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Abstract 

Background: The anti-epidermal growth factor receptor (EGFR) antibody introduces adaptable variations to the 
transcriptome and triggers tumor immune infiltration, resulting in colorectal cancer (CRC) treatment resistance. We 
intended to identify genes that play essential roles in cetuximab resistance and tumor immune cell infiltration.

Methods: A cetuximab-resistant CACO2 cellular model was established, and its transcriptome variations were 
detected by microarray. Meanwhile, public data from the Gene Expression Omnibus and The Cancer Genome Atlas 
(TCGA) database were downloaded. Integrated bioinformatics analysis was applied to detect differentially expressed 
genes (DEGs) between the cetuximab-resistant and the cetuximab-sensitive groups. Then, we investigated correla-
tions between DEGs and immune cell infiltration. The DEGs from bioinformatics analysis were further validated in vitro 
and in clinical samples.

Results: We identified 732 upregulated and 1259 downregulated DEGs in the induced cellular model. Gene Ontol-
ogy and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, along with Gene Set Enrichment 
Analysis and Gene Set Variation Analysis, indicated the functions of the DEGs. Together with GSE59857 and GSE5841, 
12 common DEGs (SATB-2, AKR1B10, ADH1A, ADH1C, MYB, ATP10B, CDX-2, FAR2, EPHB2, SLC26A3, ORP-1, VAV3) were 
identified and their predictive values of cetuximab treatment were validated in GSE56386. In online Genomics of Drug 
Sensitivity in Cancer (GDSC) database, nine of twelve DEGs were recognized in the protein-protein (PPI) network. 
Based on the transcriptome profiles of CRC samples in TCGA and using Tumor Immune Estimation Resource Version 
2.0, we bioinformatically determined that SATB-2, ORP-1, MYB, and CDX-2 expressions were associated with intensive 
infiltration of B cell,  CD4+ T cell,  CD8+ T cell and macrophage, which was then validated the correlation in clinical 
samples by immunohistochemistry. We found that SATB-2, ORP-1, MYB, and CDX-2 were downregulated in vitro with 
cetuximab treatment. Clinically, patients with advanced CRC and high ORP-1 expression exhibited a longer progres-
sion-free survival time when they were treated with anti-EGFR therapy than those with low ORP-1 expression.
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Background
In the United States, colorectal cancer (CRC) is esti-
mated to be the third-most frequently occurring malig-
nant tumor and third leading cause of cancer-related 
mortality, leading to the deaths of about 53,200 people in 
2020 [1]. The incidence and mortality rates in 2015 were 
37,000 cases and 19,000 deaths, with a 25- to 28-months 
overall survival time for Chinese patients suffering 
advanced CRC [2]. Targeting epidermal growth factor 
receptor (EGFR), monoclonal antibodies cetuximab and 
panitumumab are effective therapeutics [3, 4] that shrink 
tumors for resectability [5–7] or relieve symptoms from 
unresectable masses by repressing tumor growth [8–10].

Mutations in the RAS family suggest continuous acti-
vation of EGFR downstream signaling [11–15] and RAS 
genes (KRAS, NRAS) are used as biomarkers to predict 
poor response to anti-EGFR therapy [16, 17]. However, 
tumor microenvironment re-plasticity, characterized 
by tumor immune cell infiltration and upregulation of 
immune checkpoint-related proteins, has recently been 
recognized as a novel explanation for drug resistance and 
treatment failure [18–20]. In particular, the interaction 
between tumor and immune microenvironment trig-
gered by cetuximab or panitumumab in CRC accounts 
for immunogenic cell death and immune treatment 
resistance [21, 22].

In this study, we firstly performed high-throughput 
screening of transcriptomic alterations before and after 
induction cetuximab administration in a colon cancer 
cell model (CACO2). Then, we conducted integrated 
bioinformatics analysis of the transcriptome variations 
using public datasets from the Gene Expression Omni-
bus (GEO) database to identify several core differentially 
expressed genes (DEGs) and investigated whether they 
were correlated with tumor immune cell infiltration. 
Finally, we validated the identified core DEGs in vitro and 
in clinical samples.

Methods
Cellular model and culture
Cell lines of human CRC (CACO2, HCT116, HT29, 
NCIH508, and RKO) were obtained from the Cell Bank 
of the Chinese Academy of Sciences (Shanghai, China). 
All cell lines were authenticated by short tandem 
repeat (STR) profiling (Genetic Testing Biotechnology 

Corporation, Suzhou, China) and routinely tested for 
mycoplasma using MycoAlert™ Mycoplasma Detection 
Kit (Lonza; LT07-218, Rockland, ME, USA). We estab-
lished an EGFR antagonist-resistant cellular model 
using cetuximab sensitive cell line (CACO2-CS) and 
validated the transcriptional changes induced by cetux-
imab in the other cell lines. Using stepwise induction, 
we started with a low dose causing 50% cell growth 
inhibition  (IC50). The dose was increased to 10  µg/
mL after about two months, 50  µg/mL after another 
two months, and lastly 300  µg/mL. Cell Counting Kit 
8 (CCK8) (Dojindo, Shanghai, China) was used to test 
the cell viability. For colonies formation assay, cells 
were cultured in six-well plates with 1000 cells and 2 ml 
media including cetuximab (300 µg/ml) per well. After 
14 days, colonies were fixed with 4% paraformaldehyde 
and stained with 0.1% crystal violet. Finally, the estab-
lished cetuximab resistant cell line (CACO2-CR) was 
cultured with the maximal dose of cetuximab. CACO2-
CS, HCT116, HT29, NCIH508, and RKO in the expo-
nential growth phase were precultured in 12-well 
tissue culture plates for 24  h. Different concentrations 
of cetuximab (S20130004, Merck KGaA, Darmstadt, 
Germany) were added to cells which were incubated 
for 72 h (0 µg/mL and 25 µg/mL for CACO2, 0 µg/mL 
and 1  µg/mL for NCIH508, and 0  µg/mL and 50  µg/
mL for HT29, HCT116, and RKO). CACO2-CS and 
CACO2-CR cells were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM) (HyClone, Logan, UT, USA) 
containing 20% fetal bovine serum (FBS) (Gibco, Pais-
ley, UK) 100 U/mL penicillin, and 100 U/mL strepto-
mycin (Gibco, Paisley, UK). HT-29 cells were cultured 
in McCoy’s 5A (Gibco, Grand Island, NY, USA) supple-
mented with 10% FBS (Gibco, Paisley, UK), 100 U/mL 
penicillin, and 100 U/mL streptomycin (Gibco, Pais-
ley, UK). HCT116 and NCIH508 cells were cultured 
in Roswell Park Memorial Institute Modified Medium 
(Hyclone) supplemented with 10% FBS (Gibco, Paisley, 
UK), 100 U/mL penicillin, and 100 U/mL streptomycin 
(Gibco, Paisley, USA). RKO cells were cultured in high 
glucose DMEM (Hyclone) supplemented with 10 % FBS 
(Gibco, Paisley, UK), 100 U/mL penicillin, and 100 U/
mL streptomycin (Gibco, Paisley, UK). All cells were 
cultured in a humidified 5%  CO2 incubator at 37 °C. All 
cell lines experiments were repeated at least three times 
with three to six replicates.

Conclusions: SATB-2, ORP-1, MYB, and CDX-2 were related to cetuximab sensitivity as well as enhanced tumor 
immune cell infiltration in patients with CRC.

Keywords: Colorectal cancer, Drug resistance, Anti‐epidermal growth factor receptor therapy, Tumor immune cell 
infiltration, Transcriptional alterations
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Microarray screening for transcriptional variation 
after cetuximab induction
Total RNA was extracted and purified with the miRNe-
asy Mini Kit (Cat. # 217,004 QIAGEN GmBH, Hilden, 
Germany) according to the manufacturer’s instruc-
tions. The RNA integrity number was determined with 
the Agilent Bioanalyzer 2100 (Agilent Technologies, 
Santa Clara, CA, USA), and the RNA was amplified 
and labeled with the Low Input Quick Amp WT Labe-
ling Kit (Cat. # 5190−2943, Agilent Technologies, Santa 
Clara, CA, USA). Labeled cRNA was purified with the 
RNeasy mini kit (Cat. # 74,106). Samples were hybrid-
ized with about 1.65 µg Cy3-labeled cRNA by the Gene 
Expression Hybridization Kit (Cat. # 5188–5242, Agilent 
Technologies) in a hybridization oven (Cat. # G2545A, 
Agilent Technologies). After about 17 h, the slides were 
washed in staining dishes (Cat. # 121, Thermo Shandon, 
Waltham, MA, USA) with the Gene Expression Wash 
Buffer Kit (Cat. # 5188–5327, Agilent Technologies) 
and scanned by the Agilent Microarray Scanner (Cat. # 
G2565CA, Agilent Technologies). Data were retrieved 
with Feature Extraction software 10.7 (Agilent Tech-
nologies). Quantile normalization of the raw data was 
achieved by the limma package in R (version 3.4.1) [23].

Real‑time quantitative PCR after cetuximab treatment 
in vitro
Total cellular RNA of cell lines treated with cetuximab 
was extracted with TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA) under the manufacturer’s instructions. Recom-
binant DNase I (Takara Bio, Beijing, China) was used to 
remove potential genomic DNA contamination. cDNA 
was generated with the PrimerScript™ RT master mix 
kit (Takara Bio, Dalian China). Real-time quantitative 
PCR analysis of the identified DEGs was performed using 
the TB Green Premix Ex Taq™ kit (Takara Bio, Dalian 
China). All results were normalized to human GAPDH 
mRNA expression. The primers were listed in Additional 
file 1: Table S1. The relative threshold cycle (Ct) method 
was used to display the results.

Identification of differentially expressed genes (DEGs) 
in the cellular model
For the microarray screening of CACO2 cells treated 
with cetuximab, we visualized the principal component 
analysis (PCA) results using the R package ggbiplot (https 
://githu b.com/vqv/ggbip lot) after converting the raw 
signals into gene expression levels. We set thresholds 
of p < 0.05 and | log2 (fold change) | > 1 to identify sig-
nificant DEGs using the limma package and created heat 
maps using the heatmap package.

Gene expression omnibus (GEO) microarray data and DEGs 
analysis
To further narrow down candidate DEGs in CRC under 
EGFR antagonist pressure, we downloaded three gene 
expression datasets including cell lines and clinical tis-
sue sample data from GEO (http://www.ncbi.nlm.nih.
gov/geo). GSE59857 included the transcriptional and 
pharmacological profiles of 155 CRC cell lines. GSE5851 
contained data from 80 clinical advanced CRC samples 
obtained before cetuximab monotherapy. GSE56386 
contained data from eight primary CRC tumor tissue 
samples, comprising four from responders to cetuximab 
therapy and four from non-responders. From GSE59857, 
we downloaded the data for 20 cell lines, including 10 
cetuximab-sensitive cases (OXCO2: GSM1448146, 
NCIH508: GSM1448142, DIFI: GSM1448175, COCM1: 
GSM1448167, CCK81: GSM1448097, C75: GSM1448201, 
HCA46: GSM1448177, C99: GSM1448204, HDC82: 
GSM1448128, and COGA1: GSM1448099) and 10 
cetuximab-insensitive cases (SNU1047: GSM1448085, 
COLO320DM: GSM1448173, HUTU80: GSM1448180, 
KM12: GSM1448073, HDC143: GSM1448185, KM12SM: 
GSM1448188, KM12C: GSM1448186, COLO320: 
GSM1448152, KM12L4: GSM1448187, and C10: 
GSM1448196), among which HDC143 was deemed inva-
lid and removed after analysis. We then converted the 
probe IDs into gene symbols using illuminaHumanv4.
db. We retrieved the data for eight patients with the wild-
type KRAS gene, including four responders to cetuximab 
treatment (GSM136609, GSM136593, GSM136654, and 
GSM136626) and four non-responders (GSM136635, 
GSM136646, GSM136607, and GSM136640) from 
GSE5851 and converted the probe IDs into gene symbols 
using the annotation library hgu133a2.db. The procedure 
for analyzing DEGs was the same as that for analyzing 
the CACO2 microarray data.

Gene Ontology (GO) term and Kyoto Encyclopedia of genes 
and genomes (KEGG) pathway enrichment analyses
For the enrichment analyses of the DEGs, a Metascape 
(https ://metas cape.org/) online analysis tool was used 
[24]. The parameters were set as the following: min over-
lap = 3, p-value cutoff = 0.01, and min enrichment = 1.5. 
Related terms were selected from the top 20, according to 
their p-values.

Gene sets Enrichment analysis (GSEA) and Gene set 
variation analysis (GSVA)
GSEA was used to screen the biological states and pro-
cesses associated with significantly upregulated or 
downregulated genes in the resistance group, with H.all.
v7.1.symbols.gmt as the reference set [25]. The number 

https://github.com/vqv/ggbiplot
https://github.com/vqv/ggbiplot
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://metascape.org/
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of permutations was set to 1000. A p-value < 0.05 was 
considered indicative of significant enrichment. A nor-
malized enrichment score was established to evaluate 
the degree of enrichment. GSVA was used to describe 
the enrichment degree of a biological state or process in 
a sample [26]. Enrichment scores were compared, and 
those meeting the standards of |log2 (fold change) | > 1 
and p < 0.05 were considered significant results.

Construction of protein‐protein interaction (PPI) network
The PPIs of the central DEGs were generated using the 
STRING online database (https ://strin g-db.org). To 
construct a PPI network, we retrieved cetuximab resist-
ance candidates from the Genomics of Drug Sensitivity 
in Cancer (GDSC) database (https ://www.cance rrxge 
ne.org) [27], confirmed their interactions using the 
STRING database [28], and finally visualized the result 
using Cystoscape [29].

Prediction of tumor immune cell infiltration
To investigate the relationship between hub DEG expres-
sion and tumor immune cell infiltration, the transcrip-
tome landscapes of colonic or rectal adenocarcinoma 
samples (n = 177) in The Cancer Genome Atlas (TCGA) 
database were analyzed using the online tool Tumor 
Immune Estimation Resource Version 2.0 (https ://cistr 
ome.shiny apps.io/timer /) [30, 31].

Validation in clinical samples by immunohistochemistry 
staining
Patients with advanced CRC (n = 102) were diagnosed 
by pathological examination and administered systemic 
chemotherapeutics at Zhongshan Hospital of Fudan Uni-
versity. Fifty-two patients received therapy containing 
cetuximab. The progression-free survival time (PFS) was 
recorded to evaluate the efficacy of cetuximab. Patients 
signed informed consent documents, and the ethics com-
mittee of Zhongshan Hospital approved the study.

Tumor samples were fixed with 4% paraformalde-
hyde, embedded in paraffin, cut into sections of about 
5  µm, and placed onto glass slides. After the samples 
were deparaffinized with xylene, hydrophilized, and 
unmasked, they were blocked with bovine serum albu-
min, immunostained with primary antibodies against 
SATB-2 (21307-1-AP, 1:100, Proteintech Group, Inc., 
Wuhan, China), ORP-1 (bs-17514R, 1:200, Bioss Bio-
logical Technology Co., Ltd., Beijing, China), MYB (bs-
5978R, 1:200, Bioss Biological Technology Co., Ltd.), 
CDX-2 (bsm-33063m, 1:200, Bioss Biological Technology 
Co., Ltd.), CD8 (GB13068, 1:100, Servicebio Technology, 
Wuhan, China), CD19 (GB11061, 1:500, Servicebio Tech-
nology), CD4 (GB13064, 1:100, Servicebio Technology), 
and CD68 (GB13067-M-2, 1:100, Servicebio Technology) 

in a humidified environment at about 4 °C overnight and 
incubated with goat anti-rabbit or anti-mouse second-
ary antibody (1:200) for about 30  min at about 20  °C. 
Subsequently, the slides were stained with 3,3’-diam-
inobenzidine and counterstained with hematoxylin. 
Antigen–antibody complexes in the whole sample were 
detected using a panoramic slice scanner (3DHISTECH, 
Budapest, Hungary), recorded in a file, and viewed using 
CaseViewer 2.2 (3DHISTECH). To evaluate gene expres-
sion in tissues, the following formula was used to calcu-
late the H-score using Quant Center 2.1 (3DHISTECH): 
H-SCORE = ∑ (PI × I) = (percentage of cells of weak 
intensity × 1) + (percentage of cells of moderate inten-
sity × 2) + percentage of cells of strong intensity × 3), 
where PI is the proportion of the positive signal pixel area 
and I is the coloring intensity.

Statistical analysis
Most statistical analyses were completed using bioinfor-
matic tools mentioned above in R (version 3.4.1). The 
Benjamini and Hochberg False Discovery Rate method 
was utilized to adjust the p- values in screening DEGs 
from GEO profiles. Fisher’s exact test was employed to 
identify the significant GO terms and KEGG pathways. 
The correlation significance was examined by Spearman 
and Pearson correlation analyses. Differential expression 
levels of identified DEGs were assessed by a two-tailed 
Student’s t-test. Kaplan - Meier survival curve and Log 
- rank test analysis was applied to investigated the pre-
dictive valued of identified DEGs for patients with CRC 
and receiving cetuximab contained therapy. The value of 
p < 0.050 was considered statistically significant.

Results
Model establishment and screening of DEGs
The study design is shown in Fig.  1. After the cetuxi-
mab resistant cellular model was established success-
fully (Fig.  2a), preprocessing of the raw data revealed a 
uniform distribution of DEGs between CACO2-CS and 
CACO2-CR (Fig.  2b). The PCA results had acceptable 
reproducibility (Fig. 2c). A total of 1991 DEGs were iden-
tified, with 732 upregulated genes and 1259 downregu-
lated genes in CACO2-CR. These DEGs are shown in a 
volcano plot (Fig.  2d) and a heat map (Fig.  2e) and are 
listed in Table 1. In GO analysis, the most enriched GO 
terms determined by the cellular component function 
(CC) were “extracellular matrix,” “apical plasma mem-
brane” and “extracellular matrix component” (Fig.  2h). 
KEGG signaling analysis suggested that the DEGs were 
considerably enriched in “protein digestion and absorp-
tion,” “cytokine-cytokine receptor interaction,” “retinol 
metabolism” shown in Fig. 2i and Table 2.

https://string-db.org
https://www.cancerrxgene.org
https://www.cancerrxgene.org
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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Gene set enrichment
GSEA and GSVA of the DEGs (Tables  3 and 4, respec-
tively) indicated that the downregulated genes were 
enriched in “HALLMARK_COMPLEMENT” (Fig.  3a), 
“HALLMARK_BILE_ACID_METABOLISM” (Fig.  3b), 
“HALLMARK_IL2_STATS_SIGNALING” (Fig.  3c), 
“HALLMARK_UV_RESPONSE_DN” (Fig.  3d), “HALL-
MARK_ESTROGEN_RESPONSE_EARLY” (Fig.  3e), 
“HALLMARK_APOPTOSIS” (Fig.  3f), “HALLMARK_
INFLAMMATORY_RESPONSE” (Fig.  3g), and “HALL-
MARK_ESTROGEN_RESPONSE_LATE” (Fig.  3h). 
The upregulated genes were enriched in “HALL-
MARK_PEROXISOME” (Fig.  3i). The GSVA results 
suggested that the downregulated genes were enriched 

in “HALLMARK_MYC_TARGETS_V1 and V2” and 
upregulated genes were enriched in “HALLMARK_
MYOGENESIS,” “HALLMARK_ANGIOGE-NESIS,” 
“HALLMARK_INTERFERON_ALPHA_RESPONSE,” and 
“HALLMARK_TGF_ BETA_SIGNALING” (Fig. 3j).

Common DEGs and PPI network construction
We identified 708 (Fig.  4a) and 298 (Fig.  4b) DEGs in 
GSE5851 and GSE59857, respectively. After integrat-
ing the DEGs from our own screenings with those 
from the two GEO datasets, 12 common DEGs were 
identified (Fig.  4c). These DEGs did not represent any 
protein-level interactions (Fig. 4d). Then, we combined 

A primary sensitive 
cell line - CACO2

was stepwise induced 
by cetuximab and 

exhibited secondary 
resistance

Twenty colorectal cell lines 
with 10 primary sensitive and 

10 primary resistant 
to cetuximab in GSE59857 

Screening 
differently expressed genes (DEGs) 

by high-throughput microarray

Eight of eighty patients 
receiving  cetuximab therapy 

with 4 responders and 
4 non-responders in GSE5851 

Gene Ontology analysis

Kyoto Encyclopedia of Genes
and Genomes analysis

Gene set enrichment analysis

Gene set variation analysis

Twelve common DEGs

Analyzed the DEGs 
expression in patients 

with different responses 
to cetuximab therapy 

in GSE56386

Genes recognized as 
cetuximab resistant by the 

Genomics of Drug Sensitivity in Cancer 

Nine of twelve DEGs
 in the core position

Four of nine DEGs 
were related to 

tumour immune infiltration

Validation in cell lines Validation in clinical samples

Fig. 1 Flow chart of the study

(See figure on next page.)
Fig. 2 Identification and enrichment analysis of DEGs related to anti-EGFR antibody resistance in CACO2. a Establishment of a cetuximab-resistant 
CACO2 cell line (CACO2-CR) from its parental sensitive cell line (CACO2-CS) and validation of the resistance using cell viability tests. b Comparison of 
total gene expression between duplicate samples from the innate sensitive group (blue) and adaptive resistant (red) group. c Principal component 
analysis results suggested favorable reproducibility between the sensitive (blue) and resistant (red) groups. d The volcanic map reveals the 
distributions of downregulated (blue) and upregulated (orange) genes in the resistant group versus the sensitive group. Top 10 of DEGs between 
two groups were shown. e The heat map indicates the upregulated (red) and downregulated (blue) DEGs between the sensitive (blue) and resistant 
(red) groups. Each column is a sample and each row is a gene. Top 10 of DEGs between two groups were shown. f GO biological process term 
enrichment analysis of DEGs (left) and their interrelationships (right). g GO molecular function term enrichment analysis of DEGs (left) and their 
interrelationships (right). h GO cellular component term enrichment analysis of DEGs (left) and their interrelationships (right). i KEGG pathway 
enrichment analysis of DEGs (left) and their interrelationships (right). DEGs: Differentially expressed genes. GO: Gene Ontology. KEGG: Kyoto 
Encyclopedia of Genes and Genomes
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Table 1 The expression of the top 20 upregulated and downregulated genes in the cetuximab resistant CACO2

Gene symbol Normalized Signal Value Log [fold change] P value Adjustive p value

Sensitive Resistant

Sam.1 Sam.2 Sam.3 Sam.1 Sam.2 Sam.3

Top 20 of up-regulated genes

 DRD2 1.253 1.265 1.252 7.414 7.471 7.331 6.149 2.76E–09 5.19E–05

 SLC2A5 8.931 9.006 9.037 13.002 12.996 12.980 4.001 2.62E–08 9.87E–05

 CADM1 4.659 4.421 4.556 9.133 9.344 9.152 4.664 4.91E–08 1.11E–04

 RTP3 1.232 1.300 1.161 4.731 4.881 4.823 3.581 8.34E–08 1.14E–04

 NPR2 6.365 6.349 6.191 10.112 10.297 10.310 3.938 9.25E–08 1.16E–04

 SERPINF1 10.281 10.168 10.135 13.543 13.716 13.685 3.453 1.29E–07 1.26E–04

 BASP1 6.890 6.446 6.407 11.922 12.156 12.069 5.468 1.33E–07 1.26E–04

 LAMA1 6.237 6.392 6.334 9.733 9.873 9.949 3.531 1.42E–07 1.26E–04

 THPO 1.271 1.275 1.418 4.485 4.429 4.562 3.171 1.75E–07 1.26E–04

 ACTA1 4.330 3.837 4.273 9.829 9.596 9.503 5.496 1.80E–07 1.26E–04

 SERPINF2 11.096 11.257 10.992 14.287 14.346 14.294 3.194 2.59E–07 1.35E–04

 ANXA8 9.699 9.805 9.662 12.950 13.168 12.871 3.274 3.77E–07 1.73E–04

 DPYSL3 7.688 7.165 7.810 12.588 12.744 12.676 5.115 4.15E–07 1.82E–04

 PDGFRA 1.312 1.304 1.231 5.091 5.216 4.782 3.748 4.25E–07 1.82E–04

 SDC2 4.645 4.510 4.744 7.533 7.547 7.725 2.968 5.37E–07 2.10E–04

 ORM1 12.007 12.089 11.909 14.634 14.613 14.758 2.667 5.43E–07 2.10E–04

 ORM2 12.062 12.209 12.006 14.728 14.646 14.739 2.612 5.85E–07 2.10E–04

 ADM 10.696 10.620 10.518 13.201 13.321 13.175 2.621 5.92E–07 2.10E–04

 ADAM19 9.666 9.526 9.323 12.874 12.710 12.676 3.248 6.38E–07 2.22E–04

 CCDC3 9.139 9.112 8.781 12.448 12.206 12.351 3.324 9.05E–07 2.59E–04

Top 20 of down-regulated genes

 GC 6.719 6.693 6.902 1.271 1.278 1.263 –5.500 8.90E–09 6.23E–05

 SCIN 6.839 6.926 7.093 1.350 1.309 1.335 –5.621 9.94E–09 6.23E–05

 ST6GALNAC1 7.759 7.546 7.389 1.269 1.309 1.356 –6.253 1.39E–08 6.51E–05

 PADI2 8.533 8.655 8.104 1.339 1.256 1.373 –7.108 3.18E–08 9.95E–05

 MUC13 14.179 13.905 14.478 7.486 7.521 7.534 –6.674 4.05E–08 1.09E–04

 SULF2 9.285 8.985 9.273 3.737 3.522 3.850 –5.478 5.92E–08 1.11E–04

 COL17A1 8.492 8.749 8.525 2.545 2.030 2.235 –6.319 6.07E–08 1.11E–04

 FAM83E 10.754 10.695 10.635 6.944 7.056 6.897 –3.729 6.48E–08 1.11E–04

 HLA-DMB 5.666 5.548 5.337 1.177 1.237 1.244 –4.298 8.23E–08 1.14E–04

 NPAS2 5.506 5.310 5.640 1.250 1.186 1.173 –4.282 8.47E–08 1.14E–04

 PNLIPRP2 9.009 8.923 8.898 4.505 4.836 4.560 –4.310 1.04E–07 1.22E–04

 LCN2 11.287 11.659 11.027 4.564 4.442 4.834 –6.711 1.24E–07 1.26E–04

 SRPX 9.803 9.612 9.507 5.937 5.942 5.842 –3.734 1.53E–07 1.26E–04

 HOXB9 10.762 10.582 10.682 7.503 7.485 7.573 –3.155 1.66E–07 1.26E–04

 BTNL3 5.120 5.170 5.485 1.188 1.231 1.215 –4.047 1.77E–07 1.26E–04

 TMC5 7.201 6.746 7.401 1.274 1.203 1.339 –5.844 1.77E–07 1.26E–04

 APOBEC1 6.060 5.632 6.092 1.210 1.170 1.156 –4.749 1.78E–07 1.26E–04

 S100A9 10.469 10.404 9.896 3.540 3.948 3.972 –6.436 2.00E–07 1.31E–04

 DDIT4L 6.599 6.789 7.249 1.229 1.281 1.306 –5.607 2.07E–07 1.31E–04

 PI3 13.824 13.941 13.611 9.571 9.226 9.378 –4.400 2.12E–07 1.31E–04
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Table 2 GO term and KEGG pathway enrichment analyses of differentially expressed genes

Term Description Count % Log10 [p value] Log10 [q value]

GO Biological process

 GO:0006935 Chemotaxis 117 5.89 −15.44 −11.44

 GO:0010817 Regulation of hormone levels 102 5.13 −15.05 −11.33

 GO:1,901,615 Organic hydroxy compound metabolic process 100 5.03 −13.61 −10.01

 GO:0043062 Extracellular structure organization 82 4.13 −12.37 −8.87

 GO:0015711 Organic anion transport 85 4.28 −10.60 −7.25

 GO:0072006 Nephron development 37 1.86 −9.56 −6.40

 GO:0048514 Blood vessel morphogenesis 105 5.28 −9.29 −6.20

 GO:0009611 Response to wounding 105 5.28 −9.25 −6.20

 GO:0051047 Positive regulation of secretion 75 3.77 −9.14 −6.11

 GO:0006869 Lipid transport 66 3.32 −9.03 −6.06

 GO:0008285 Negative regulation of cell proliferation 113 5.69 −8.91 −6.01

 GO:0052548 Regulation of endopeptidase activity 73 3.67 −8.70 −5.86

 GO:0032787 Monocarboxylic acid metabolic process 97 4.88 −8.15 −5.36

 GO:0008610 Lipid biosynthetic process 103 5.18 −7.83 −5.11

 GO:0003013 Circulatory system process 83 4.18 −7.17 −4.54

 GO:0048598 Embryonic morphogenesis 87 4.38 −6.84 −4.26

 GO:0030155 Regulation of cell adhesion 99 4.98 −6.68 −4.14

 GO:0046683 Response to organophosphorus 31 1.56 −6.68 −4.14

 GO:0035272 Exocrine system development 17 0.86 −6.62 −4.11

 GO:0015718 Monocarboxylic acid transport 35 1.76 −6.53 −4.04

GO molecular function

 GO:0008289 Lipid binding 104 5.23 −6.90 −3.45

 GO:0004857 Enzyme inhibitor activity 62 3.12 −6.81 −3.45

 GO:0005509 Calcium ion binding 97 4.88 −6.45 −3.37

 GO:0008201 Heparin binding 34 1.71 −6.05 −3.17

 GO:0008514 Organic anion transmembrane transporter activity 39 1.96 −5.75 −3.06

 GO:0048018 Receptor ligand activity 70 3.52 −5.72 −3.06

 GO:0000987 Proximal promoter sequence-specific DNA binding 84 4.23 −5.16 −2.65

 GO:0016491 Oxidoreductase activity 95 4.78 −4.82 −2.41

 GO:0005201 Extracellular matrix structural constituent 30 1.51 −4.52 −2.18

 GO:0016298 Lipase activity 25 1.26 −4.46 −2.16

 GO:0033293 Monocarboxylic acid binding 18 0.91 −4.39 −2.14

 GO:0043178 Alcohol binding 19 0.96 −4.39 −2.14

 GO:0015144 Carbohydrate transmembrane transporter activity 12 0.60 −4.35 −2.12

 GO:0033764 Steroid dehydrogenase activity 10 0.50 −4.05 −1.90

 GO:0030515 snoRNA binding 10 0.50 −4.05 −1.90

 GO:0042803 Protein homodimerization activity 81 4.08 −4.04 −1.90

 GO:0008233 Peptidase activity 78 3.93 −3.82 −1.73

 GO:0004745 Retinol dehydrogenase activity 8 0.40 −3.80 −1.73

 GO:0019955 Cytokine binding 24 1.21 −3.69 −1.63

 GO:0015250 Water channel activity 6 0.30 −3.50 −1.46

GO cellular component

 GO:0031012 Extracellular matrix 98 4.93 −13.46 −10.17

 GO:0016324 Apical plasma membrane 68 3.42 −11.60 −8.79

 GO:0044420 Extracellular matrix component 17 0.86 −6.08 −3.57

 GO:0016323 Basolateral plasma membrane 41 2.06 −5.91 −3.52

 GO:0031253 Cell projection membrane 56 2.82 −5.90 −3.52

 GO:0005604 Basement membrane 23 1.16 −5.55 −3.21
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Table 2 (continued)

Term Description Count % Log10 [p value] Log10 [q value]

 GO:0031526 Brush border membrane 16 0.81 −5.25 −2.97

 GO:0031091 Platelet alpha granule 21 1.06 −4.93 −2.72

 GO:0030684 Pre-ribosome 19 0.96 −4.87 −2.70

 GO:0005667 Transcription factor complex 53 2.67 −4.60 −2.46

 GO:0070161 Anchoring junction 71 3.57 −3.64 −1.68

 GO:0044452 Nucleolar part 29 1.46 −3.61 −1.67

 GO:0005911 Cell-cell junction 53 2.67 −3.49 −1.60

 GO:0005773 Vacuole 93 4.68 −3.40 −1.56

 GO:0005777 Peroxisome 24 1.21 −3.40 −1.56

 GO:0034358 Plasma lipoprotein particle 10 0.50 −3.32 −1.52

 GO:0000940 Condensed chromosome outer kinetochore 6 0.30 −3.29 −1.52

 GO:0071438 Invadopodium membrane 4 0.20 −3.22 −1.48

 GO:0048471 Perinuclear region of cytoplasm 85 4.28 −3.20 −1.47

 GO:0005593 FACIT collagen trimer 4 0.20 −2.88 −1.25

KEGG pathway

 hsa04974 Protein digestion and absorption 23 1.16 −6.16 −3.46

 hsa04060 Cytokine-cytokine receptor interaction 45 2.26 −5.38 −2.98

 hsa00830 Retinol metabolism 17 0.86 −4.86 −2.64

 hsa04510 Focal adhesion 34 1.71 −4.45 −2.36

 hsa04918 Thyroid hormone synthesis 17 0.86 −4.08 −2.08

 hsa04610 Complement and coagulation cascades 17 0.86 −3.71 −1.85

 hsa04310 Wnt signaling pathway 24 1.21 −3.21 −1.49

 hsa03320 PPAR signaling pathway 15 0.75 −3.18 −1.49

 hsa05323 Rheumatoid arthritis 17 0.86 −3.02 −1.36

 hsa05146 Amoebiasis 17 0.86 −2.70 −1.27

 hsa04540 Gap junction 16 0.81 −2.69 −1.27

 hsa00471 D-Glutamine and D-glutamate metabolism 3 0.15 −2.68 −1.27

 hsa04978 Mineral absorption 11 0.55 −2.60 −1.21

 hsa04146 Peroxisome 15 0.75 −2.53 −1.16

 hsa04621 NOD-like receptor signaling pathway 25 1.26 −2.49 −1.14

 hsa04390 Hippo signaling pathway 23 1.16 −2.42 −1.13

 hsa00590 Arachidonic acid metabolism 12 0.60 −2.38 −1.13

 hsa00564 Glycerophospholipid metabolism 16 0.81 −2.35 −1.12

 hsa04976 Bile secretion 13 0.65 −2.32 −1.10

 hsa05412 Arrhythmogenic right ventricular cardiomyopathy 13 0.65 −2.26 −1.06

GO, Gene Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes
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recognized cetuximab resistance-related genes from 
the GDSC database (Table  5) with the 12 common 
DEGs and constructed a PPI network (Fig. 4e). The fol-
lowing six core DEGs were identified: SATB-2, ORP-1, 
MYB, CDX-2, SLC26A3, and EPHB2. Consequently, we 
selected the GSE56386 dataset to validate the variations 
in the expression levels of the 12 DEGs between cetuxi-
mab responders and non-responders in clinical terms. 
SATB-2, MYB, CDX-2, SLC26A3, and FAR2 were down-
regulated (Fig.  5a, c–e, g) and AKR1B10 was upregu-
lated in the non-responder group (Fig.  5l). Although 
a trend of downregulation was observed in the other 
six genes (Fig. 5b, f, h–k), they exhibited no significant 
differences between two groups, possibly owing to the 
small sample size. These 12 genes had an optimal pre-
diction accuracy in GSE56386. The receiver operating 

characteristic curves for the 12 genes are presented in 
Additional file 2: Fig. S1.

Core DEGs and tumor immune cell infiltration
We observed significant correlations between the expres-
sion levels of the core DEGs SATB-2 (Fig.  6a), ORP-1 
(Fig. 6b), MYB (Fig. 6c), and CDX-2 (Fig. 6d) and tumor 
immune cell infiltration represented by the expression of 
B cell,  CD4+ T cell,  CD8+ T cell, and macrophage mark-
ers in TCGA. Immunohistochemical staining of a tissue 
microarray containing 102 CRC clinical samples (Fig. 7a) 
demonstrated that the expression of these four genes was 
positively associated with tumor-infiltrating immune cell 
markers such as CD4, CD8, CD19, and CD68 (Fig.  7b; 
Table 6).

Table 4 Gene set variation analysis of upregulated and downregulated gene sets in the cetuximab resistant group

HALLMARK GENE SETS Log [FC] p value Adjustive p value

HALLMARK_MYOGENESIS 1.058 2.34E−05 3.89E−04

HALLMARK_INTERFERON_ALPHA_RESPONSE 1.115 3.21E−05 3.89E−04

HALLMARK_MYC_TARGETS_V1 −1.096 3.89E−05 3.89E−04

HALLMARK_MYC_TARGETS_V2 −1.134 2.88E−05 3.89E−04

HALLMARK_ANGIOGENESIS 1.229 1.43E−05 3.89E−04

HALLMARK_TGF_BETA_SIGNALING 1.078 9.87E−05 6.17E−04

HALLMARK_INTERFERON_GAMMA_RESPONSE 0.909 9.74E−05 6.17E−04

HALLMARK_UNFOLDED_PROTEIN_RESPONSE −0.978 7.86E−05 6.17E−04

HALLMARK_E2F_TARGETS −0.915 2.91E−04 1.45E−03

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 0.741 2.72E−04 1.45E−03

HALLMARK_APICAL_JUNCTION 0.820 3.21E−04 1.46E−03

HALLMARK_G2M_CHECKPOINT −0.926 7.41E−04 3.09E−03

HALLMARK_APOPTOSIS 0.574 1.13E−03 4.13E−03

HALLMARK_HEME_METABOLISM 0.610 1.16E−03 4.13E−03

HALLMARK_KRAS_SIGNALING_UP −0.622 1.24E−03 4.13E−03

HALLMARK_ESTROGEN_RESPONSE_EARLY 0.572 1.41E−03 4.16E−03

HALLMARK_PEROXISOME 0.676 1.38E−03 4.16E−03

HALLMARK_UV_RESPONSE_DN 0.624 1.95E−03 5.42E−03

HALLMARK_HEDGEHOG_SIGNALING 0.742 1.96E−02 4.97E−02

HALLMARK_OXIDATIVE_PHOSPHORYLATION −0.599 2.09E−02 4.97E−02

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 0.706 2.03E−02 4.97E−02

Fig. 3 GSEA and GSVA of DEGs. a-h GSEA of downregulated and (i) upregulated DEGs involved in biological states and processes in the resistant 
group, compared with those in the sensitive group. j Volcanic diagram of the GSVA results for the DEGs, which were enriched in the resistant group 
or the sensitive group (highlighted orange points and blue points, respectively). DEGs: Differentially expressed genes. GSEA: Gene Set Enrichment 
Analysis. GSVA: Gene Set Variation Analysis

(See figure on next page.)
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Exploring the expression of identified core DEGs in vitro
We conducted preliminary experiments in several CRC 
cell lines and detected that ORP-1, MYB, and CDX-2 
were downregulated in  NCIH508wtRAS/RAF (a cell line sen-
sitive to cetuximab), while SATB-2 expression decreased 
in CACO2 wtRAS/RAF (a cell line partially sensitive to 
cetuximab) and HT29 wtRAS/mtRAF (a cell line resistant to 
cetuximab) at the half-maximal inhibition concentration 
of cetuximab. A reduction in ORP-1 and CDX-2 expres-
sion was observed in most of these cell lines regardless of 
RAS and RAF status (Fig. 8a).

The roles of identified core DEGs in clinical samples 
with anti-EGFR therapy
The clinicopathological characteristics of the patients 
were recorded and are shown in Additional file  3: 
Table S2. Median follow-up time was 33.1 months (inter-
quartile range, 17.2 to 52.5 months). Compared with 
patients with low ORP-1 expression, those with high 
ORP-1 expression in CRC experienced a significantly 
longer PFS time (median times were 9.0 months and 11.0 
months, respectively, hazard rate [HR] = 1.901, p = 0.047) 
after administration of chemotherapeutics containing 
cetuximab (Fig. 8b).

Discussion
Alterations in genes that function in the epidermal 
growth factor (EGF) signaling pathway, such as increases 
in EGFR copy number, amplification of ERBB family, 
overexpression of IGF1 or VEGF, or novel mutations 
such as point mutations in RAS, BRAF, PI3KCA, or MEK 
in the EGFR extracellular domain or in the downstream 
pathway, result in EGFR antagonist resistance. Recently, 
disturbances in the tumor microenvironment caused by 
EGFR antibody have also been recognized as factors in 
treatment failure. Garvey et al. reported that cetuximab 
causes cancer-associated fibroblasts to secrete more EGF 
and reactivate mitogen-activated protein kinase sign-
aling in para-CRC cells [32]. Critically, it is important 

to understand the interaction between tumor cells and 
the tumor microenvironment in anti-EGFR therapy 
resistance.

We conducted an integrated bioinformatic analysis to 
identify nine common DEGs between the cetuximab sen-
sitive and resistant groups combining high-throughput 
data of the cetuximab resistant cell line model and data 
of cell lines and clinical samples from GEO profiles. The 
relationship between DEGs identified in our study and 
tumor immune cell infiltration was evaluated in TCGA 
and validated in clinical samples from our hospital. We 
found that four (SATB-2, ORP-1, MYB, and CDX-2) of 
nine DEGs were associated with infiltrated T cells, B 
cells, and macrophages in CRC. The decreasing trend 
of expression levels of ORP-1, MYB and CDX-2 under 
cetuximab pressure was observed in  vitro (Additional 
file 4: Fig. S2), which was consistent with the expression 
changes in the established cetuximab resistant cell line 
(CACO2-CR). Moreover, patients with high expression 
levels of these genes, especially ORP-1, exhibited pro-
longed survival receiving anti-EGFR therapy.

SATB-2 encodes a DNA binding protein and mediates 
transcription regulation as well as chromatin remodeling. 
SATB-2 attenuates the activity of MEK5/ERK5 and sup-
presses tumorigenesis and metastasis [33]. The upregula-
tion of SATB-2 via DNA demethylation of the promoter 
region and H3K4me3 increases TH1-type chemokine 
expression and immune cell density in CRC [34]. ORP-
1, as a member of the oxysterol-binding protein fam-
ily involve in human innate immune system, binds to 
phosphatidylinositol 3-phosphate by interacting with 
RAB7A and stabilizing GTP-RAB7A and regulates the 
MHC class I -mediated antigen processing and presen-
tation pathway [35, 36]. In addition, ORP-1 suppresses 
tumorigenesis via metabolism-associated pathway [37]. 
MYB is a protein-encoding oncogene that functions as 
a transcriptional activator. Paradoxically, patients with 
CRC and high MYB expression exhibit low incidence of 
distant metastases [38] and favorable clinical prognosis 
[39]. Millen et al. demonstrated that a high level of  CD8+ 

(See figure on next page.)
Fig. 4 Identification of common DEGs and construction of PPI network. a, b Identification of DEGs between the resistant (red) and sensitive (blue) 
groups from the GSE5851 and GSE59857 datasets, illustrated by a heat map. Each column is a sample and each row is a gene. c The venn diagram 
shows the intersection of DEGs among GSE5851, GSE59857 and CACO2-CR cellular model. d The Network diagram illustrates the interactions of 
common DEGs. e The PPI network including 12 DEGs and recognized cetuximab resistance-related genes from the Genomics of Drug Sensitivity in 
Cancer database. DEGs: Differentially expressed genes. PPI: protein-protein interaction network
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tumor immune infiltrating cells and a clinical history of 
longer relapse-free survival were related to high expres-
sion of MYB. An immunomodulatory effect conferred 
by MYB was also observed in  CD8+ TILs in the murine 

CRC model [40]. CDX-2 encodes a regulator of intestine-
specific genes involved in cell growth and differentiation. 
CDX-2 is downregulated in the invasive part of tumor tis-
sues and is associated with tumor-stroma protein expres-
sion as well as inflammatory cytokine release in CRC 
[41]. Low levels of CDX-2 expression indicate a particu-
larly poor survival prognosis, especially in patients with 
tumors that have a high stromal content [42].

Zanella et  al. reported that EGFR antagonists inhibit 
colorectal tumor growth and simultaneously protect 
the tumor from inhibition by transcriptional regula-
tion [43]. Woolston et  al. supported this finding and 
revealed that cetuximab prompts a transformation from 
a mutational variation to a mesenchymal transition rep-
resentative of tumor-associated fibroblast enrichment 
[20]. It seems that cetuximab evokes immune inflamma-
tion via antibody-dependent cell-mediated cytotoxicity 
but paradoxically weakens this effect via a form of IgG1 
antibody-mediated immunogenic cell death [21] while 
upregulating immunosuppressive TGF-β expression 
in CRC [44]. In fact, in a stage Ib/II trial of combined 
cetuximab and pembrolizumab treatment for patients 
with advanced CRC, the combination treatment of 
cetuximab with pembrolizumab significantly increased 
the density of  CD3+,  CD8+, and CTLA-4+ lympho-
cytes and natural killer cells in tumors. In the peripheral 
blood, the overall density of  CD4+ and  CD8+ lympho-
cytes decrease, especially that of the  PD1+ memory 
T cells [45, 46]. In the process of acquiring secondary 
resistance, the tumor might experience the transition 
from the immune-inflamed phenotype to the immune-
desert phenotype, which features by key target genes 

Table 5 Cetuximab resistance‑related genes from the 
Genomics of Drug Sensitivity in Cancer database

Cancer 
feature

Effect size p value FDR% No. 
of altered 
cell lines

Tissue 
analysis

SRGAP3_mut −1.310 0.0382 99.7 3 COREAD

PBRM1_mut −0.971 0.0791 99.7 4 COREAD

B2M_mut −0.722 0.0879 99.7 7 COREAD

FBXW7_mut −0.575 0.0998 99.7 13 COREAD

BRAF_mut 0.580 0.109 99.7 10 COREAD

cnaCOREAD47 0.737 0.111 99.7 6 COREAD

cnaCOREAD18 0.611 0.124 99.7 8 COREAD

MGA_mut −0.688 0.132 99.7 6 COREAD

cnaCOREAD14 0.892 0.147 99.7 3 COREAD

CTCF_mut −0.560 0.17 99.7 7 COREAD

cnaCOREAD37 0.634 0.172 99.7 6 COREAD

CDH1_mut −0.819 0.195 99.7 3 COREAD

CTNNB1_mut −0.577 0.199 99.7 6 COREAD

CREBBP_mut 0.530 0.213 99.7 6 COREAD

CHD9_mut −0.468 0.231 99.7 9 COREAD

BRWD1_mut −0.740 0.231 99.7 3 COREAD

CHD4_mut 0.518 0.285 99.7 3 COREAD

APC_mut −0.285 0.313 99.7 31 COREAD

AKAP9_mut −0.412 0.316 99.7 8 COREAD

cnaCOREAD32 −0.372 0.347 99.7 6 COREAD
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a b c

d e f

g h i

j k l

Fig. 5 Comparison of the expression levels of core DEGs in GSE56386. a SATB-2, c MYB, d CDX-2, e SLC26A3, and g FAR2 were significantly 
downregulated and (l)AKR1B10 was apparently upregulated among cetuximab non-responders compared with cetuximab responders. No 
significant differences were seen in (b)ORP-1, f EPHB2, h VAV3, i ATP10B, j ADH1A, k ADH1C. DEGs: Differentially expressed genes
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Fig. 6 Association between the expression level of common DEGs and immune cell infiltration. The relationship between expression levels of (a) 
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Fig. 7 Relationship between core DEGs and tumor-infiltrating immune cell markers in CRC. a The representative immunohistochemical staining 
images of SATB-2, ORP-1, MYB, CDX-2, CD19, CD4, CD8, and CD68. b Spearman analysis results indicated that core DEGs were positively associated 
with tumor-infiltrating immune cell markers. DEGs: Differentially expressed genes. CRC: Colorectal cancer



Page 19 of 22Liang et al. Cancer Cell Int          (2021) 21:135  

involved in tumor immune cell infiltration [47–49]. We 
believed that the core DEGs identified in this study, 
SATB-2, ORP-1, MYB, and CDX-2, might play critical 
roles in the transition.

Nevertheless, there were some limitations lying in 
this study. As models of anti-EGFR antibody resistance 
are not easy to established, only one cellular model was 
established and screened in the study. More cetuximab 
resistant cellular models with wild-type RAS and RAF 
genotypes are required to be established for validation. 
The DEGs identified using in silico methods should be 
further validated in vitro and in vivo. The results drawn 
from the retrospective clinical cohort with a small sample 
size also need further verification in a larger population. 
The specific immune cell types involved in secondary 
anti-EGFR antibody resistance should be more clearly 
elucidated.

Conclusions
In summary, we distinguished cetuximab-induced 
DEGs associated with variations of tumor immune 
cell infiltration in CRC by establishing a cetuximab 
resistant cellular model and integrated bioinformat-
ics analysis. The results suggested that transcrip-
tomic alterations and immune landscape remodeling 
should receive additional scrutiny during anti-EGFR 
antibody treatment. Furthermore, immunotherapy 
could be considered in the early stages of cetuximab 
treatment rather than after resistance has already 
occurred.

Table 6 Spearman correlation analysis of  differentially 
expressed genes and  tumor‑infiltrating immune cell 
markers in clinical samples

Tumor-infiltrating 
immune cells marks

Gene expression level

Spearman 
correlation

95% CI p value

SATB-

 CD4 0.22 0.00 to 0.42 0.047

 CD8 0.15 -0.07 to 0.35 0.184

 CD19 0.36 0.16 to 0.54 < 0.001

 CD68 0.34 0.14 to 0.52 0.002

 CD4 and CD8 0.22 0.07 to 0.42 0.044

 CD4, CD8, CD19, CD68 0.40 0.20 to 0.57 < 0.001

ORP-1

 CD4 0.28 0.07 to 0.46 0.010

 CD8 0.24 0.03 to 0.43 0.030

 CD19 0.36 0.16 to 0.53 < 0.001

 CD68 0.31 0.11 to 0.50 0.003

 CD4 and CD8 0.29 0.08 to 0.48 0.007

 CD4, CD8, CD19, CD68 0.42 0.23 to 0.58 < 0.001

MYB

 CD4 0.22 0.01 to 0.42 0.040

 CD8 0.20 -0.01 to 0.40 0.070

 CD19 0.09 -0.13 to 0.30 0.450

CD68 0.28 0.07 to 0.47 0.009

 CD4 and CD8 0.26 0.05 to 0.45 0.020

 CD4, CD8, CD19, CD68 0.25 0.04 to 0.44 0.020

CDX-2

 CD4 0.66 0.52 to 0.77 < 0.001

 CD8 0.35 0.14 to 0.53 0.001

 CD19 0.20 -0.02 to 0.40 0.070

 CD68 0.23 0.01 to 0.43 0.030

 CD4 and CD8 0.65 0.50 to 0.76 < 0.001

 CD4, CD8, CD19, CD68 0.46 0.27 to 0.62 < 0.001
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Fig. 8 Exploring the expression of core DEGs in vitro and their prognostic roles in CRC. a SATB-2, ORP-1, MYB, and CDX-2 were downregulated 
after cetuximab treatment. b Patients with high expression levels of core DEGs in primary tumors exhibited a tendency to experience a longer 
progression-free survival time. **, p < 0.01, ***, p < 0.001, ns, p > 0.05. DEGs: Differentially expressed genes. CRC: Colorectal cancer
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