) chip, GGP ultra-high-density (UHD or 150K) SNP
chip, GGP HD (80K) SNP chip, GGP 50K version 1 SNP
chip, and GGP low-density (LD or 40K) version 4 SNP chip.
The main reason for us to use the shared content of these
commercial SNP chips was to facilitate the estimation of GBC
using currently available SNP chips in the market. Then, three
panels of uniformly-distributed SNPs (1K, 5K, and 10K) were
selected from the list of 16K common SNPs using the selectSNP
package (Wu et al., 2016). The reason for using subsets of
uniformly-distributed SNPs in the present study was because they
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TABLE 1 | Descriptive statistics of genotype data for the ten cattle breeds used in

the present study.

Breed Number of

genotyped animalsa
Number of

SNPs

Mean FreqA

(SD)b

Angus 20,359 (20,322) 49,463 0.492 (0.247)

Brahman 349 (349) 777,962 0.439 (0.343)

68 (43) 49,463 0.431 (0.363)

Brangus 3,605 49,463 0.477 (0.231)

Hereford 2,423 (2,421) 49,463 0.496 (0.271)

Holstein 20,350 (20,246) 49,463 0.489 (0.254)

Jersey 15,689 (15,607) 49,463 0.489 (0.288)

Limousine 5,043 (5,041) 49,463 0.490 (0.228)

Shorthorn 1,232 (1,218) 49,463 0.491 (0.258)

Simmental 14,754 (14,727) 49,463 0.490 (0.226)

Wagyu 23,721 (21,844) 49,463 0.483 (0.302)

a In the brackets are the number of genotyped animals remained after excluding outliers.
bMean FreqA (SD) =mean (standard deviation) of allele A frequencies of genotyped SNP

for each breed.

tended to minimize linkage disequilibrium on average, given the
number of reference SNPs.

The reference animals for each of the nine pure breeds
(not including Brangus) were selected using the 5K SNP
panel based on the likelihood approach previously described
by He et al. (2018). Briefly speaking, the likelihood that an
animal belonged to a specific breed was computed, assuming
independent multinomial distributions of the SNP genotypes,
computed for each animal. Then, outliers were excluded
from each reference population by removing animals with (-
2)log(likelihood) exceeding a given cutoff value (which was
taken to be two by default). This process excluded 2,170
animals in total, retaining 101,818 “representative” reference
animals for the nine purebred cattle breeds. The distributions of
(−2)loglikelihoods computed for the animals in the nine pure
breeds are shown in Figure S1.

Admixture Model
Consider M SNPs, each having two alleles A and B. The three
possible genotypes were coded numerically to be 2 (AA), 1 (AB),
and 0 (BB). Let there be L reference (or putatively ancestral)
populations, and let qjk be the frequency of alleleA at the kth SNP
in the jth reference population. For a given animal, denote X =

[x1, x2, . . . , xk]
′
to be the vector of admixture coefficients, where

xj represents the genomic admixture proportion of this animal
of the jth population. Then, weighted allele frequency at SNP k,
given the allele frequencies and the admixture proportions for
each reference population, was computed to be fk =

∑L
j=1 qjkxj.

Assuming Hardy-Weinberg equilibrium (HWE) at each SNP
locus, a genotype, say gk at locus k, is an instance generated with
the following probabilities:

Pr
(

gk
∣

∣fk
)

=







f 2
k

if gk = 2

2fk(1− fk) if gk = 1

(1− fk)
2 if gk = 0

(1)

The log-likelihood of all the observed genotypes on this
individual was given by:

L (X ) =
∑M

i=1
ln (Pr

(

gk
∣

∣fk
)

) (2)

The above likelihood (2) can be written as:

L (X ) =
∑M

k=1
[gi ln (f k)+ (2− gk) ln (1− fk )]+ C (3)

where C =
∑M

k=1 ln

(

2
gk

)

. Our goal was to determine the values

for the admixture coefficient vector X = [x1, x2, . . . , xk]
′
that

maximizes L (X ) subject to the constraints xj ≥ 0 and
∑

j xj = 1.

Regularized Admixture Model With L1
Norm Penalty
In the ADMIXTURE-L1 model, estimates of sparse solution X

of the model (2) were obtained by maximizing the logarithm of
likelihood of the data with sparsity enforcing L1-norm penalty on
parameters {xj} ( j = 1, · · ·,k) as follows:

F (X ) , L (X ) −





k
∑

j=1

λ|xj|



 , (4)

where λ(λ > 0) is Lagrange multiplier (i.e., a regularization
parameter) that determines the amount of sparsity in xj.

The gradient of L (X ) with respect to xj were given by

∇ xjL (X ) =
∑n

1

[

giqij

fi
+

(

2− gi
) (

1− qij
)

S (X ) − fi

]

−
2n

S (X )
(5)

where S (X ) denotes the sum of the admixture coefficients.
In (4), L (X ) of F (X ) is differentiable with respect to Xj.

Solving (4) is complicated by the non-differentiability of |X j| at
Xj = 0.We used the subgradient withminimumnorm (Bertsekas
et al., 2003) of F (X ) in (4) as the steepest descent direction and
took a step resembling the Newton iteration in this direction with
a Hessian approximation to solve the above problem (Gill et al.,
1984). Subgradient methods are among the most popular ways
for non-differentiable optimization (Bertsekas et al., 2003). More
detail on the calculation of the search direction is available in
Appendix A.

Regularized Admixture Model With MCP or
SCAD Penalty
In ADMIXTURE-MCP and ADMIXTURE-SCAD, the estimate
of sparse solution X of the model (2) is obtained by maximizing
the logarithm of likelihood of the data sparsity enforcing non-
convex penalty MCP on the parameters {xj} ( j = 1, · · ·,k)
as follows:

F (X ) , L (X ) −
∑k

j=1
rλ(
∣

∣xj
∣

∣) (6)

where λ(λ > 0) and rλ
(∣

∣xj
∣

∣

)

= λ

(

∣

∣xj
∣

∣−
xj
2

2λγ

)

.I{|xj|<λγ} +

λ2γ
2 .I{|xj|≥λγ } (I{ǫ} = 1 if ǫ holds, and I{ǫ} = 0 otherwise).
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Given γ > 1, SCAD has

rλ
(
∣

∣xj
∣

∣

)

= λ
∣

∣xj
∣

∣ .I{|xj|<λ} +

(

λγ

γ − 1

∣

∣xj
∣

∣−
xj
2 + λ2

2(γ − 1)

)

.

I{λ<|xj|<λγ} +
λ2(γ + 1)

2
.I{|xj|≥λγ } (7)

In the above, γ is the concavity parameter of MCP or SCAD,
which essentially characterizes the concavity of the MCP or
SCAD regularizer: A larger γ implies that the regularizer is
less concave. In this paper, we let γ = 3 as usual. Please
refer to Appendix A for obtaining the subgradient of rλ

(∣

∣xj
∣

∣

)

and Appendix B for computing GBC using Algorithm 1 by
just replacing the subgradient of

∣

∣xj
∣

∣ with the subgradient
of rλ

(∣

∣xj
∣

∣

)

.

RESULTS AND DISCUSSION

Determining Optimal Values for the
Regularization Parameter λ

The optimal values for the parameter λ of the three sparsely
regularized admixture models were obtained using three-fold
cross-validation, based on the 5K SNP panel, and illustrated in
three cattle breeds (Angus, Holstein, and Limousine). The non-
regularized admixture model served as the baseline model for
comparison because it was equivalent to ADMIXTURE-L1 with
λ = 0. Briefly, all the animals for each breed were randomly
split into three subsets. Then, the animals in two subsets were
combined and used as the reference population for estimating
the allele frequencies of SNPs in the 5K panel. The third subset
was used as the testing set, in which GBC was computed for
each animal. The procedure rotated three times so that each
subset was used for testing once and only once. The percentage of
animals with GBC = 1 for their respective breeds was computed
for each of the three sparsely regularized admixture models
under varied settings for the regularization parameter λ. Then,
the optimal values of regularization parameter λ were taken
as such that each sparsely regularized admixture model gave a
higher percentage of purebred animals with 100% GBC of their
respective breeds than the non-regularized ADMIXTURE (λ =

0). By this criterion, the range of optimal values of λ for the
three regularized admixture models appeared to be 0 < λ <

0.60 for Holstein, 0 < λ < 0.36 for Angus, and 0 < λ < 0.30
for Limusine (see Figure 1). In Holstein, the maximal percentage
of individual animals with GBC =1 was 92.7% (ADMIXTURE-
L1 with λ = 0.1), 99.5% (ADMIXTURE-MCP with λ =

0.25), and 99.7% (ADMIXTURE-SCAD with λ = 0.25). In
Angus, the maximum percentage of individuals with GBC = 1
obtained using the regularized admixture models was 92.9% for
ADMIXTURE-L1 with λ = 0.1, 97.6% for ADMIXTURE-MCP
with λ = 0.25, and 98.2% for ADMIXTURE-SCAD with λ =

0.25. In Limousine, the maximal percentage of individuals with
GBC =1 was relatively lower, which was 64.6% (ADMIXTURE-
L1 with λ = 0.1), 70.9% (ADMIXTURE-MCP with λ = 0.25),
and 71.4% (ADMIXTURE-SCAD with λ = 0.20). We, therefore,
decided to take λ = 0.1 for Admixture-L1, and λ = 0.25 for

Admixture-MCP and Admixture-SCAD to estimate GBC in the
following analyses.

Estimated Genomic Breed Composition for
Purebred Animals
With the optimal λ values given to the regularized models
and λ = 0 for the non-regularized model, GBC was estimated
for animals in each of the nine pure breeds using the four
statistical models. In Table 2 are the percentages of animals by
the ranges of estimated GBC obtained using the four models
with the 16K SNP panel for Angus, Holstein, and Limousine,
respectively. Estimated GBC for these three breeds using all
the four SNP (1K, 5K, 10K, and 16K) are shown in Tables S1–
S3. Furthermore, estimated GBC for all the six breeds (also
including Brahman, Hereford, Jersey, Shorthorn, Simmental,
and Wagyu breeds) using the 5K SNP panel are shown in
Tables S2–S5. Hereafter, the percent of animals with GBC =

1 in each breed was taken empirically to be the power for
the identification of purebred animals, though this criterion
was stringent.

The power of identifying purebred animals varied with
the size of SNP panels. The 1K SNP panel had the highest
power for identifying purebred animals in most of the nine
breeds, e.g., Angus and Limous, and the power of identifying
purebred animals decreased as the SNP panel size increased
(Table S1). In Holstein, the 1K SNP panel had either greater
or approximately comparable power as the 16K SNP panel
(Table S1). The loss in power as the panel size increased
was large with the non-regularized model but very slightly
with the three regularized models. A possible reason is the
following. The admixture assumed that all SNP loci were
independent in the likelihood. However, this assumption did
not hold precisely in reality due to linkage disequilibrium
(LD) between SNPs. With uniformly-distributed SNPs, we
found that the 1K SNP panel had the smallest LD between
SNPs, compared to the larger SNP panels. Thus, the 1K
SNP panel gave more accurate likelihood values computed for
these animals than those obtained with larger SNP panels,
subsequently leading to the highest power for identifying
purebred animals. Nevertheless, the models with regularization
seemed to be more robust to the violation of the model
assumption about the independence of SNPs than the non-
regularized model.

Of the four admixture models, the regularized admixture
models had higher power in the identification of purebred
animals than the non-regularized admixture model. With
the 16K panel, for example, the percentage of animals
with Angus GBC =1 was 69.6% with the non-regularized
admixture model, and it was substantially higher (94.1–
97.3%) with the three regularized models (Table 2). Similar
trends were observed in all the other breeds (Tables S1–
S7). Concerning the three models with regularization, the
two models with non-convex penalties (ADMIXTURE-
MCP and ADMIXTURE-SCAD) had a higher power for
identifying purebred animals than the one with the L1 norm
penalty (ADMIXTURE-L1).
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FIGURE 1 | Percent of individuals with GBC=1 obtained by the three regularized ADMIXTURE methods, each with a varying value for the regulation parameter

lambda (λ). Curves were extracted from the surfaces in this figure by fixing the GBC =1 for ADMIXTURE-L1, ADMIXTURE-MCP, and ADMIXTURE-SCAD in Angus,

Holstein, and Limousin, respectively.

TABLE 2 | Percent (%) of animals by categories of estimated GBC obtained using four statistical models with the 16K SNP panel in Angus (A), Holstein (H), and

Limousine (L).

GBC Admixture Admixture-L1 Admixture-MCP Admixture-SCAD

A H L A H L A H L A H L

1 69.6 70.7 47.4 94.1 97.7 65.1 98.6 99.2 72.5 96.5 99.6 70.9

[0.9, 1) 18.9 19.5 9.4 3.3 1.2 6.7 0.4 0.3 4.4 2.3 0.1 4.3

[0.8, 0.9) 8.5 7.0 9.4 1.5 1.0 5.8 0.5 0.4 3.6 0.4 0.1 4.5

[0.7, 0.8) 1.8 2.4 9.2 0.5 0.1 8.7 0.1 0.0 5.0 0.2 0.0 6.1

[0.6, 0.7) 0.4 0.2 13.5 0.2 0.0 6.9 0.2 0.0 5.5 0.2 0.0 7.2

[0.5, 0.6) 0.3 0.0 6.2 0.1 0.0 2.8 0.1 0.0 4.4 0.1 0.0 3.5

[0.5, 0.4) 0.2 0.0 2.6 0.1 0.0 2.0 0.0 0.0 1.8 0.1 0.0 1.1

[0.4, 0.3) 0.1 0.0 1.2 0.1 0.0 0.9 0.0 0.0 1.2 0.0 0.0 0.8

[0.3, 0.2) 0.1 0.0 0.5 0.1 0.0 0.8 0.0 0.0 0.8 0.0 0.0 0.4

[0.2, 0.1) 0.0 0.0 0.4 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.3

[0.1, 0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ADMIXTURE, non-regularized admixture model (λ = 0); ADMIXTURE-L1, admixture model with L1 norm penalty (λ = 0.1); ADMIXTURE-MCP, admixture model with MCP penalty (λ =

0.25); ADMIXTURE-SCAD, admixture model with SCAD penalty (λ = 0.25).

The identification power of purebred animals varied
drastically with the nine breeds. The percent of animals with
GBC= 1 was the lowest (47.4–74.4%) in Limousine (Table 2) and
the highest (99.7–100%) in Brahman (Table 2 andTables S1–S7).
Because Brahman was the only indicus cattle breed, which had
distant relationships with the taurus cattle breeds, the power of
identifying purebred Brahman cattle was thus the highest. For
the remaining seven breeds, the percent of animals with GBC
=1 obtained using the three regularized admixture models with
the 5K SNP panel was high in Angus (93.3–98.4%) (Table S1),
Hereford (97.6–99.8%) (Tables S5–S7), Holstein (93.2–99.7%)

(Table S1), Jersey (97.4–99.3%) (Tables S5–S7), and Wagyu
(95.1–98.8%) (Tables S5–S7), but was it was relatively low
in Shorthorn (79.5–83.7%) and Simmental (60.1–65.1%)
(Tables S5–S7). There were mainly two main reasons for the low
power of purebred identification in Limousine and Simmental.
In Limousine, for example, there was an unignorable number
of the “Limousine” animals, which were possibly “progressive”
crosses of Limousine with Angus arity of Limousine cattle with
Angus (Figure 2) and not excluded when applying the cutoff of
(−2)loglikelihood > 2 during the data cleaning (Figure S1F).
Thus, the estimated GBC for these “Limousine” animals showed
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an unignorable portion of Angus GBC (Figure 2). The three
regularized admixture models improved the power substantially
but limited by the portion of “progressive” crosses of Limousine.
A similar situation was observed with Simmental cattle as well.

Estimation of GBC for Composite Animals
The four admixture models were also used to estimate GBC
for the 3,605 Brangus animals. This composite beef breed
was developed to utilize the superior traits of Angus and
Brahman cattle. For official registration, a Brangus animal is
expected to be genetically stabilized at 3/8 Brahman and 5/8
Angus, solid black or red, and polled, and both sire and dam
must be recorded with the International Brangus Breeders
Association (IBBA). Unlike estimating GBC for a purebred
animal, our interest for a composite animal was to know
how much of its genome was inherited from each of its
ancestral breeds.

With the nine reference populations and the 5K SNP panel,
small admixture coefficients showed up for non-ancestral breeds,
such as Hereford, Limousine, Shorthorn, and Simental, in
addition to the two large admixture components for the two
ancestral breeds (Figure 3). Because of these non-zero GBC for
non-ancestral breeds, the estimated GBC of Brangus pertaining
to the two ancestral breeds (Angus and Brahman) were
underestimated, and these two ancestral admixture components
did not add up to 1 (Table 3). For example, based on the
non-regularized ADMIXTURE model, these Brangus were on
average 54.3% Angus and 25.1% Brahman. The three regularized
admixture models elevated the estimated GBC for the two
ancestral breeds, possibly owing to the penalties imposed
on small GBC components of non-ancestral breeds, but the
estimated GBC for Angus (59.5–61.5%) and Brahman (27.9–
28.6%) were still were under-estimated, and they did not add
up to 1 (Table 3). It is a well-known fact that the Brangus are
descendants of Angus and Brahman. Hence, one can reasonably
compute the GBC of Angus and Brahman, respectively, as
relative ratios of admixture components corresponding to
these two breeds only while ignoring estimated GBC for the
remaining breeds. The latter can be understood as the conditional
probability of GBC of the two ancestral breeds for Brangus, given
the probability that Angus and Brahman are their ancestors. The
“conditionally” estimated GBC for these Brangus using the non-
regularized admixture model was on average 68.3% Angus and
31.7% Brahman, whereas, with the three regularized admixture
models, average estimated GBCwas 67.9–68.2%Angus and 31.8–
32.1% Brahman (Table 3). Alternatively, GBC for these Brangus
was estimated by including only the two ancestral breeds in the
reference. With the latter approach, the average estimated GBC
for Brangus was 71.1% Angus and 28.9% Brahman based on the
non-regularized admixture model and 74.6–77.1% Angus and
22.9–25.4% Brahman based on the three regularized admixture
models (Table 3).

The estimated Angus composition in these Brangus animals,
as obtained using the four models, were presumably higher
than the pedigree-expected Angus ratio of 62.5%. There were
possibly two reasons for the elevated Angus GBC. Firstly, the
Brangus have been selected for traits with which Angus has

advantages. Hence, the selection, in turn, could shift allelic
frequencies more toward the Angus origin. Secondly, there was
a mixture of UltraBlack animals in this Brangus dataset. A
King-robus principal component analysis (PCA) based on the
genotypes of the 3,605 Brangus was conducted to infer the
genetic relationships of these Brangus animals using the King-
robus software (Manichaikul et al., 2010). The first principal
component (PC1) and the second principal component (PC2)
described 25.1 and 11.6%, respectively, of the total variation of
Angus GBC in this Brangus population. Three clusters were
identified in Figure 4, which suggested population stratification
of Brangus that varied in their genomic composition for
Angus. The majority (∼86%) of these Brangus cattle were 55–
80% Angus. For the remaining Brangus cattle, around 4% of
animals were < 55% Angus, and around 10% of animals were
>80% Angus. The Brangus cattle having >80% Angus genomic
component were mostly “Ultrablack” (UB) animals. In October
2005, the International Brangus Breeders Association (IBBA)
board of directors approved the creation of the “Ultrablack”
program to take advantage of the strengths of the Brangus and
Angus. A 1/2 “Ultrablack” animals (i.e., the progeny produced
from mating a registered Brangus to a registered Angus) were,
on average, 81.25% Angus. Finally, these sparsely-regularized
models consistently produced larger estimated GBC than the
non-regularized model, which might be an indication of possible
estimation errors. The true GBCs of these Brangus animals,
however, were unknown.

Finally, two assumptions under the present models are
worth discussion. First, it was assumed that each reference
population comprised samples of purebred animals only. This
assumption, however, can be violated in reality because a low
level of introgression in the reference samples can occur. For
example, Brahman cattle carry an average composition of 91%
Bos indicus and 9% Bos taurus (O’Brien et al., 2015). Some of
the taurine genome retained in Brahman even resulted from
recent artificial selection (Fortes et al., 2013). Clustering errors
indistinguishable from the admixture methods occur when ghost
admixture (i.e., introgression from an unsampled population) or
recent bottlenecks are embedded into the demographic history
of an analyzed population (Lawson et al., 2018). Nevertheless,
this assumption was taken approximately for the convenience
of modeling and computation. We also observed that, given
a significant number of animals in a reference population,
the deviation in estimated allelic frequencies for this reference
population due to the mixture of a tiny portion of cross-
bred animals tended to ignorable. Therefore, its impact on the
estimated GBC of the test animals also tended to be trivial
as well. In the Brahman population, for example, there are 25
crossbred progenies of Brahman, which were excluded from the
reference population in the present study. But including them
in the reference had very little impact on the estimated allelic
frequencies and the estimated GBC of the test animals in the
present study.

Secondly, the present admixture models assumed that the
allele frequencies of the ancestral breeds are known and are
estimated a prior, which differed from the unsupervised model-
based clustering algorithms. The latter was originally conceived
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FIGURE 2 | Histogram of the means of estimated GBC for 5,041 Limousin animals, obtained using four statistical models, respectively. Bar plot of the mean GBC

across the 10 breeds, which were estimated by ADMIXUTUR ADMIXUTURE-L1 (λ = 0.1), ADMIXUTURE-MCP (λ = 0.25), and ADMIXUTURE-SCAD (λ = 0.25) using

5K SNP panel. Standard deviations (SD) is abled on the bar of Limousin.

FIGURE 3 | Histogram of the means of estimated GBC for 3,605 Brangus(0.625 Angus, 0.375 Brahman) obtained the four statistical models, respectively. Bar plot of

the mean GBC across the ten breeds, which were estimated by ADMIXUTUR, ADMIXUTURE-L1 (λ = 0.1), ADMIXUTURE-MCP (λ = 0.25), and ADMIXUTURE-SCAD

(λ = 0.25) using 5K SNP panel. Standard deviations (SD) were abled on the Angus and Brahman bars.

to not only estimate ancestry in admixed individuals but also to
study the trajectory of divergence between ancestral populations
that produced the empirical data. This is important because
modern-day breeds of cattle—especially Bos taurus breeds—
were formed quite recently (i.e., in an evolutionary scale) from

mixtures of previously geographically isolated lineages that
were only moderately divergent (FST < 0.10), and are not
necessarily pure distinct lineages from a population genetics
stand point. Assuming fixed allele frequencies for ancestral
ignore the trajectory of genetic characteristics of ancestral
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TABLE 3 | Percent (%) of animals by categories of estimated GBC obtained using four statistical models in Brangus.

Model Nine-reference breeds Two-reference (ancestral) breeds

Angus Brahman Angus Brahman

Meana SD Mean SD Mean SD Mean SD

ADMIXTURE 54.3 (68.3) 11.9 25.1 (31.7) 6.31 71.1 6.70 28.9 6.70

ADMIXTURE-L1 61.5 (68.2) 15.6 28.6 (31.8) 12.1 77.1 8.70 22.9 8.70

ADMIXTURE-MCP 59.8 (68.1) 12.9 27.9 (31.9) 9.1 74.6 7.10 25.4 7.10

ADMIXTURE-SCAD 59.5 (67.9) 13.1 28.1 (32.1) 10.4 75.3 7.50 24.7 7.50

a In the brackets are the relative GBC ratio of Angus and Brahman origin only, respectively, computed with nine reference breeds.

FIGURE 4 | Population distribution across the first (PC1) and second principal component (PC2) on the genotype data of the Brangus individuals. Animals are labels

based on their Angus percent of GBC estimated by ADMIXTURE.

populations over time, but it simplifies the computing in
practice. This is particularly advantageous with the proposed
sparsely-regularized admixture models, which are often more
computationally intensive than the non-regularized admixture
models. Finally, some methods can even accommodate complex
admixtures, such as support vector machines (Haasl et al., 2013;
Durand et al., 2014). Comparison of our methods with support
vector machines was not evaluated in the present study but can
be of interest for future studies.

CONCLUSION

Estimated GBC for purebred animals is complicated by the
presence of small admixture components assigned to non-
ancestral breeds due to the genomic similarities. Thus, not all
purebred animals have 100% GBC for their respective breed
categories, leading to an increased false-negative rate for pure-
breed identification. Otherwise, a lower cutoff of estimated

GBC for purebred animals needs to be used instead, which,
however, is arbitrary. Our results showed that the use of sparse
regularization in the admixture models with appropriately-chose
values of λ effectively shrank non-ancestral GBC estimates
toward zero, therefore reducing the false-negative rate and at
the same time increasing the identification power of purebred
animals. Of the three sparse regularized admixture models, the
two models with nonconvex penalties (ADMIXTURE-MCP and
ADMIXTURE-SCAD) outperformed the admixture model with
L1 norm penalty (ADMIXTURE-L1).

The power of breed identification of purebred animals
varied with reference SNP panels used in the non-regularized
admixture model. The 1K panel giving the greatest power in
most breeds because it had the smallest average LD between
SNPs, which approximately satisfied the model assumption
about the independence of SNPs. Therefore, the computed
likelihood values using the 1K panel aremore accurate than larger
panels (5K, 10, and 16K). Nevertheless, the three regularized
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admixture models were more robust to the violation of model
assumption for SNP independence than the non-regularized
admixture model when estimating GBC using various SNP
panels, because the power of purebred identification with the
regularized admixture model decreased at a considerably slower
rate than the non-regularized admixture model as the SNP
panel sizes increased. As a rule of thumb, a cutoff of GBC
for pure-breed identification is recommended to be 95% for
the non-regularized admixture model and between 0.98 and
0.99 for regularized admixture models, assuming no significant
population stratification and no significant genomic correlations
between the reference breeds.

For composite animals, the three admixture models with
sparse regularization tended to produce larger GBC for these
Brangus animals than the non-regularized admixture model,
which possibly indicated the presence of estimation bias with
the regularized models. While imposing sparse regularization
on estimated GBC is favorable for reducing false-negative error
rate when identifying purebred animals, it can lead to bias in
estimated GBC for crossbred or composite animals, in particular
when dynamic segregation was still going on. Hence, the utility of
regularized admixture models for estimating GBC in composite
animals needs to be taken with caution and the results need
to be checked against those obtained using non-regularized
admixture models.

Finally, a software package that implements the admixture
models with regularization is made available for non-
commercial use (The web link will be provided once the paper
is accepted).

DATA AVAILABILITY STATEMENT

The supplementary results, four reference SNP panels, namely
1K, 5K, 10K, and 16K (actually 14K after data cleaning), and two

example GGP 50K genotype files (each with 1000 animals) are
available at the following link: https://drive.google.com/open?id=
1qfwyK-Qpp4SvRcj23w-q7bYLE3MgQd1L. For the protection
of commercial confidence, all reference SNPs, breeds, and animal
IDs are re-coded anonymously.

ETHICS STATEMENT

Ethical review and approval were not required for the study
because the genotypes were extracted from the data repositories
of Neogen genotyping laboratories. All the cattle samples (hair,
blood and ear tags) used for genotyping are collected based on
routine procedures for commercial selection purposes.

AUTHOR CONTRIBUTIONS

YW, XL-W, and GR conceived this study, in discussion with ZB,
RT, and SB. YW and XL-W drafted and revised the manuscripts.
YW and ZL conducted the data analysis. All the authors read and
approved this manuscript.

FUNDING

YW and ZB acknowledged the grant support from the
Major Basic Research Projects of Shandong Natural Science
Foundation (ZR2018ZA0748) and theNational Key Research and
Development Program of China (2018YFD0901601). YW was
also financially supported, in part, by the Neogen GeneSeek.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00576/full#supplementary-material

REFERENCES

Akanno, E. C., Abo-Ismail, M. K., Chen, L., Crowley, J. J., Wang, Z., Li, C.,

et al. (2018). Modeling heterotic effects in beef cattle using genome-wide

SNP-marker genotypes. J. Anim. Sci. 96, 830–845. doi: 10.1093/jas/skx002

Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast model-based

estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664.

doi: 10.1101/gr.094052.109

Bansal, V., and Libiger, O. (2015). Fast individual ancestry inference

from dna sequence data leveraging allele frequencies for multiple

populations. BMC Bioinform. 16:4. doi: 10.1186/s12859-014-

0418-7

Bertsekas, D., Nedic, A., and Ozdaglar, A. (2003). Convex Analysis and

Optimization. Belmont, MA: Athena Scientific.

Chiang, C. W., Gajdos, Z. K., Korn, J. M., Kuruvilla, F. G., Butler, J. L., Hackett, R.,

et al. (2010). Rapid assessment of genetic ancestry in populations of unknown

origin by genome-wide genotyping of pooled samples. PLoS Genet. 6:e1000866.

doi: 10.1371/journal.pgen.1000866

Durand, E. Y., Do, C. B., Mountain, J. L., and Macpherson, J. M. (2014). Ancestry

composition: a novel, efficient pipeline for ancestry deconvolution. biorxiv

[Preprint]. doi: 10.1101/010512

Fan, J., and Li, R. (2001). Variable selection via nonconcave penalized

likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360.

doi: 10.1198/016214501753382273

Fortes, M. R., Kemper, K. E., Sasazaki, S., Reverter, A., Pryce, J. E., Barendse,

W., et al. (2013). Evidence for pleiotropism and recent selection in

the PLAG1 region in Australian Beef cattle. Anim. Genet. 44, 636–647.

doi: 10.1111/age.12075

Frkonja, A., Gredler, B., Schnyder, U., Curik, I., and Soelkner, J.

(2012). Prediction of breed composition in an admixed cattle

population. Anim. Genet. 43, 696–703. doi: 10.1111/j.1365-2052.2012.0

2345.x

Gill, P., Murray, W., and Wright, M. H. (1984). Practical Optimization. London:

Academic Press.

Gobena, M., Elzo, M. A., and Mateescu, R. G. (2018). Population structure and

genomic breed composition in an angus–brahman crossbred cattle population.

Front Genet. 9:90. doi: 10.3389/fgene.2018.00090

Haasl, R. J., Mccarty, C. A., and Payseur, B. A. (2013). Genetic ancestry

inference using support vector machines, and the active emergence of a unique

American population. Eur. J. Hum. Genet. 21, 554–562. doi: 10.1038/ejhg.

2012.258

He, J., Guo, Y., Xu, J., Li, H., Fuller, A., Tait, R., et al. (2018). Comparing snp panels

and statistical methods for estimating genomic breed composition of individual

animals in ten cattle breeds. BMCGenet. 19:56. doi: 10.1186/s12863-018-0654-3

Jiang, L., Liu, J., Sun, D., Ma, P., Ding, X., Yu, Y., et al. (2010).

Genome wide association studies for milk production traits in Chinese

Holstein population. PLoS ONE 5:e13661. doi: 10.1371/journal.pone.00

13661

Frontiers in Genetics | www.frontiersin.org 9 June 2020 | Volume 11 | Article 576

https://drive.google.com/open?id=1qfwyK-Qpp4SvRcj23w-q7bYLE3MgQd1L
https://drive.google.com/open?id=1qfwyK-Qpp4SvRcj23w-q7bYLE3MgQd1L
https://www.frontiersin.org/articles/10.3389/fgene.2020.00576/full#supplementary-material
https://doi.org/10.1093/jas/skx002
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1186/s12859-014-0418-7
https://doi.org/10.1371/journal.pgen.1000866
https://doi.org/10.1101/010512
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1111/age.12075
https://doi.org/10.1111/j.1365-2052.2012.02345.x
https://doi.org/10.3389/fgene.2018.00090
https://doi.org/10.1038/ejhg.2012.258
https://doi.org/10.1186/s12863-018-0654-3
https://doi.org/10.1371/journal.pone.0013661
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Estimating GBC for Purebred Animals

Jiao, Y., Jin, B., and Lu, X. (2016). Group sparse recovery via the L0 (L

2) penalty: theory and algorithm. IEEE Trans. Sign Process. 65, 998–1012.

doi: 10.1109/TSP.2016.2630028

Kuehn, L., Keele, J., Bennett, G., McDaneld, T., Smith, T., Snelling,W., et al. (2011).

Predicting breed composition using breed frequencies of 50,000 markers from

the us meat animal research center 2,000 bull project. J. Anim. Sci. 89,

1742–1750. doi: 10.2527/jas.2010-3530

Lawson, D. J., Lucy, V. D., and Daniel, F. (2018). A tutorial on how not

to over-interpret structure and admixture bar plots. Nat. Commun. 9:3258.

doi: 10.1038/s41467-018-05257-7

Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., and Chen, W.

M. (2010). Robust relationship inference in genome-wide association studies.

Bioinformatics 26, 2867–2873. doi: 10.1093/bioinformatics/btq559

Mebratie, W., Reyer, H., Wimmers, K., Bovenhuis, H., and Jensen, J. (2019).

Genome wide association study of body weight and feed efficiency traits

in a commercial broiler chicken population, a re-visitation. Sci. Rep. 9:922.

doi: 10.1038/s41598-018-37216-z

O’Brien, A. M., Holler, D., Boison, S. A., Milanesi M., Bomba L., Utsunomiya,

Y. T., et al. (2015). Low levels of taurine introgression in the current

brazilian Nelore and Gir indicine cattle populations. Genet. Sel. Evol. 47:31.

doi: 10.1186/s12711-015-0109-5

Pickrell, J. K., and Pritchard, J. K. (2012). Inference of population splits and

mixtures from genome-wide allele frequency data. PLoS Genet. 8:e1002967.

doi: 10.1371/journal.pgen.1002967

Taliun, D., Chothani, S. P., Schonherr, S., Forer, L., Boehnke, M., Abecasis, G. R.,

et al. (2017). Laser server: ancestry tracing with genotypes or sequence reads.

Bioinformatics 33, 2056–2058. doi: 10.1093/bioinformatics/btx075

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R Stat.

Soc. B 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x

vanRaden, P., and Cooper, T. (2015). Genomic evaluations and breed composition

for crossbred us dairy cattle. Interbull Bull. 49, 1–21. Available online at: https://

journal.interbull.org/index.php/ib/article/view/1370

Wu, X. L., Xu, J., Feng, G., Wiggans, G. R., Taylor, J. F., He, J., et al. (2016).

Optimal design of low-density SNP arrays for genomic prediction: algorithm

and applications. PLoS ONE 11:e0161719. doi: 10.1371/journal.pone.0161719

Zhang, C. (2010). Nearly unbiased variable selection under minimax concave

penalty. Ann. Stat. 38, 894–942. doi: 10.1214/09-AOS729

Zhao, T., Liu, H., and Zhang, T. (2018). Pathwise coordinate optimization

for sparse learning: Algorithm and theory. Ann Stat. 1, 180–218.

doi: 10.1214/17-AOS1547

Conflict of Interest: X-LW, RT, and SB were employed by the company Neogen.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Wang, Wu, Li, Bao, Tait, Bauck and Rosa. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 10 June 2020 | Volume 11 | Article 576

https://doi.org/10.1109/TSP.2016.2630028
https://doi.org/10.2527/jas.2010-3530
https://doi.org/10.1038/s41467-018-05257-7
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1038/s41598-018-37216-z
https://doi.org/10.1186/s12711-015-0109-5
https://doi.org/10.1371/journal.pgen.1002967
https://doi.org/10.1093/bioinformatics/btx075
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://journal.interbull.org/index.php/ib/article/view/1370
https://journal.interbull.org/index.php/ib/article/view/1370
https://doi.org/10.1371/journal.pone.0161719
https://doi.org/10.1214/09-AOS729
https://doi.org/10.1214/17-AOS1547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Estimation of Genomic Breed Composition for Purebred and Crossbred Animals Using Sparsely Regularized Admixture Models
	Introduction
	Materials and Methods
	Animals and Genotype Data
	Admixture Model
	Regularized Admixture Model With L1 Norm Penalty
	Regularized Admixture Model With MCP or SCAD Penalty

	Results and Discussion
	Determining Optimal Values for the Regularization Parameter λ
	Estimated Genomic Breed Composition for Purebred Animals
	Estimation of GBC for Composite Animals

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


