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Abstract
Cluster randomized trials evaluate the effect of a treatment on persons nested
within clusters, with clusters being randomly assigned to treatment. The opti-
mal sample size at the cluster and person level depends on the study cost per
cluster and per person, and the outcome variance at the cluster and the person
level. The variances are unknown in the design stage and can differ between
treatment arms. As a solution, this paper presents a Maximin design that maxi-
mizes the minimum relative efficiency (relative to the optimal design) over the
variance parameter space, for trials with two treatment arms and a quantitative
outcome. This maximin relative efficiency design (MMRED) is compared with a
published Maximin design which maximizes the minimum efficiency (MMED).
Both designs are also compared with the optimal designs for homogeneous costs
and variances (balanced design) andheterogeneous costs andhomogeneous vari-
ances (cost-conscious design), for a range of variances based upon three pub-
lished trials. Whereas the MMED is balanced under high uncertainty about the
treatment-to-control variance ratio, the MMRED then tends towards a balanced
budget allocation between arms, leading to an unbalanced sample size alloca-
tion if costs are heterogeneous, similar to the cost-conscious design. Further, the
MMRED corresponds to an optimal design for an intraclass correlation (ICC)
in the lower half of the assumed ICC range (optimistic), whereas the MMED is
the optimal design for the maximum ICC within the ICC range (pessimistic).
Attention is given to the effect of theWelch–Satterthwaite degrees of freedom for
treatment effect testing on the design efficiencies.
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1 INTRODUCTION

The effects of a new treatment or intervention in medical, health, and educational research are preferably assessed with
a randomized experiment or randomized trial (RCT) in which individuals (patients, students) are randomly assigned to
treatment A or B, or treatment or control, and both groups are compared on an outcome of interest after treatment. But
individual randomization is sometimes infeasible. To compare different teaching methods or lifestyle interventions in the
classroom, we can randomize schools, or classes, but rarely students. Individual randomization can also be undesirable.
To compare two types of psychotherapy for depression, we may need to randomize therapists instead of patients to pre-
vent treatment contamination that may arise if a therapist has to switch between two treatments. A similar objection to
individual randomization may apply in studies comparing two methods of patient counseling on diabetes or COPD in
family practice. If individual randomization is impossible or undesirable, cluster randomization may be the best option.
In a cluster-randomized trial (CRT), organizational units (e.g., schools or therapists) are randomly assigned and all indi-
viduals in the same unit (e.g., students or patients) are given the same treatment (Donner & Klar, 2000; Hayes &Moulton,
2009; Murray, 1998 ). CRTs are encountered in family medicine, health promotion, and mental health, among others.
The price of cluster randomization is a lower power and precision compared with individual randomization. This is

because outcome variation between clusters in the same treatment arm leads to intraclass correlation (ICC, a correlation
between observations in the same cluster), which increases the sampling variance of the treatment effect estimator. This
so-called design effect (DE) can be as large as two or three, even if outcome variation between clusters is small relative to
that between individuals within clusters (Van Breukelen & Candel, 2018). This makes the optimal design of CRTs impor-
tant. Here, optimal design means choosing that combination of sample size at each level (number of clusters, number of
persons per cluster) that minimizes the sampling variance of the treatment effect estimator and thus maximizes precision
and power, for a given study budget. The optimal sample size for a CRT with a quantitative outcome has been presented
by Raudenbush (1997) and Moerbeek et al. (2000), among others. Published optimal sample size equations assume that
the outcome variance at each design level (cluster, individual) and thereby also the ICC is known, and the same in both
treatment arms, and that the study cost per cluster, respectively, per individual is the same in both arms as well. These
assumptions are problematic for several reasons. First of all, trials are run to test hypotheses about the unknownmean out-
come difference between treatments, making the assumption of known variances unrealistic. Further, a treatment which
affects themean of an outcome variable can also be expected to affect its variance, making the assumption of homogeneity
of variance realistic only under the null hypothesis. Published evidence on this assumption is scarce as homogeneity is
routinely assumed in data analysis and rarely tested and reported explicitly, but there is some evidence for heterogeneity
in CRTs (for some examples, see Roberts & Roberts, 2005; ; Cheyne et al., 2008; Adachi et al., 2013; Santos et al., 2020), and
even more so in clinical psychology (Grissom, 2000). Finally, with respect to costs, the study costs for sampling, treating,
and measuring clusters and persons in one treatment arm may be different from those in the other arm.
The assumption of a known ICC is made in optimal design because that design depends on the ICC value and changing

the ICC value changes the optimal design (i.e., it is a locally optimal design [LOD])). The assumption has been relaxed
in three different ways, respectively, group sequential design (Lake et al., 2002; Van Schie & Moerbeek, 2014), Bayesian
design (Rotondi & Donner, 2009), and Maximin design (Van Breukelen & Candel, 2015). The assumption of homogeneity
of costs between the treatment arms of a CRT was relaxed by Liu (2003), and the assumption of homogeneity of variances
was dropped in Lemme et al. (2016). Both Lemme et al. and Liu assumed the variances to be known in the design stage,
however. This is a problembecause the statistical analysis of a CRTwith two treatment arms already involves four variance
parameters (one per arm at the cluster level, one per arm at the person level) and the optimal design is a function of those
four parameters. Allowing the variances to be heterogeneous and unknown, Candel and Van Breukelen (2015) therefore
derived Maximin designs for CRTs given a fixed sample size per cluster which was allowed to differ between treatment
arms, and Van Breukelen and Candel (2018) generalized this into Maximin designs that optimized the sample size per
cluster. Wu et al. (2017) derived Maximin designs for CRTs with a binary outcome, but they assumed a fixed instead of
optimal sample size per cluster which was the same for both treatment arms.
Now, Wu et al. used a Maximin relative efficiency (RE) criterion, whereas Candel and Van Breukelen (2015) and Van

Breukelen and Candel (2018) used a Maximin efficiency criterion. Maximin efficiency design (MMED) maximizes the
efficiency (i.e., minimizes the sampling variance) of the treatment effect estimator in the worst-case scenario, that is, for
those true unknown variance parameter values that give the minimum efficiency (maximum sampling variance), hence
the name Maximin (or minimax). This has the advantage of guaranteeing a prespecified level of power and precision for
treatment effect evaluation across a prespecified plausible variance parameter space. Maximin relative efficiency design



1446 VAN BREUKELEN and CANDEL

(MMRED) maximizes not the minimum efficiency, but the minimum RE, across the plausible variance parameter space.
Here, relative means relative to the optimal design for a given point in the parameter space. This criterion, also known
as Minimax Regret, gives a design that stays close to the optimal design across the plausible variance parameter space.
These two Maximin criteria are both encountered in optimal design literature (see, e.g., Berger &Wong, 2009, p. 104, 119,
249, 292; Dette et al., 2006; King & Wong, 2000; Muller, 1995; Pronzato & Walter, 1988; Sitter, 1992; Wiens, 2019), but give
different results. For the case of a CRT with a quantitative outcome, homogeneous variance, and unknown ICC this was
shown in Van Breukelen and Candel (2015), with the MMED being the optimal design for the largest possible ICC, and
the MMRED the optimal design for a certain ICC value in the lower half of the ICC range.
The purpose of this paper is threefold. First, to derive the MMRED for a CRT under the same conditions as in Van

Breukelen and Candel (2018) for theMMED criterion, that is, a two-arm CRTwith a quantitative outcome, heterogeneous
known costs, and heterogeneous unknown variances, optimizing both the sample size per cluster and the number of clus-
ters. Second, to compare this design with the MMED. Third and last, to compare it with the design obtained by assuming
homogeneity of variances and costs (balanced design), and ith the design obtained by assuming homogeneity of variance
but not of costs (cost-conscious [cc] design). The reason for considering homogeneous variances and heterogeneous costs
is that study costs, unlike outcome variances, can be known in the design stage, thereby allowing to take cost heterogeneity
into account in the design stage in a simple way. If costs are unknown and assumed to be homogeneous for that reason,
then all designs in this paper will be seen to be balanced, at least assuming the same ICC range for both treatment arms.
The case of unknown yet heterogeneous costs is beyond the scope of this paper.
The outline of this paper is as follows. First, some results of three published trials are summarized to give an impression

of realistic amounts of variance heterogeneity. Second, the mixed model for analyzing a CRT with a quantitative outcome
is specified and the optimal sample size per treatment arm and per design level (number of clusters, number of persons
per cluster) is given as a function of the costs and variances per arm per level, subject to a fixed total study budget. Next, the
MMEDofVanBreukelen andCandel (2018) is summarized, specifically, how it divides the study budget between treatment
arms and between clusters and individuals. Subsequently, theMMRED is derived. TheMMRED is then comparedwith the
MMED in terms of budget split and sample sizes, as well as with the balanced and costs-conscious designs, for a realistic
range of treatment-to-control variances and cost ratios. Further, since heterogeneity of variance and unbalanced treatment
allocation affect the degrees of freedom (df) for the test statistic for the treatment effect (Satterthwaite, 1941; Welch, 1938
), the effect of these df on the relative efficiencies of the different designs in terms of test power and confidence interval
width is evaluated. Throughout the paper, an equal sample size per cluster is assumed for all clusters within the same
treatment arm, but not between arms. Cluster size variation within treatment arms can be adjusted for in the design stage
in a simple and efficient way. For details, see Van Breukelen and Candel (2012). Finally, to assist the reader in keeping
track of all mathematical symbols in this paper, Appendix A lists all symbols, their meaning, and the section where they
are first used. Further, all figures and tables in this paper have been produced and can be reproduced, with SPSS code and
with R code, which is available as a supplement.

2 EXAMPLES OF HETEROGENEITY IN PUBLISHED TRIALS

Following are summaries of three CRTs reporting the variance of one or more quantitative outcomes per treatment arm
to give an impression of realistic amounts of heterogeneity.
Cheyne et al. (2008) compared a new algorithm for diagnosis by midwives of active labor in primiparous women with

usual care with respect to oxytocin use and various other outcomes in a CRT of 14 maternity units and 2320 primiparous
women in the United Kingdom. The background of this study was the fact that, of all admissions to labor wards, 30–45%
concerned women not yet in labor, and that medical interventions were more often given to these women than to women
in labor. Of the study outcomes, three were quantitative and two showed substantial heterogeneity of variance at post-test,
with a treated to control standard deviation (SD) ratio of 2.09 for time from admission to delivery, and control to treated
SD ratio of 1.56 for time from first admission assessment to delivery (table 6 in Cheyne et al.).
Adachi et al. (2013) performed a CRTwith 20 general practitioners and 193 type II diabetes patients in Japan to compare

a lifestyle education programwith usual care in terms of 20 quantitative outcomes. The program aimed at reducing energy
intake at dinners and increasing vegetable consumption at breakfast and lunch, thereby improving self-management of
glycemic control. The SD ratio exceeded 1.3 for six outcomes, and exceeded 1.5 for three of these: carbohydrate, protein,
and fat intake as proportions of total daily energy intake (control to treated SD ratios 1.88, 1.75, 1.55, see table 2 in Adachi
et al.).



VAN BREUKELEN and CANDEL 1447

Santos et al. (2020) reported a CRT on a physical exercise program aiming at improving control of fatigue among indus-
trial workers in a dairy plant in Brazil, in which 13 sectors (the clusters) and 204workers participated. Both treatment arms
received lifestyle education. The intervention group furthermore participated in progressive resistance exercises, whereas
the control group performed the usual physical exercises. Pain intensity, one of the outcomes measured after 4 months,
showed a control to treated SD ratio of 1.86 (see table 4 in Santos et al.).
The significance of these heterogeneities was tested as follows. First, since none of these publications split the total

outcome variance between cluster-level and person-level variance, and none reported ICCs, significance testing was based
on the assumption that the ICCwas homogeneous so that the SD ratio based on total variances was also the SD ratio based
on person-level variances. Second, for a large sample size per cluster, the sampling variance of the person-level variance
estimator only depends on the person-level variance and the sample size (Van Breukelen et al., 2008, section 2.2). The SD
ratio could therefore be tested with Bartlett’s homogeneity of variance test (the Levene test requires the availability of all
raw data). This gave a 𝜒2

1
statistic between 17 and 36 for all three SD ratios in Adachi and the SD ratio in Santos, and above

150 for the two SD ratios in Cheyne (all p < 0.0001).
The next section introduces the mixed model for analysis of a two-arm CRT with heterogeneous variance and the opti-

mal design for such a trial. Subsequently, the problem of local optimality (i.e., dependence of the optimal design on vari-
ance parameters that are unknown in the design stage of the trial) is addressed by first summarizing the publishedMMED
and then presenting the new MMRED. After that, the MMRED is compared with the popular balanced design, the cc
design, and the MMED, in terms of RE and sample size. In these comparisons, we get back to the three examples above,
which all used a balanced design.

3 OPTIMAL DESIGN UNDERHETEROGENEITY OF COSTS AND VARIANCES

To estimate and test the treatment effect on a quantitative outcome Y in a CRT, the following mixed model can be used:

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗. (1)

Here, 𝑌𝑖𝑗 is the outcome for person i in cluster j, and 𝑋𝑗 is the treatment assigned to cluster j (1 = treatment, 0 = control).
Parameters 𝛽0 and 𝛽1 are fixed effects, and 𝑢𝑗 is a random cluster effect, normally distributed withmean zero and variance
𝜎2𝑢, and 𝑒𝑖𝑗 is a residual term reflecting person and measurement error effects, normally distributed with mean zero and
variance 𝜎2𝑒 . The 𝑢𝑗s of different clusters are assumed to be uncorrelated, and the 𝑒𝑖𝑗s of different persons, whether within
the same cluster or not, are also assumed to be uncorrelated. The ICC is now defined as

𝜌 =
𝜎2𝑢

𝜎2𝑦
=

𝜎2𝑢

𝜎2𝑢 + 𝜎
2
𝑒

, (2)

which is the correlation between the outcomes of any two persons in the same cluster due to the shared cluster effect.
Generalizing to the case of heterogeneous variance at each design level (cluster, person) gives four variances, denoted
as 𝜎2

𝑢(𝑡)
and 𝜎2

𝑢(𝑐)
for the cluster-level variance in the treated and control arm, and as 𝜎2

𝑒(𝑡)
and 𝜎2

𝑒(𝑐)
for the person-level

variance in each arm. Equivalently, we have two total variances 𝜎2
𝑦(𝑡)

and 𝜎2
𝑦(𝑐)

and two ICCs 𝜌𝑡 and 𝜌𝑐.
The aim of a CRT is to estimate the treatment effect 𝛽1 as precisely as possible and to have a maximum power for

testing this effect. This requires minimization of the sampling variance of the ML estimator 𝛽1, which is (Van Breukelen
& Candel, 2018)

Var
(
𝛽1

)
= [(𝑛𝑡 − 1) 𝜌𝑡 + 1]

𝜎2
𝑦(𝑡)

𝑛𝑡𝐾𝑡
+ [(𝑛𝑐 − 1) 𝜌𝑐 + 1]

𝜎2
𝑦(𝑐)

𝑛𝑐𝐾𝑐
. (3)

Here, 𝑛𝑡 is the sample size per cluster and 𝐾𝑡 is the number of clusters, in the treated arm, and 𝑛𝑐 and 𝐾𝑐 are likewise
defined for the control arm. The case of homogeneous variances and homogeneous (balanced) sample sizes is obtained
by letting 𝜎2

𝑦(𝑡)
= 𝜎2

𝑦(𝑐)
, 𝜌𝑡 = 𝜌𝑐, 𝑛𝑡 = 𝑛𝑐, and 𝐾𝑡 = 𝐾𝑐. The term [(𝑛 − 1)𝜌 + 1] in each arm in Equation (3) indicates the

factor by which the sampling variance of the outcome mean in that arm is inflated by the clustering as expressed by the
ICC and is known as the design effect (DE). If there is no clustering effect, that is, if 𝜌𝑡 = 𝜌𝑐 = 0, then Equation (3) reduces
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to the sampling variance of the treatment effect estimator in a classical RCT with individual randomization. In practice,
the ICC is usually between 0.01 and 0.10 in health care research (Adams et al., 2004; Eldridge et al., 2004 ), or up to 0.25
in educational research (Hedges & Hedberg, 2007).
The optimal design is the vector (𝑛𝑡, 𝐾𝑡, 𝑛𝑐, 𝐾𝑐) which minimizes Var(𝛽1) under the constraint of a fixed total study

budget B for treating, sampling, and measuring clusters and persons, and a cost vector (𝑐𝑡, 𝑠𝑡, 𝑐𝑐, 𝑠𝑐), where c denotes cost
per cluster and s is cost per person (subject). For a given budget split into a budget 𝐵𝑡 = 𝑓𝐵 for the treated arm and a
budget 𝐵𝑐 = (1 − 𝑓)𝐵 for the control arm, where 𝑓 ∈ (0, 1) is the fraction spent on the treated arm, the optimal design is
(Van Breukelen & Candel, 2018)

𝑛∗𝑡 =

√(
1 − 𝜌𝑡
𝜌𝑡

)(
𝑐𝑡
𝑠𝑡

)
, 𝐾∗𝑡 =

𝐵𝑡(
𝑐𝑡 + 𝑠𝑡𝑛

∗
𝑡

) (4)

for the treated arm, and analogously for the control arm. So the optimal sample size per cluster depends only on the cost
ratio c/s and ICC for that arm, and the optimal number of clusters depends on that optimal sample size per cluster, and
on the costs and the budget for that arm. Inserting these results into Equation (3) gives after rewriting:

Var
(
𝛽1

)
=
𝑔𝑡 (𝜌𝑡) 𝜎

2
𝑦(𝑡)

𝐵𝑡
+
𝑔𝑐 (𝜌𝑐) 𝜎

2
𝑦(𝑐)

𝐵𝑐
, (5)

where

𝑔𝑡 (𝜌𝑡) =
(√

𝜌𝑡𝑐𝑡 +
√
(1 − 𝜌𝑡) 𝑠𝑡

)2
∈ [ Min (𝑠𝑡, 𝑐𝑡) , Sum (𝑠𝑡, 𝑐𝑡)] , (6)

and analogously for 𝑔𝑐(𝜌𝑐) in the control arm, with the maximum of (6) attained at 𝜌𝑡 = 𝑐𝑡∕(𝑐𝑡 + 𝑠𝑡) and likewise for the
control arm. Substituting in Equation (5) that 𝐵𝑡 = 𝑓𝐵 and 𝐵𝑐 = (1 − 𝑓)𝐵, and minimizing then (5) as a function of the
fraction 𝑓 ∈ (0, 1) gives as the optimal budget split between arms:

𝑓∗

1 − 𝑓∗
=
𝜎𝑦(𝑡)

√
𝑔𝑡 (𝜌𝑡)

𝜎𝑦(𝑐)
√
𝑔𝑐 (𝜌𝑐)

. (7)

Combining (5) and (7) results in the following minimum variance of the treatment effect under heterogeneity:

Var∗
(
𝛽1

)
=
(
𝜎𝑦(𝑡)

√
𝑔𝑡 (𝜌𝑡) + 𝜎𝑦(𝑐)

√
𝑔𝑐 (𝜌𝑐)

)2
∕𝐵. (8)

4 MAXIMIN EFFICIENCY DESIGN

Equations (4)–(8) show that the optimal budget split between the two groups (treated, control) and the optimal sample
size (number of clusters, number of persons) depend on four cost parameters and four variance parameters. Now, the
cost parameters can be known in the design stage, but the variances cannot. This makes optimal design vulnerable to
misspecification of the variances. One way to obtain robustness against misspecification is MMED, which consists of the
following steps:

1. Specify the parameter space, that is, the region of all plausible values for the unknown vector (𝜎2
𝑦(𝑡)
, 𝜌𝑡, 𝜎

2
𝑦(𝑐)
, 𝜌𝑐)

on which the optimal design depends, subject to the following constraints: (𝜎2
𝑦(𝑡)

+ 𝜎2
𝑦(𝑐)
) ∈ [𝑉min, 𝑉max], 𝜌𝑡, 𝜌𝑐 ∈

[𝜌min, 𝜌max], and 𝜎𝑦(𝑡)∕𝜎𝑦(𝑐) ∈ [1∕𝑢, 𝑢]. Here, the lower and upper bounds, 𝑉min and 𝑉max , and 𝜌𝑚𝑖𝑛 and 𝜌max , are
to be specified by the user, based on prior knowledge. Further, the range [1∕𝑢, 𝑢] is chosen based on the amount of
uncertainty about the heterogeneity of the variance, with u = 1 giving homogeneity and large u allowing for much
uncertainty.
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2. Specify the design space, that is, the set of all candidate sample sizes (𝑛𝑡, 𝐾𝑡, 𝑛𝑐, 𝐾𝑐), subject to the budget constraint
𝐾𝑡(𝑐𝑡 + 𝑛𝑡𝑠𝑡) + 𝐾𝑐(𝑐𝑐 + 𝑛𝑐𝑠𝑐) = 𝐵, where the total budget B is to be specified by the user, and subject to the sample size
constraint 𝑛𝑡, 𝐾𝑡, 𝑛𝑐, 𝐾𝑐 ≥ 1.

3. For each design in the design space, find its minimum efficiency, or maximum Var(𝛽1), within the parameter space.
4. Select the design with the smallest maximum Var(𝛽1) (Minimax design), or equivalently, the design with the largest

minimum efficiency (Maximin design). This is the MMED, which is robust against misspecification of the unknown
parameters by optimizing the worst case.

The variance and budget constraints in steps 1 and 2 are needed because, as Equation (8) shows, Var(𝛽1) increases with
the variances, and decreases as the budget increases, and infinitely large varianceswould require an infinitely large budget.
Concerning step 1 above, based on published reviews of ICC values (Adams et al., 2004; Eldridge et al., 2004; Hedges &
Hedberg, 2007), it can be safely assumed that 𝜌max ≤ 0.50. Concerning step 3 above, combining 𝜌max ≤ 0.50 with the
reasonable assumptions 𝑐𝑡 ≥ 𝑠𝑡 and 𝑐𝑐 ≥ 𝑠𝑐, it can be seen that 𝜌𝑡, 𝜌𝑐 = 𝜌max is a necessary condition to obtain the worst-
case scenario of a maximum Var(𝛽1) by Equations (6) and (8). Another necessary condition is 𝜎2𝑦(𝑡) + 𝜎

2
𝑦(𝑐)

= 𝑉max . The
worst case is now obtained by filling in these two conditions in Equation (5), and then maximizing the resulting Var(𝛽1)
as a function of the SD ratio 𝜎𝑦(𝑡)∕𝜎𝑦(𝑐) within the constraint 𝜎𝑦(𝑡)∕𝜎𝑦(𝑐) ∈ [1∕𝑢, 𝑢]. Concerning step 4 of the Maximin
procedure, theMMED is obtained by taking themaximumVar(𝛽1) from step 3 and then finding that budget split between
arms that minimizes it. This Maximin split is as follows (for a proof, see van Breukelen & Candel, 2018; Appendix B):

𝑓𝑚

1 − 𝑓𝑚
= 𝑝2 if 𝑝 ∈

[
1

𝑢
, 𝑢

]
(9a)

𝑓𝑚

1 − 𝑓𝑚
= 𝑝𝑢 if 𝑝 > 𝑢 (9b)

𝑓𝑚

1 − 𝑓𝑚
=
𝑝

𝑢
if 𝑝 <

1

𝑢
, (9c)

where𝑝 =
√
𝑔𝑡(𝜌max)∕𝑔𝑐(𝜌max). The implication of this budget split is best seen if 𝑐𝑡∕𝑠𝑡 = 𝑐𝑐∕𝑠𝑐, which gives 𝑝 =

√
𝑐𝑡∕𝑐𝑐 =√

𝑠𝑡∕𝑠𝑐, the square root of the treatment-to-control cost ratio. If 𝑝 ∈ [1∕𝑢 , 𝑢], so the costs are less heterogeneous than the
variances can be, then the treatment-to-control budget ratio equals the cost ratio, 𝑝2, and the design is balanced: 𝑛𝑡 = 𝑛𝑛
and 𝐾𝑡 = 𝐾𝑐 (see Equation 4 with 𝑐𝑡∕𝑠𝑡 = 𝑐𝑐∕𝑠𝑐 and 𝜌𝑡, 𝜌𝑐 = 𝜌𝑚𝑎𝑥. If 𝑝 ∉ [1∕𝑢 , 𝑢]), so the costs are more heterogeneous
than the variances can be, the budget ratio is in-between the cost ratio 𝑝2 and its square root 𝑝. In that case, although
more budget is allocated to the more expensive arm, the number of clusters is larger in the cheaper arm. So, if 𝑝 > 𝑢, we
have 𝐵𝑡 > 𝐵𝑐, yet 𝐾𝑡 < 𝐾𝑐 (see Equations 9b and 4). Likewise, if 𝑝 < 1∕𝑢, we have 𝐵𝑡 < 𝐵𝑐, yet 𝐾𝑡 > 𝐾𝑐. The MMED is
finally obtained with Equation (4) by using 𝜌𝑡, 𝜌𝑐 = 𝜌𝑚𝑎𝑥 and the budget split in Equation (9).

5 MAXIMIN RELATIVE EFFICIENCY DESIGN

Maximin design based on the efficiency criterion, or equivalently, on theVar(𝛽1) criterion, is safe in considering theworst-
case scenario of a maximum Var(𝛽1). However, this scenario may be unlikely to occur, as it requires the ICC to be on the
upper boundary of its range, that is, 𝜌𝑡, 𝜌𝑐 = 𝜌max , and, unless𝑝 ∈ [1∕𝑢, 𝑢], it also requires the SD ratio to be on a boundary
of its range, specifically: 𝜎𝑦(𝑡)∕𝜎𝑦(𝑐) = 𝑢 if 𝑝 > 𝑢, or 𝜎𝑦(𝑡)∕𝜎𝑦(𝑐) =1∕𝑢 if 𝑝 < 1∕𝑢 (for details and proofs, see Van Breukelen
& Candel, 2018; Appendix B). In view of this, an alternative is to maximize the RE across the parameter space, here across
the ICC range [𝜌min, 𝜌max], the SD ratio range [1∕𝑢, 𝑢], and the range [𝑉min, 𝑉max] for the variance sum 𝜎2

𝑦(𝑡)
+ 𝜎2

𝑦(𝑐)
. This

leads to the MMRED. Instead of maximizing the minimum efficiency (minimizing the maximum Var(𝛽1) ), it maximizes
the minimum RE, where relative means: as compared to the LOD for a given point in the parameter space, that is, for a
given set of variance parameter values (𝜎2

𝑦(𝑡)
, 𝜌𝑡, 𝜎

2
𝑦(𝑐)
, 𝜌𝑐). MMRED thus differs from MMED in its last two steps:

Step 3: For each design D in the design space, derive its minimum RE compared with the LOD over the parameter
space, that is, minimize Var(𝛽1|𝐿𝑂𝐷)∕Var(𝛽1|𝐷) as a function of the unknown variance parameter values on which the
RE depends;
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Step 4: Now select that design D which has the highest minimum RE. This is the MMRED, which is robust against
misspecification of the variance parameters in the sense that it stays as close to the LOD as possible across the parameter
space.
For this RE criterion, the variance sum 𝜎2

𝑦(𝑡)
+ 𝜎2

𝑦(𝑐)
is irrelevant (for details, see Appendix B), and so the parameter

space is restricted to the Cartesian product of the ICC range [𝜌min, 𝜌max] and the SD ratio range [1∕𝑢, 𝑢]. Now, for the case
of homogeneous variances (u = 1), Van Breukelen and Candel (2015) derived the MMRED sample size per cluster, from
which the number of clusters then follows due to the budget constraint. Applying their result per arm in the heterogeneous
case gives as MMRED sample size per cluster in the treated arm:

𝑛𝑟𝑡 =
(1 − 𝜌min) 𝑔𝑡 (𝜌max) − (1 − 𝜌max) 𝑔𝑡 (𝜌min)

𝜌max𝑔𝑡 (𝜌min) − 𝜌min𝑔𝑡 (𝜌𝑚𝑎𝑥)
, (10)

and analogously for the sample size 𝑛𝑟𝑐 in the control arm.
Here, the superscript r indicates theMMRED sample size per cluster as opposed to theMMED (superscriptm) or locally

optimal sample size (superscript *). Equation (10) requires 𝜌min < 𝜌max .
If 𝜌min = 𝜌max , then the ICC is known and the sample size per cluster follows from Equation (4).
To give an impression, 𝜌 ∈ [0, 1] gives 𝑛𝑟 = 𝑐∕𝑠. As Equation (4) shows, this is the LOD for 𝜌 = 𝑠∕(𝑐 + 𝑠), which is in

the lower half of the ICC range if 𝑐 > 𝑠. Taking the more realistic ICC range 𝜌 ∈ [0, 0.5] gives 𝑛𝑟 = (𝑐 + 2
√
𝑐𝑠)∕𝑠, which is

the LOD for an ICC below 0.10 if 𝑐 > 𝑠, as may be seen by letting 𝑛𝑟 = 𝑛∗, and solving for 𝜌 in Equation (4). In short, the
MMRED is the LOD for an ICC value in the lower half of its range, in contrast with the MMED which is the LOD for the
maximum ICC.
To derive now the number of clusters per treatment arm according to the MMRED, we need to decide on the budget

split between both arms, since the number of clusters is proportional to the budget (see Equation 4). Therefore, let us first
write the sampling variance of the treatment effect, Var(𝛽1), as a function of the MMRED sample size per cluster given
by Equation (10), and budget split 𝐵𝑡 = 𝑓𝐵, 𝐵𝑐 = (1 − 𝑓)𝐵, with 𝑓 ∈ (0, 1) :

Var
(
𝛽1

)
=
ℎ𝑡 (𝜌𝑡) 𝜎

2
𝑦(𝑡)

𝑓𝐵
+
ℎ𝑐 (𝜌𝑐) 𝜎

2
𝑦(𝑐)

(1 − 𝑓) 𝐵
, (11)

where

ℎ𝑡 (𝜌𝑡) =
[(
𝑛𝑟𝑡 − 1

)
𝜌𝑡 + 1

](𝑐𝑡 + 𝑛𝑟𝑡 𝑠𝑡
𝑛𝑟𝑡

)
, (12)

in the treated arm, and analogously for ℎ𝑐(𝜌𝑐) in the control arm. Note that the first factor in (12) is the DE (Section 3) and
the second factor is the total cost per sampled person including cluster costs. Equation (11) is a rewriting of Equation (3)
and has the same structure as Equation (5).
Defining now

𝑝1 =

√
ℎ𝑡 (𝜌min)√
ℎ𝑐 (𝜌max)

, 𝑝2 =

√
ℎ𝑡 (𝜌max)√
ℎ𝑐 (𝜌min)

, (13)

which are the minimum, respectively, maximum, of
√
ℎ𝑡(𝜌𝑡)∕ℎ𝑐(𝜌𝑐) the following MMRED budget ratio can be derived

(for a detailed proof, see Appendix B):

𝑓𝑟

1 − 𝑓𝑟
=
2𝑝1𝑝2 +

(
𝑝1

𝑢

)
+ 𝑝2𝑢

2 +
(
𝑝1

𝑢

)
+ 𝑝2𝑢

. (14)

To show how the MMRED behaves as a function of cost and variance heterogeneity, we focus on a special case where
the MMRED is a function of two parameters only, one for cost heterogeneity and one for variance heterogeneity, with
both parameters applying at the cluster level as well as at the person level. This case is based on two constraints. First,
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F IGURE 1 Maximin (MMRED) budget ratio treatment-to-control, based on minimum RE criterion, as a function of the SD ratio
range [𝑢−1, 𝑢] for various p (square root of the treatment-to-control cost ratio)

F IGURE 2 Minimum relative efficiency (min RE) of the MMRED, as a function of the range for the unknown SD ratio, [𝑢−1, 𝑢], for
various p (square root of the treatment-to-control cost ratio)

𝑐𝑡∕𝑠𝑡 = 𝑐𝑐∕𝑠𝑐 (homogeneous cost ratio), which gives 𝑛𝑡 = 𝑛𝑐 (homogeneous cluster size) by Equations (6) and (10), and
𝑝1𝑝2 = 𝑐𝑡∕𝑐𝑐 = 𝑠𝑡∕𝑠𝑐 (the treatment to control cost ratio) by Equations (12) and (13). Second, 𝜌min = 𝜌max (known and
homogeneous ICC), so that the optimal cluster size is given by Equation (4), and that 𝑝1 = 𝑝2 =

√
𝑐𝑡∕𝑐𝑐 =

√
𝑠𝑡∕𝑠𝑐, the

square root of the treatment-to-control cost ratio, denoted by p. This makes the MMRED a function of two parameters,
p and u, just as in the MMED design in the previous section (note: plots for the case 𝜌min < 𝜌max and 𝑝1 < 𝑝2 showed
similar results, but contained too many curves).
Figure 1 plots the MMRED budget ratio against u, for various p, with both parameters running from 1 to 3 (implying a

variance and cost ratio up to 9), based upon the trials in Section 2. If u= 1 (homogeneous variance) we get 𝑓𝑟∕(1 − 𝑓𝑟) = 𝑝
by Equation (14), remembering that 𝑝1 = 𝑝2 if the ICC is known. As u and thus variance heterogeneity increases, the
budget ratio moves from p towards 1. So, for homogeneous variances (u ≈ 1), more budget is spent on the more expensive
treatment. For heterogeneous variances (large u), the budget split becomes more balanced, giving an unbalanced design,
unless p = 1 (homogeneous costs). This is different from the MMED budget ratio in Equation (9), which moves not from
p to 1, but from p to 𝑝2, giving a balanced design, as u increases.
Figure 2 plots the minimum RE of the MMRED, which is at least 0.90 for u up to 2 (i.e., a variance ratio between 0.25

and 4), and still at least 0.80 for u up to 3 (variance ratio between 0.11 and 9). Further, the minimum RE increases as the
costs become more heterogeneous, but this effect is much smaller than that of heterogeneous variances.
The present results are based on a two-sided interval for the SD ratio. The end of Appendix B points out how the

MMRED budget split and its minimum RE change if a one-sided interval is assumed. Since that requires the researcher
to specify in advance whether the variance will be larger in the treated arm or the control arm, this topic is not elaborated
here.
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F IGURE 3 RE of the balanced design (upper panel) and the cc design (lower panel) versus the MMRED with respect to the minimum
RE criterion as a function of the SD ratio range [𝑢−1, 𝑢] and p

6 EFFICIENCY COMPARISONWITH THE BALANCED DESIGN AND THE
COST-CONSCIOUS DESIGN

The MMRED will be compared with the popular balanced design in terms of its RE (this section) and its sample size
(next section) for a given budget, for realistic amounts of variance heterogeneity based on the examples in Section 2.
Unfortunately, the study cost per cluster and per person is never reported in the authors’ experience. Therefore, the same
range will be assumed for the cost ratio as for the variance ratio.
To see how much can be gained by using the MMRED, take the popular balanced design, which was used in all three

trials summarized in the previous section. For simplicity, the same assumptions are made as in Section 4 for Figures 1
and 2, that is, 𝑐𝑡∕𝑠𝑡 = 𝑐𝑐∕𝑠𝑐 (homogeneous cost ratio) and 𝜌min = 𝜌max (known homogeneous ICC), so that 𝑝1 = 𝑝2 =√
𝑐𝑡∕𝑐𝑐 =

√
𝑠𝑡∕𝑠𝑐, the square root of the treatment-to-control cost ratio, denoted as p, and that 𝑛𝑡 = 𝑛𝑐 with the same value

of 𝑛 in each design (see Equation 4). This makes the comparison between designs dependent on just two parameters: the
maximum possible SD ratio u and the square root cost ratio p. Remember, however, that the optimal andMaximin designs
in this paper do not require these assumptions (see Equations 4,7,9,10,14). Further, the comparison will allow the SD ratio
parameter u to run from 1 to 3 in view of the results in Section 5. Lacking empirical evidence on cost ratios, pwill also run
from 1 to 3.
From the right half of Equation (4), it follows that the balanced design (where𝑛𝑡 = 𝑛𝑐 and𝐾𝑡 = 𝐾𝑐 ) needs as budget split

𝑓𝑏∕(1 − 𝑓𝑏) = 𝑝2. Inserting this into Equation (B3) of Appendix B gives after rewriting the minimum RE of the balanced
design (for the equations, see Appendix C). Below, the MMRED and balanced design will be compared in terms of this
minimum RE. First, however, another candidate design is introduced: the cost-conscious (cc) design of Van Breukelen
and Candel (2018), which is the optimal design for homogeneous variances and heterogeneous costs. This is a practical
alternative to the balanced design because, unlike variances, costs can be known in the design phase and heterogeneity
can thus be easily accounted for. From Equations (7) and (9), it follows that the cc design has budget split 𝑓𝑐∕(1 − 𝑓𝑐) = 𝑝
if 𝑐𝑡∕𝑠𝑡 = 𝑐𝑐∕𝑠𝑐, and the cluster sizes and numbers of clusters per arm then follow from Equation (4). Inserting this budget
split into Equation (B3) of Appendix B gives upon rewriting the minimum RE of the cc design (see Appendix C).
A direct comparison between the MMRED and the balanced and cc designs in terms of their minimum RE is given in

Figure 3, which shows (a) the RE of balanced versus MMRED and (b) the RE of cc versus MMRED, using as criterion
the minimum RE of each design. So, each panel in Figure 3 shows the ratio of two minimum REs, where each of the two
minimum REs is relative to the LOD given by Equations (4) and (7). The REs of the balanced and the cc design compared
to theMMREDdesign both decrease as the costs and variances becomemore heterogeneous. The balanced design ismuch
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less efficient than the MMRED if costs and variances are very heterogeneous, becoming as low as 0.70 if p = u = 2 and
0.40 if p = u = 3. In contrast, the cc design is quite efficient, with an RE of 0.98 for p = u = 2 and 0.89 for p = u = 3 (note
the different scales on the vertical axes of the two panels). These results can be understood by looking at Figure 1, and
remembering that the comparisons concern the case where 𝑐𝑡∕𝑠𝑡 = 𝑐𝑐∕𝑠𝑐 and 𝑝1 = 𝑝2. Under homogeneity of variance
(u = 1), the budget allocation ratio for the MMRED is then p (see Equation 14), which is the same as for the cc design,
whereas the balanced design has a budget ratio 𝑝2. As heterogeneity of variance increases (𝑢 → ∞), the budget ratio of
the MMRED moves towards 1 and away from those of the cc design and especially the balanced design.
These results differ from those in Van Breukelen and Candel (2018) for the MMED and the minimum efficiency crite-

rion. They found the following results for theminimumefficiency criterion, so defining theRE as the ratio of theminimum
efficiencies of the designs that are compared, instead of as the ratio of the minimum REs (relative to the LOD):

I. the RE of the balanced design compared to the MMED increased as variance heterogeneity increased, such that the
balanced design was the MMED if 𝑝 ∈ [𝑢−1, 𝑢] ;

II. the RE of the cc design compared to the MMED increased slightly as cost heterogeneity increased, and was never
below 0.80;

III. in terms of the minimum efficiency criterion, the balanced design was more efficient than the cc design if 𝑝 ∈
[𝑢−2, 𝑢2], and less than the cc design else.

What does thismean for the three CRTs in Section 2? All three trials used a balanced design and reported some SD ratios
close to 2 (either treated: control, or control: treated). In terms of the minimum efficiency criterion, the balanced design
is quite efficient and better than the cc design unless the cost ratio exceeds the variance ratio. In terms of the minimum
RE criterion, however, the balanced design is inefficient for an SD ratio of 2, with a RE of only 0.70 if p= 2 or 0.55 if p= 3.
Only for homogeneous costs (p = 1) is the balanced design the MMRED.

7 SAMPLE SIZE COMPARISON

The preceding sections compared the four designs, balanced, cost-conscious,MMED, andMMRED, in terms of the budget
allocation ratio and their relative efficiencies. This section compares them in terms of the sample allocation ratio, that is,
the number of clusters per treatment arm, as a function of the cost heterogeneity parameter p and the variance hetero-
geneity parameter u, for a given study budget and using the same assumptions as in the preceding section (which imply
𝑛𝑡 = 𝑛𝑐, with the same value of 𝑛 for all four designs).
Based on typical sample sizes in CRTs according to a published review (Adams et al., 2004), 20 clusters per treatment

arm are assumed for the balanced design. Based on Section 5, the SD ratio is allowed to vary from 1 to 3, so u = 3. Lacking
publications of study costs, p is also allowed to vary from 1 to 3. In varying 𝑝 from 1 to 3, the average (A) of 𝑐𝑡 + 𝑛𝑡𝑠𝑡 (cost
per treated cluster including person costs) and 𝑐𝑐 + 𝑛𝑐𝑠𝑐 (cost per control cluster including person costs) is kept constant.
This is done to keep the budget B needed for the balanced design of 20:20 clusters constant for a fair comparison with
other designs (for instance, B = 2000 and A = 50). The sample size for the cc design follows from its budget allocation
ratio pwhich, combined with a cost ratio 𝑝2, implies a sample allocation ratio of 1/p. The sample sizes for the MMED and
MMRED are similarly computed from their budget ratios as given by Equations (9) and (14).
Table 1 lists the number of clusters per arm as a function of p from 1 to 3 and u from 1 to 3, for all four designs: balanced,

cc, MMED, and MMRED. The following trends can be seen. First of all, under cost homogeneity (p = 1) all designs are
balanced, and under variance homogeneity (u = 1) both Maximin designs reduce to the cc design. Second, the MMED is
balanced if the variance heterogeneity u is at least as large as the cost heterogeneity p. Third and last, as u and p increase,
theMMREDmoves away from the balanced design while staying close to the cc design for p and u up to 3. Table 1 assumes
20 clusters per arm for the balanced design but results for other numbers of clusters are easily inferred. For instance, to
compare with a balanced design with 10 clusters per arm, divide all numbers in Table 1 by two so that all designs need the
same budget.
Given the omnipresence of balanced designs, these results have again a practical implication. If the study costs per

cluster and per person are the same for both treatment arms (i.e., p = 1), then all four designs in Table 1 are balanced
irrespective of variance heterogeneity. But if the costs are heterogeneous, then both Maximin designs are close to the cc
design under homogeneity of variance, and the MMRED is so even under heterogeneity of variance. As Figure 3 shows,
the RE of the balanced design compared with the MMRED can be quite low then, for instance, 0.70 or even 0.55 for an SD
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TABLE 1 Number of clusters per treatment arm according to three alternatives to the balanced design with 20 clusters in each arm for
the same study budget and costs, as a function of the square root treated-to-control cost ratio (p) and the range for the square root
treated-to-control variance ratio [1/u, u], assuming a known and homogeneous ICC and homogeneous cluster-to-person cost ratio

p u Cost-conscious Maximin efficiency Maximin relative efficiency
1 1 20 20 20 20 20 20

2 20 20 20 20 20 20
3 20 20 20 20 20 20

2 1 16.67 33.33 16.67 33.33 16.67 33.33
2 16.67 33.33 20 20 16.25 35
3 16.67 33.33 20 20 15.71 37.14

3 1 16.67 50 16.67 50 16.67 50
2 16.67 50 19.05 28.57 16.19 54.29
3 16.67 50 20 20 15.56 60

ratio of 2 as in the three CRTs in Section 2, depending on the cost ratio. For researchers planning CRTs, it is thus important
to consider study costs per treatment arm as well as possible heterogeneity of variance instead of automatically choosing
a balanced design.

8 DEGREES OF FREEDOM FOR TESTING AND INTERVAL ESTIMATION

Until now, the efficiency of a design was defined in terms ofVar(𝛽1), ignoring the complicating factor that, with unknown
variances, the test statistic for the treatment effect has a Student t distribution rather than a standard normal distribution.
This follows from the equivalence of mixed (multilevel) regression analysis of individual data following Equation (1) with
the unpaired t-test of treatment versus control using clusters as units of analysis and cluster means as outcome (see, e.g.,
Moerbeek et al., 2003). Under heterogeneity of variance, the degrees of freedom for this t-test obey the following expression
(Welch, 1938; Satterthwaite, 1941; Welch, 1938):

𝑑𝑓 =

(
𝜎2
1

𝐾1
+

𝜎2
2

𝐾2

)2
(

1

𝐾1−1

)(
𝜎2
1

𝐾1

)2
+

(
1

𝐾2−1

)(
𝜎2
2

𝐾2

)2 , (15)

where
𝜎2
1

= [(𝑛𝑡 − 1)𝜌𝑡 + 1](𝜎
2
𝑦(𝑡)
∕𝑛𝑡) is the sampling variance of the outcome mean in an arbitrary treated cluster, 𝐾1 is

the number of treated clusters, and 𝜎2
1
∕𝐾1 is, therefore, the sampling variance of the outcomemean under treatment, and

analogously for 𝜎2
2
,𝐾2, and 𝜎22∕𝐾2 under control. Equation (15) implies that df varies between theminimum of𝐾1 − 1 and

𝐾2 − 1 (if 𝜎21∕𝐾1 is very small relative to 𝜎
2
2
∕𝐾2 or vice versa) and their sum (if 𝜎2

1
= 𝜎2

2
and 𝐾1 = 𝐾2). In practice, df is

estimated by replacing 𝜎2
1
and 𝜎2

2
with their estimators.

Equation (15) is relevant to the efficiency of the designs in this paper because the df determines the critical value of the
test statistic for a given α, thereby also affecting the test power, here denoted by (1 − γ). The higher the df, the smaller the
critical value and the higher the power, since the sample size needed for the Student t-test is proportional to the factor
(𝑡𝑑𝑓,1−𝛾 + 𝑡𝑑𝑓,1−𝛼∕2)

2, where 𝑡𝑑𝑓,1−𝛾 is the 100(1 − γ)-th percentile of the t-distribution with df degrees of freedom and
analogously for 𝑡𝑑𝑓,1−𝛼∕2 (Julious, 2010). Similarly, the sample size needed for a specific confidence interval width for the
treatment effect is proportional to (𝑡𝑑𝑓,1−𝛼∕2)2. The case 𝑑𝑓 → ∞ gives the standard normal distribution, but the Student
t-distribution is very close to that for df = 100 or more. This means that especially the efficiency of designs with a small
df according to Equation (15) is a bit overestimated by merely considering Var(𝛽1) in comparing different designs. Taking
the df effect into account, the RE of a design D1 versus another design D2 can be defined as (for a proof, see Appendix D):

RE (𝐷1 versus 𝐷2) =
Var

(
𝛽1|𝐷2)

Var
(
𝛽1|𝐷1) ×

(
𝑡df2,1−𝛾 + 𝑡df2,1−𝛼∕2

)2
(
𝑡df1,1−𝛾 + 𝑡df1,1−𝛼∕2

)2 , (16)



VAN BREUKELEN and CANDEL 1455

TABLE 2 Ratio of the sample size term (𝑡1−𝛼∕2 + 𝑡1−𝛾)
2 of left design: right design, as a function of the square root treated-to-control cost

ratio (p) and the range for the square root treated-to-control variance ratio [1/u, u], for two extreme cases: Actual SD ratio (SDr) = u (left
number) and actual SD ratio = 1/u (right number), and for two sample sizes: 40 clusters for the balanced design (top table) and 20 clusters
(bottom table). Assumptions: Known and homogeneous ICC, homogeneous cluster-to-person cost ratio, two-tailed testing with 𝛼 = 0.05 and
power (1 − 𝛾) = 0.90. Values in boldface differ more than 5% from 1. Values below 1 are in favor of the left design, values above 1 are in favor of
the right design

p u Balanced: MME Balanced: MMRE Cc: MME Cc: MMRE

SDr = u SDr = 1/u SDr = u SDr = 1/u
SDr =
u

SDr =
1/u

SDr =
u

SDr =
1/u

For a sample size of 40 clusters for the balanced design (20 per arm)
1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1

2 1 0.99 0.99 0.99 0.99 1 1 1 1
2 1 1 0.96 1.03 1.03 0.97 1 1
3 1 1 0.96 1.05 1.03 0.96 0.99 1.01

3 1 0.98 0.98 0.98 0.98 1 1 1 1
2 0.99 1.03 0.96 1.03 1.03 0.99 0.99 1
3 1 1 0.96 1.06 1.03 0.94 0.99 1

For a sample size of 20 clusters for the balanced design (10 per arm)
1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1

2 1 0.97 0.97 0.97 0.97 1 1 1 1
2 1 1 0.92 1.07 1.08 0.93 0.99 1
3 1 1 0.91 1.11 1.07 0.91 0.98 1.01

3 1 0.95 0.95 0.95 0.95 1 1 1 1
2 0.97 1.06 0.90 1.08 1.07 0.98 0.99 1
3 1 1 0.90 1.14 1.08 0.88 0.97 1

where df2 is the df for design D2 and df1 is the df for design D1. Equation (16), rather than its first factor alone, gives the
ratio of study budgets needed for the two designs to be equally powerful in determining a treatment effect. For instance,
if the RE as defined by Equation (16) is 2, then D2 needs twice as large budget as D1 to have the same power. Strictly
speaking, the budget for D2 needs to increase a bit less than that, because doubling the budget for D2 not only reduces
Var(𝛽1|𝐷2)with 50%but also reduces the term (𝑡𝑑𝑓2,1−𝛾 + 𝑡𝑑𝑓2,1−𝛼∕2)2 by increasing the sample size and df ofD2.However,
the magnitude of the latter effect depends on the df of D2 before the budget increase and is thus not easily incorporated
into Equation (16).
To show the effects of the df differences on the design efficiencies, Table 2 lists the last factor of Equation (16), so the

ratio of the factor (𝑡1−𝛾 + 𝑡1−𝛼∕2)2 for the balanced and cc designs to the factor for the MMED and MMRED, as a function
of the square root cost ratio p and the square root maximum variance ratio u, under the same assumptions as in Sections 6
and 7. The top table assumes a total of 40 clusters for the balanced design (20 per arm), and the bottom table a total of
20 clusters (10 per arm). For each design pair (columns) and each (p,u) pair (rows) there are two ratios: one for the case
where the actual SD ratio in the trial is u (maximum heterogeneity, the more expensive arm has the larger variance),
and one where the actual SD ratio is 1/u (maximum heterogeneity, the more expensive arm has the smaller variance). It
follows from Table 2 that, for a budget such that the balanced design has 20 clusters per arm, the ratio deviates less than
5% from 1 for all combinations except the most heterogeneous scenario (p = u = 3), where the deviation can be 6% . Note,
however, that this requires both the cost ratio 𝑝2 and the maximum variance ratio 𝑢2 to be at least as large as 9, which is
quite extreme. In contrast, for a budget such that the balanced design has 10 clusters per arm, deviations of more than 5%
frequently occur, and even deviations exceeding 10% occur. This suggests that, when the number of clusters is small, the
effect of using a t-test versus z-test on the relative efficiencies of the designs cannot be ignored. Table 2 applies to two-tailed
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testing with α = 5% and a power of 90%. For confidence interval estimation, the same equation can be used by taking a

power of 50% so that 𝑡1−𝛾= 0. This is because the confidence interval width is proportional to 𝑡1−𝛼∕2
√
Var(𝛽1). The results

for that (not shown) are very similar to those in Table 2, differing from it by 0.01 at most.
What does this imply for the three examples of heterogeneous variances in Section 2? The trials in Cheyne et al. (2008),

Adachi et al. (2013), and Santos et al. (2020) each had a balanced design, with 7–10 clusters per treatment arm, and an
outcome SD ratio around 2 for several outcomes. From Table 2, it follows that the RE of their designs relative to the
MMREDmay deviate up to 10% in either direction from the values stated in Sections 6 and 7, depending on the unreported
cost ratios in these trials (i.e., up to 10% deviation from a RE of 0.70 if p = 2 and of 0.55 if p = 3).

9 DISCUSSION

Optimal sample sizes per level (cluster, individual) of a CRT have been published by Raudenbush (1997) and Moerbeek
et al. (2000), based on the assumption of homogeneity between treatments with respect to costs and variances and the
additional assumption that the variances are known in the design stage. Unfortunately, the optimal design of a two-arm
CRT strongly depends on the four variances involved (one per design level per treatment arm), and misspecification of
these variances can lead to an inefficient design. As a solution for this, Van Breukelen and Candel (2018) presented a
Maximin design which maximizes the minimum efficiency (MMED) over a range of plausible values for the unknown
variances. This design has the advantage of guaranteeing a prespecified power and precision, but the drawback of assum-
ing the largest plausible ICC and thereby requiring a higher study budget and a larger sample size than may be needed.
This paper presented another Maximin design, which maximizes not the minimum efficiency, but the minimum rel-

ative efficiency (MMRED), relative to the LODs. The MMRED was compared with the popular balanced design, which
is optimal under homogeneity of costs and variances, with the cc design, which is optimal under heterogeneity of costs
and homogeneity of variances, and with the MMED. If the costs are homogeneous, then all four designs are balanced
irrespective of the heterogeneity of variances. If the costs are heterogeneous while the variances are homogeneous, then
both Maximin designs are equal to the cc design. However, under simultaneous heterogeneity of costs and variances, the
two Maximin designs behave very differently. Whereas increasing uncertainty about variance heterogeneity moves the
MMED away from the cc design towards a balanced design, it moves the MMRED away from the cc design towards a
balanced budget allocation between both treatment arms, leading to an even more unbalanced design than the cc design
if the costs are heterogeneous. Further, in terms of the minimum RE criterion, the cc design is always superior to the
balanced design unless the costs are homogeneous, in which case the two coincide. This again is different from results
based on the minimum efficiency criterion, according to which the cc design beats the balanced design only if the costs
are much more heterogeneous than variances (see Van Breukelen & Candel, 2018, for details).
Since the variances are unknown and need to be estimated in the data analysis after trial completion, design compar-

isons in terms of their relative efficiencies must take into account not only the sampling variance of the treatment effect
in each design but also the degrees of freedom of the t-distribution for testing and interval estimation of the treatment
effect, as in Equation (16). For a budget large enough to have a total of 40 clusters (20 per arm) in the balanced design, the
effect of df on the relative efficiencies of the designs is small for variance and cost ratios up to 9. For a total of 20 clusters
(10 per arm), the df effect is small only for variance and cost ratios up to 4.
The present results show that depending on whether we choose to maximize the minimum efficiency (minimize the

maximum sampling variance) or to maximize the minimum RE, we may end up with quite different designs: more like
the balanced design under the first optimality criterion, more like the cc design under the second criterion. This raises the
question of which optimality criterion to choose. TheMaximin efficiency criterion is the safest choice in that it guarantees
the smallest sampling variance in the worst case of a maximum ICC and a maximum heterogeneity of variance, but it has
the drawback of possible overemphasis on an unlikely scenario which requires a large study budget. This can be alleviated
by lowering the maximum ICC value and/or by narrowing the range for the SD ratio to exclude extreme scenarios. The
Maximin RE criterion is safe in the sense of staying as close to the optimal design as possible over the whole range for the
ICC and the SD ratio, thereby avoiding the overemphasis on an unlikely extreme scenario.
However, sample size calculation is easier for the MMED than for the Maximin RE design. For both designs, the user

needs to specify the effect size 𝛽1, significance level α and power 1− γ, the parameters p and u for the treatment-to-control
cost and variance ratios, and the ranges [𝑉min, 𝑉max] and [𝜌min, 𝜌max]. For sample size calculation, one furthermore needs
to specify an ICC value because Var(𝛽1) is a monotonic function of the ICC (see Equations 3,8,11). For the MMED, the
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obvious choice is 𝜌max , which is the worst-case scenario, for which the MMED is the LOD. For the MMRED there is no
obvious choice, but one might consider choosing that ICC for which the MMRED is the LOD, which is an ICC value
in the lower half of the ICC range and reflects a somewhat optimistic scenario. Given this difference between the two
Maximin designs, one might consider the safe but pessimistic MMED for the first stage of a group sequential trial which
allows early stopping, and the more optimistic MMRED for the first stage of an adaptive design which allows sample size
re-estimation, after the first stage. Any sample size calculation should furthermore prevent a too small number of clusters
for reliable estimation of the variance components. In practice, this may not often be an issue, however. For example,
sample size calculations in Van Breukelen and Candel (2018, table 4) for the MMED, using similar ranges for the ICC,
the variance ratio, and the cost ratio as in the present paper always resulted in at least 10 clusters per arm for a medium
effect size (Cohen’s d = 0.50), two-tailed test with size 5% and power 90%. Further, as the authors explained with some
references, for this test size and power two clusters need to be added to that in each arm to compensate for the power loss
arising from finite df, as their sample size calculation assumed a z-test instead of a t-test.
Finally, the present study is limited to two-arm CRTs with a quantitative outcome and known costs. One logical exten-

sion would be to Maximin design (MMED and MMRED) of CRTs with a binary or ordinal outcome or count data or
survival times. Another would be to Maximin design of multicenter trials with the center as random effect and center by
treatment interaction. A third extension would be to Maximin design of trials with clustering in only one arm, for which
the optimal design has been derived by Moerbeek and Wong (2008) under the assumption of a known ICC and a known
variance ratio. A fourth and last extension might be a Maximin approach to the costs if these are unknown in the design
stage, yet assumed to be heterogeneous.
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APPENDIX A: LIST OF SYMBOLS USED

Symbol Interpretation Introduced in
Section
number

𝛽1 The treatment effect of interest 3
𝜎2𝑢 Residual variance at the cluster level 3
𝜎2𝜀 Residual variance at the individual

level
3

𝜎2𝑌 Total residual variance 3
𝜌 Intraclass correlation (ICC) 3 , Equation (2)
K Total number of clusters sampled 3
n Number of individuals sampled per

cluster
3

c Cost per cluster 3
s Cost per subject 3
B Budget for the study 3
f Fraction of the study budget spent on

the treated arm
3

f /(1-f) Budget allocation ratio
𝑔𝑡(𝜌𝑡) (

√
𝜌𝑡𝑐𝑡 +

√
(1 − 𝜌𝑡)𝑠𝑡)

2 3, Equation (6)
u and 1/u Maximum and minimum for the SD

ratio 𝜎𝑦(𝑡)∕𝜎𝑦(𝑐)
4

V Shortcut for 𝜎2
𝑦(𝑡)

+ 𝜎2
𝑦(𝑐)

4

𝑉min, 𝑉max Minimum and maximum of V 4
𝜌min, 𝜌max Minimum and maximum of the ICC 4

𝑝

√
𝑔𝑡(𝜌max )

𝑔𝑐(𝜌max )
4

ℎ𝑡(𝜌𝑡) [(𝑛𝑟𝑡 − 1)𝜌𝑡 + 1](
𝑐𝑡+𝑛

𝑟
𝑡 𝑠𝑡

𝑛𝑟𝑡
) 5, Equation (12)

𝑝1

√
ℎ𝑡(𝜌min)√
ℎ𝑐(𝜌max )

5

𝑝2

√
ℎ𝑡(𝜌max )√
ℎ𝑐(𝜌min)

5

z 𝜎𝑦𝑡

√
ℎ𝑡(𝜌𝑡)

𝜎𝑦𝑐

√
ℎ𝑐(𝜌𝑐)

Appendix B,
Equation
(B3)

Subscripts U = random cluster effect; e = random
individual effect or residual; y =
outcome variable; t = in the treated
arm; c = in the control arm

3

Superscripts *= optimal design; m =Maximin
efficiency (MME) design; r =
Maximin relative efficiency (MMRE)
design

3-4-5

https://doi.org/10.1002/bimj.202100019
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APPENDIX B: DERIVATION OF THEMMRED
Minimizing Equation (11) as a function of 𝑓 gives as optimal budget split:

𝑓∗

1 − 𝑓∗
=
𝜎𝑦(𝑡)

√
ℎ𝑡 (𝜌𝑡)

𝜎𝑦(𝑐)
√
ℎ𝑐 (𝜌𝑐)

(B1)

and gives as optimal (minimum) Var(𝛽1) :

Var
(
𝛽1

)
=
(
𝜎𝑦(𝑡)

√
ℎ𝑡 (𝜌𝑡) + 𝜎𝑦(𝑐)

√
ℎ𝑐 (𝜌𝑐)

)2
∕𝐵 (B2)

which areEquations (7) and (8) apart from replacing 𝑔𝑡(𝜌𝑡)withℎ𝑡(𝜌𝑡), and 𝑔𝑐(𝜌𝑐)withℎ𝑐(𝜌𝑐), as the sample size per cluster
now obeys Equation (10) instead of (4). The optimal budget split in (B1) again depends on the unknown parameter vector
(𝜎2
𝑦(𝑡)
, 𝜌𝑡, 𝜎

2
𝑦(𝑐)
, 𝜌𝑐). MMED resolved this dependence by first choosing the parameter values which maximize Var(𝛽1) as

given by Equation (5), and then choosing the budget split which minimizes that maximum of Var(𝛽1). MMRED resolves
the dependency similarly in the following steps.
First, consider the RE of a given budget ratio 𝑓∕(1 − 𝑓) compared to the optimal budget ratio in Equation (B1), which

is the ratio of Equation (B2) to Equation (11) and can be written into

RE =
(𝑧 + 1)

2
𝑓 (1 − 𝑓)

𝑧2 (1 − 𝑓) + 𝑓
, where 𝑧 =

𝜎𝑦(𝑡)
√
ℎ𝑡 (𝜌𝑡)

𝜎𝑦(𝑐)
√
ℎ𝑐 (𝜌𝑐)

. (B3)

Note that z is the optimal budget ratio in Equation (B1). Now, derive the minimum of (B3) as a function of z (unknown
parameters), and then find the maximum of that minimum as a function of f (design). To this end, first define

𝑝1 =

√
ℎ𝑡 (𝜌min)√
ℎ𝑐 (𝜌max)

, 𝑝2 =

√
ℎ𝑡 (𝜌max)√
ℎ𝑐 (𝜌min)

, (B4)

which are the minimum, respectively, maximum, of the factor
√
ℎ𝑡(𝜌𝑡)∕ℎ𝑐(𝜌𝑐) in z, since ℎ𝑡(𝜌𝑡) is an increasing function

of 𝜌𝑡, and likewise ℎ𝑐(𝜌𝑐) of 𝜌𝑐. Second, note that 𝜎𝑦(𝑡)∕𝜎𝑦(𝑐) ∈ [1∕𝑢, 𝑢] implies that 𝑧 ∈ [𝑝1∕𝑢, 𝑝2𝑢] .
Taking the partial derivative of (B1)with respect to z, setting it equal to zero, andusing the fact that z, f, (1− f) all> 0 gives:

𝜕RE∕𝜕𝑧 =, 𝑜𝑟 >, 𝑜𝑟 <, 0 ⇔ 𝑧 =, 𝑜𝑟⟨, 𝑜𝑟⟩, 𝑓∕(1 − 𝑓), with maximum RE = 1 at 𝑧 = 𝑓∕(1 − 𝑓), and minimum RE either
at 𝑧 → 0, giving RE = (1 − 𝑓), or at 𝑧 → ∞, giving RE = 𝑓. So, the minimumRE isMin(𝑓, 1 − 𝑓), which is maximized by
letting 𝑓 = 1 − 𝑓 = 0.50. So, if 𝑧 ∈ (0,∞), then the optimal budget split is 50:50 (giving an unbalanced design due to the
heterogeneity of costs).
However, 𝑧 ∈ [𝑝1∕𝑢, 𝑝2𝑢], with 𝑝1 and 𝑝2 as defined in Equation (B4). With the same procedure as for unbounded

z, we get that the RE is minimized at either of the two boundaries for z, so we only need to consider the RE at either
boundary. Taking first the RE at the upper boundary 𝑧 = 𝑝2𝑢, and taking its partial derivative with respect to f shows that
the RE at 𝑧 = 𝑝2𝑢 increases from 0 if f = 0, to a maximum of 1 if 𝑓∕(1 − 𝑓) = 𝑝2𝑢, and then decreases back to 0 for f =
1. Taking next the RE at the lower boundary 𝑧 = 𝑝1∕𝑢, we find that the RE increases from 0 for f = 0 to a maximum of 1
for 𝑓∕(1 − 𝑓) = 𝑝1∕𝑢, and then decreases back to 0 for f= 1. Since these two REs are single-peaked functions of 𝑓 ∈ [0, 1]
which attain a maximum at different f-values, or equivalently, at different budget ratios 𝑓∕(1 − 𝑓), the minimum of both
RE’s is maximized by that budget ratio where the two functions intersect, that is, where the RE at 𝑧 = 𝑝2𝑢 and the RE at
𝑧 = 𝑝1∕𝑢 are equal. Equating the two REs and rewriting gives as MMRED the following budget split:

𝑓𝑟

1 − 𝑓𝑟
=

(
𝑝1

𝑢

)2
(𝑝2𝑢 + 1)

2
− (𝑝2𝑢)

2
(
𝑝1

𝑢
+ 1

)2
(
𝑝1

𝑢
+ 1

)2
− (𝑝2𝑢 + 1)

2

, (B5)

By first elaborating numerator and denominator, and then dividing both by (𝑝1∕𝑢 − 𝑝2𝑢), which requires the latter to be
unequal to zero (and thus rules out the case where u = 1 and 𝜌min = 𝜌max both hold, that is, the case of homogeneous



VAN BREUKELEN and CANDEL 1461

variance and known ICC), Equation (B5) can be shown to reduce to

𝑓𝑟

1 − 𝑓𝑟
=
2𝑝1𝑝2 +

(
𝑝1

𝑢

)
+ 𝑝2𝑢

2 +
(
𝑝1

𝑢

)
+ 𝑝2𝑢

. (B6)

Inserting this result in Equation (B3) and using either 𝑧 = 𝑝2𝑢 or 𝑧 = 𝑝1∕𝑢 then gives the minimum RE of the MMRED.
The budget ratio (B6) goes to 1, and the minimum RE goes to 0.50, as 𝑢 → ∞, irrespective of the costs.
The above results are based on a two-sided interval [1∕𝑢, 𝑢] for the SD ratio. If a researcher knows that the variance will

be at least as large in the treated arm as in the control arm, this interval can be replaced with the one-sided interval [1, 𝑢].
The minimum RE is then obtained by letting 𝑧 = 𝑝1 or 𝑧 = 𝑝2𝑢 in Equation (B3), depending on the budget split. The
MMREDbudget split can then be shown to be as in Equation (B6), except that𝑝1∕𝑢must be replacedwith𝑝1 in numerator
and denominator. The minimumRE of the MMRED is then obtained from Equation (B3) with 𝑧 = 𝑝1 or 𝑧 = 𝑝2𝑢, the two
giving the same RE in case of the MMRED. Likewise, if the variance is known to be at most as large in the treated arm
as in the control arm, then replace the interval with [1∕𝑢, 1] and replace in Equation (B6) 𝑝2𝑢 with 𝑝2 in numerator and
denominator, and let in Equation (B3)𝑧 = 𝑝2 or 𝑧 = 𝑝1∕𝑢.

APPENDIX C: MINIMUMRELATIVE EFFICIENCIES OF BALANCED AND COST-CONSCIOUS DESIGNS
For comparisonwith theMMRED in Section 5, this appendix is limited to the case where 𝑐𝑡∕𝑠𝑡 = 𝑐𝑐∕𝑠𝑐 (homogeneous cost
ratio) and 𝜌min = 𝜌max (known homogeneous ICC), so that 𝑝1 = 𝑝2 =

√
𝑐𝑡∕𝑐𝑐 =

√
𝑠𝑡∕𝑠𝑐 (see Equations 12 and 13, which

is here denoted by p, for both designs in this appendix, the balanced and the cc design).
The balanced design (𝑛𝑡 = 𝑛𝑐,𝐾𝑡 = 𝐾𝑐) needs as budget split 𝑓𝑏∕(1 − 𝑓𝑏) = 𝑝2. Substituting this in Equation (B3) gives

as RE at the two boundaries for z (remember that the RE of any design relative to the LOD is minimized at a boundary for
z; see Appendix B):

𝐴𝑡 𝑧 = 𝑝𝑢 ∶ RE =
(𝑝𝑢 + 1)

2

(1 + 𝑝2) (𝑢2 + 1)
(C1)

𝐴𝑡 𝑧 =
𝑝

𝑢
∶ RE =

(𝑝 + 𝑢)
2

(1 + 𝑝2) (𝑢2 + 1)
. (C2)

Equation (C1) is the RE of the balanced design versus MMED in terms of the minimum efficiency criterion, for the case
𝑝 > 𝑢, and increases in u, but decreases in p, then. Equation (C2) is the RE of the balanced design versus MMED in terms
ofminimumefficiency for the case𝑝 < 𝑢−1 and increases in u and in p then (VanBreukelen&Candel, 2018, section 5.1 and
table 1). So, in both cases the RE of balanced versus MMED in terms of minimum efficiency increases as heterogeneity of
variance increases (i.e., as 𝑢 → ∞ ) and as heterogeneity of costs decreases (i.e., as 𝑝 → 1 ). For 𝑝 ∈ [𝑢−1, 𝑢], the balanced
design is theMMED. Of importance here is that the minimum of (C1) and (C2) is the minimumRE of the balanced design
versus LOD since that minimum is attained at 𝑧 = 𝑝𝑢 or at 𝑧 = 𝑝∕𝑢 (Appendix B). Taking the minimum of (C1) and
(C2) gives (C1) if p < 1 (treatment cheaper than control) and (C2) if p > 1 (treatment more expensive than control). That
minimum RE of the balanced design versus the LOD is plotted in Figure C1 upper panel, and is a decreasing function of u
, andminRE → min(1, 𝑝2)∕(1 + 𝑝2) as 𝑢 → ∞. Further, the minimum RE of the balanced design increases as 𝑝 → 1 for
finite u.
The cc design gives as budget split 𝑓𝑐∕(1 − 𝑓𝑐) = 𝑝 by letting
𝜎𝑦(𝑡)∕𝜎𝑦(𝑐) = 1 in Equation (7). Substituting this in Equation (B3) gives after rewriting as RE at the boundaries for z:

At 𝑧 = 𝑝𝑢 ∶ RE =
(𝑝𝑢 + 1)

2

(1 + 𝑝) (𝑝𝑢2 + 1)
(C3)

At 𝑧 =
𝑝

𝑢
∶ RE =

(𝑝 + 𝑢)
2

(1 + 𝑝) (𝑢2 + 𝑝)
. (C4)
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F IGURE C1 Minimum relative efficiency (min RE) of the balanced design (upper panel) and the cc design (lower panel) as a function
of the SD ratio range [𝑢−1, 𝑢] and p

Equation (C3) is the RE of the cc design versus MMED in terms of the minimum efficiency criterion, for the case 𝑝 > 𝑢,
and Equation (C4) is the RE of the cc design versus MMED in terms of the same criterion, for the case 𝑝 < 𝑢−1 (Van
Breukelen & Candel, 2018, section 5.2 and tables 1 and 2). In both cases, the RE of the cc design versus MMED in terms
of minimum efficiency decreases as heterogeneity of variance increases (i.e., as 𝑢 → ∞ ) and as heterogeneity of costs
decreases (i.e., as 𝑝 → 1 ). These effects are the opposite of those for the balanced versus MMED. Finally, for 𝑝 ∈ [𝑢−1, 𝑢]
the RE of the cc design versusMMED in terms of minimum efficiency is obtained by replacing the numerator in (C3) with
the denominator of (C1) if 𝑝 ∈ [1, 𝑢], and by replacing the numerator in (C4) with the denominator of (C2) if 𝑝 ∈ [𝑢−1, 1].
In these cases too, the RE of the cc design versus MMED in terms of minimum efficiency decreases as 𝑢 → ∞, but its
behavior as a function of p is more complicated, and if p = 1 the cc design is the balanced design and the MMED.
Taking the minimum of (C3) and (C4) gives as minimum RE of the cc design compared to the LOD, respectively, (C3)

if p < 1 and (C4) if p > 1. That minimum RE is plotted in Figure C1 lower panel and is a decreasing function of u , and
minRE → min(1, 𝑝)∕(1 + 𝑝) as 𝑢 → ∞. Further, the minimumRE of the cc design relative to the LOD increases as 𝑝 → 1

for finite u, which is the opposite of the effect of p on the RE of cc versus MMED with respect to the minimum efficiency
criterion.

APPENDIX D: DERIVATION OF EQUATION (16)
To obtain Equation (16), first derive the equation for RE(𝐷1 versus 𝐷2) if all variance components and thus also the

sampling variance of the treatment effect estimator, Var(𝛽1), are known, and define SE =
√
Var(𝛽1). The sampling dis-

tribution of the test statistic 𝑍0 = 𝛽1∕𝑆𝐸 is then standard normal under 𝐻0 ∶ 𝛽1 = 0, and the sampling distribution of
𝑍1 = (𝛽1 − Δ)∕𝑆𝐸 is standard normal under 𝐻1 ∶ 𝛽1 = Δ. From this it follows that for any given nonzero value of Δ, the
test power is

Φ
(
𝑧1−𝛾

)
= 𝑃

(
𝑍0 > 𝑧1−𝛼∕2|𝐻1) = 𝑃(𝑍1 > 𝑧1−𝛼∕2 − Δ

𝑆𝐸
|𝐻1) = Φ

(
−𝑧1−𝛼∕2 +

Δ

𝑆𝐸

)
, (D1)

where Φ( ) is the standard normal distribution function. Since Φ( ) is a monotonically increasing continuous function,
(D1) implies:

𝑧1−𝛾 = −𝑧1−𝛼∕2 +
Δ

𝑆𝐸
⇒

(
𝑧1−𝛾 + 𝑧1−𝛼∕2

)2
=

Δ2

Var
(
𝛽1

) . (D2)



VAN BREUKELEN and CANDEL 1463

So, to have the same test power 1 − 𝛾 for the same treatment effectΔ and same test size𝛼 designsD1 andD2need to have the
sameVar(𝛽1). Now,Var(𝛽1) is inversely proportional to the study budgetB for all four designs in this paper, as in Equations
(8) and (B2). To see that this holds for all four designs, note that the sample size per cluster is independent ofB in all designs
(Equations 4, 10), and the budget ratio likewise (Equations 7,9,14, B1). Therefore, the numbers of clusters per arm are both
proportional to B, as in Equation (4). From this and Equation (3) then follows that Var(𝛽1) is inversely proportional to the
budget B. Therefore, if Var(𝛽1|𝐷1) > Var(𝛽1|𝐷2), the budget for D1 needs to be multiplied with Var(𝛽1|𝐷1)∕Var(𝛽1|𝐷2)
to make D1 as powerful as D2, in short: RE(𝐷1 𝑣𝑒𝑟𝑠𝑢𝑠 𝐷2) = Var(𝛽1|𝐷2)∕Var(𝛽1|𝐷1).
Now consider the case where all variance components and thus Var(𝛽1) are unknown and estimated so that the test

statistics have a Student t-distribution. Equations (D1) and (D2) then apply after replacing 𝑧1−𝛾 with 𝑡𝑑𝑓,1−𝛾 and 𝑧1−𝛼∕2
with 𝑡𝑑𝑓,1−𝛼∕2. It then follows from (D2) that designs D1 and D2 have the same power for the same Δ and 𝛼 iff:

Var
(
𝛽1|𝐷2)

Var
(
𝛽1|𝐷1) ×

(
𝑡df2,1−𝛾 + 𝑡df2,1−𝛼∕2

)2
(
𝑡df1,1−𝛾 + 𝑡df1,1−𝛼∕2

)2 = 1. (D3)

Since this implies that the budget of D1 needs to be multiplied by the inverse of the left side of Equation (D3) to make D1
as powerful as D2, the definition of 𝑅𝐸(𝐷1 versus 𝐷2) is as given in Equation (16).
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