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ABSTRACT
We propose a new methodology to asses risk spillovers in a time-
series framework. Firstly, we introduce an explicit nonparametric
measure of cross-sectional conditional tail co-movement, which
is intuitively comparable to the Conditional Value-at-Risk (CoVaR).
We show that nonlinear CoVaR (NCoVaR) is able to capture even
highly nonlinear dependence structures. Secondly, for the purpose
of potential contagion analysis, we adapt the measure to be infor-
mative about the causality direction between the variables in the
Granger causality sense. By showing that the natural estimators of
the two metrics are U-statistics, we construct formal nonparametric
tests for independence and Granger non-causality. Numerical simu-
lations confirm that in common situations the nonparametric tests
have better size and power properties than their parametric coun-
terparts. The methodology is illustrated empirically by assessing risk
transmissions between sovereigns and banking sectors in the euro
area, which observed highly irregular co-movements between asset
prices after the global financial crisis. The new measures seem to
be less susceptible to these irregularities than their parametric ana-
logues, providing a clearer overview of the underlying sovereign-
bank risk feedback loops.
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1. Introduction

Conditional Value-at-Risk, hereafter CoVaR, has become an industry benchmark in ana-
lyzing tail co-dependence between financial series [2]. As we show in this paper, standard
linear and/or (G)ARCH type parametric approaches, which are the most commonly used
CoVaR estimation frameworks, may however lead to inaccurate co-risk assessment as they
overlook deviations from linearity and/or normality. They are also unable to determine the
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Table 1. Taxonomy of CoVaR-type measures.

Type of dependence

Method Cross-sectional/instantaneous Causal/dynamic
Parametric CoVaR CoVaR Granger causality
Nonparametric NCoVaR NCoVaR Granger causality

Note: Entries in italics highlight the contributions of this paper.

direction of the relation between variables, making it more challenging to apply them in
contagion analysis.

Motivated by this, we develop a new measure for tail co-movement, which is more
flexible than a parametric measure, but still intuitively comparable to CoVaR. Firstly, we
adapt the original�CoVaRmetric to the nonlinear setting (hence the newmetric is called
�NCoVaR). Our preferred specification focuses on the regions around respective quan-
tiles, and as such modestly deviates from the standard CoVaR measure, however we also
offer a specification with the regions below quantiles, which is analogous to the original
metric. Secondly, we introduce Granger causal effects to the standard CoVaR. While this
is rather a model adaptation than a novel risk measure, to the best of knowledge, this is
the first attempt to test it in a controlled numerical environment and to compare its per-
formance against other measures empirically. The resulting family of CoVaR measures,
highlighting the ones developed in this paper, is summarized in Table 1.

By using U-statistic representations we derive asymptotic normality of the nonparamet-
ric estimators and demonstrate numerically that NCoVaR and NCoVaR Granger causality
(NCoVaR-GC) are more suitable in the presence of dynamic spillover effects, compared to
their parametric counterparts. In the same spirit, Jeong et al. [19] proposed a nonparamet-
ric test for causality in quantile, extending the work of Hong et al. [17] to nonparametric
Value-at-Risk estimation. These methodologies are complementary to ours in the sense
that whereas these authors focus on the effect of one variable on the conditional quantiles
of another, we study conditional tail probability effects.

Our framework is also closely related to the literature on conditional independence
testing – a research area in which a range of new nonparametric approaches have been
proposed recently, see e.g. [4,22,29,30,32]. While it is only natural that some of the argu-
ments may overlap between these papers and ours, we hope that our approach will spark
interest among the readers already familiar with CoVaR.

We apply the proposed methodology to assess the bank-sovereign risk transmission
between selected Euro Area (EA) countries. We confirm the differences between the core-
and vulnerable-EA dynamics, identified earlier by Paries et al. [25], Ohnsorge et al. [24]
and EIB [11]. We furthermore argue that NCoVaR is a more conservative methodology
and to a higher extent it captures the information spanned by extra confounding variables.

We argue that NCoVaR performs well in nonlinear and/or non-Gaussian settings. In
fact, the existence of nonlinearities is widely recognized in the financial literature. For
instance, von Borstel et al. [31] find that the sovereign debt crisis changed the composi-
tion of the pass-through, adjusting for indirect effects from lower sovereign risk premia
in the EA. [20] find that banks with high shares of relationship lending appear to be char-
acterized by nonlinear pass-through effects. This is somehow in line with a more general
finding of Huang et al. [18] andHe and Krishnamurthy [16], who suggest that banking risk
is a nonlinear function of asset exposure.
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A major motivation for considering Granger causality lies in its possible applications
to networks and contagion analysis (see e.g. [6]). Looking at any pair of institutions, the
possiblemutual risk transmission effects do not have to be symmetric (as they are implicitly
assumed to be in a linearGaussian setting). For instance, a lender has a different kind of risk
exposure to a creditor than vice versa. Granger causality captures that phenomenon explic-
itly, allowing for a more detailed analysis of network spillover effects, cascades and shock
propagation.AparametricGranger causalitymeasure has already been successfully applied
as a network mapping tool in financial analysis [12]. The general type of Granger causality
employed in this study, i.e. a distribution-wide version of the concept originally proposed
by Granger [13], goes beyond the conditional mean effects and spreads over the entire con-
ditional distributions. Such a general notion of causality appears to be particularly relevant
to identify feedback loops and propagation mechanisms in complex environments.

Themotivation behind the empirical part stems from the strong adverse effects from the
bank-sovereign feedback loops, i.e. the interdependence of the banking sectors and cor-
responding sovereigns, on the real economy and taxpayers. The majority of econometric
approaches in these fields focus on co-riskmeasures, where the risk of one sector is assessed
in relation to the risk of the other one. The intuition behind these models lies in negative
externalities. As argued by Adrian and Brunnermeier [2], such externalities are a conse-
quence of asset exposures, excessive risk taking and leverage. Given, for instance, that the
banking sector is facing a liquidity shock, it liquidates its assets, including sovereign secu-
rities, at fire-sale prices as given, affecting the borrowing constraints of the sovereign. On
the other hand, sovereign characteristics are often perceived as a country-wide benchmark
in credit risk assessment. It is rarely the case that a financial entity ‘pierces the sovereign
ceiling’ in a credit rating context. Furthermore, sovereigns are often the implicit guarantors
of the financial system [1].

This paper is organized as follows. In Section 2, we explain themethodology ofNCoVaR
and NCoVaR-GC. We numerically evaluate the asymptotic properties of the test statistic
in Section 3. In Section 4, we test our approach on the EA sample. Section 5 concludes.

2. Methodology

In this section we introduce the main mechanics of the new risk transmission measures.
While our methodology can be possibly applied to assess risk more broadly, we bench-
mark our framework against the literature on financial risk, in which investors and policy
makers typically aim to understand probability of financial loss associated with a given
scenario. This feeds into their decision making process, hoping to improve the expected
outcome or better prepare for a possible disaster. Commonly used financial risk manage-
ment techniques include measures of dispersion, Sharpe ratio, and so-called beta, which
describes sensitivity of individual stocks to shocks in the market benchmark. More sophis-
ticated methods include, for instance, Expected Shortfall or Value-at-Risk metrics, as we
describe below. In this spirit, conditional measures, like CoVaR, allow to study how spe-
cific risk factors associatedwith one variable affect other variables, being particularly useful
for spillover or contagion analysis. This is also an area which our methodology aims to
contribute to.

For convenience, we begin by highlighting the main features of the standard CoVaR
methodology.We then introduce an analogue of CoVaR which can capture even nonlinear
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dependence structures. Finally, we complement both CoVaR methods with their Granger
causality versions determined by conditional rather than unconditional dependence.1

2.1. CoVaR

To start with the basics, the unconditional Value-at-Risk (VaRY
γ ) of a continuous random

variable Y representing losses of an institution, j, say, is defined as the γ th quantile of Y for
a given quantile level γ ∈ (0, 1), that is

P
(
Y ≤ VaRY

γ

)
= γ . (1)

To make the presentation transparent and consistent with our further argumentation, let
us denote the losses of another institution, i, say, by X. The conditional Value-at-Risk,
or CoVaR, proposed by Adrian and Brunnermeier [2], measures the effect of an event
C(X) occurring in institution i on VaRγ of institution j. To put it formally, one can define
implicitly CoVaR as

P
(
Y ≤ CoVaRY|C(X)

γ

∣∣∣C(X)
)

= γ . (2)

To capture risk transmission effects, also referred to as tail dependence, Adrian and Brun-
nermeier [2] introduced the �CoVaR metric, which measures the change in CoVaR of an
institution j when the conditioning event of institution i changes. �CoVaR measures the
effect of a shift in X from the median to the tail quantile (from a safe to a risky state) of
institution i on the performance of institution j. Formally, one can define

�CoVaRY|X
γ = CoVaR

Y|X=VaRX
γ

γ − CoVaRY|X=VaRX
0.5

γ , (3)

measuring the shift in the conditional Y-quantile, in response of a change in X from the
median to the γ -th quantile.

2.2. Nonlinear CoVaR (NCoVaR)

To introduce the concept, we reformulate CoVaR from conditional quantiles into condi-
tional tail event probabilities. In other words, we change the perspective from the domain
of Y values in Equation (2), to the domain of probabilities.While one can think of theNCo-
VaR simply as a conditional probability, ourmain focus is on the nonparametric adaptation
of�CoVaRmetric, called�NCoVaR.2 The approach differs from [28,33] by focusing (like
CoVaR) on the shift in conditional probability of Y given X as X changes, rather than on
the conditional probability itself.

To keep the exposition general, first consider the events Y ∈ A, and X ∈ C or X ∈ D,
where the sets A, C and D are specific regions of interest. We can quantify the effect of a
change in X from region C to D on the tail event probability of Y by defining

�NCoVaR = P(Y ∈ A|X ∈ C) − P(Y ∈ A|X ∈ D).

In our applicationswe letA correspond to a set of extreme events forY, such asY being near
or above a given unconditional tail quantile yγ ≡ VaRY

γ , and C andD sets denoting events
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whereX is either near a given unconditional tail quantile (xγ ) ofX or near its unconditional
median (x0.5), respectively. In the simulations and empirical applications described below
we focus on the choice

A = [yγ − μ, yγ + μ], C = [xγ − μ, xγ + μ], D = [x0.5 − μ, x0.5 + μ], (4)

for some positive parameter μ. Another obvious choice might be A = [yγ ′ ,∞), which has
a similar interpretation to the standard CoVaR. In practice we found this to give similar
results if γ ′ is chosen such that yγ ′ approximately equals yγ − μ, if γ is in the range 0.95
to 0.99 and μ is not too small. For ease of exposition, we specify the event A as being near
a given tail quantile throughout this paper.

From the definition of �NCoVaR, we obtain

�NCoVaR = P (Y ∈ A,X ∈ C)

P (X ∈ C)
− P (Y ∈ A,X ∈ D)

P (X ∈ D)
.

The null hypothesis H0 of no (instantaneous) NCoVaR relation of the variable X on the
tail probability of Y can be defined as �NCoVaR = 0 for all events A, C and D for which
P(X ∈ C) > 0 and P(X ∈ D) > 0. Upon multiplication by P(X ∈ D)P(X ∈ C), H0 can be
seen to imply

q ≡ P (Y ∈ A,X ∈ C)P (X ∈ D) − P (Y ∈ A,X ∈ D)P (X ∈ C) = 0,

which then is, in fact, also defined in cases where P(X ∈ C) and/or P(X ∈ D) happen to be
zero. Note that equivalently, we may write H0 as

q = E [IA×C(Y1,X1)ID(X2) − IA×D(X1,Y1)IC(X2)] = 0,

for two vectors (X1,Y1) and (X2,Y2), drawn independently from the joint distribution of
(X,Y).

Given a sample of the process {(Xt ,Yt)}, t = 1, . . . , n, a plug-in frequency count-based
estimate of q is

qn = 1
n(n − 1)

∑ ∑
��=k

[IA×C(Yk,Xk)ID(X�) − IA×D(Yk,Xk)IC(X�)] .

2.2.1. Asymptotic theory
To develop asymptotics, defineWt = (Xt ,Yt) andwrite the estimator as a weighted average
of a symmetric kernel function (as a U-statistic)

qn = 1
n(n − 1)

∑ ∑
k�=�

K(Wk,W�),

whereK(Wk,W�) is the symmetric (w.r.t. swappingWk andW�) kernel function

K(Wk,W�) = 1
2
[IA×C(Yk,Xk)ID(X�) − IA×D(Yk,Xk)IC(X�) + � ↔ k] ,

where � ↔ k stands for similar terms with � and k swapped. This shows that qn is in fact
a U-statistic estimator of q = E(K(Wi,Wj)), (whereWi andWj are drawn independently
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from the stationary distribution ofW, provided it exists). Although in a time series process
the observed vectors Wt , t = 1, . . . , n are not independent, as long as the process {Wt} is
strictly stationary and satisfies some rather mild mixing conditions, the asymptotic theory
of U-statistics still apply, provided that aHAC estimator of variance is used [7,8]. This leads
to the following theorem.

Theorem 2.1: Consider a sample {Wt}nt=1 from the bivariate random process {Wt} ≡
{(Xt ,Yt)} with t ∈ Z that is strictly stationary and β-mixing with exponential decay rate.
Then for the kernel functionK(·, ·) as defined above, for fixed A, C and D,

√
n
qn − q
Sn

d−→N(0, 1),

where S2n is any heteroskedasticity and autocovariance consistent (HAC) estimator of the
asymptotic variance of

√
n(qn − q).

The proof of Theorem 2.1 is provided in Appendix A.

2.3. CoVaRGranger causality (CoVaR-GC)

In Granger causality testing, the goal is to find evidence against the null hypothesis of
Granger non-causality. We define it in a general sense as follows.

Definition 2.1 (Granger non-causality (bivariate)): For a strictly stationary bivariate
time series process {(Xt ,Yt)}, t ∈ Z, {Xt} does not Granger cause {Yt} if

Yt+1|(FX,t ,FY ,t) ∼ Yt+1|FY ,t ∀t ,
where FX,t and FY ,t are information sets spanned by Xs, s ≤ t and Ys, s ≤ t, respectively
and ‘∼ ’ denotes that the random variables on both sides are identically distributed.

Throughout we assume that the process {(Xt ,Yt), t ∈ Z} is strictly stationary and β-
mixing with exponential decay rate. Since it is generally impossible to condition on the
entire past history spanned by Xs and/or Ys, s ≤ t, in practice we condition on the last k
observations only (t − k + 1 ≤ s ≤ t) where k is a finite positive integer. For now, we focus
on k = 1.

Following [9,10] one can represent the null hypothesis of Granger non-causality in
terms of equality of conditional probabilities. For the ease of notation we introduce the
lead variable Zt = Yt+1. In this notation the null hypothesis is a statement about the
invariant distribution evaluated at conditional quantile levels of the 3-dimensional vector
Wt = (Xt ,Yt ,Zt). For clarity, since the null hypothesis concerns the invariant distribution
ofWt , in formulating the null hypothesis we often drop the time index and refer simply to
the distribution of the random variableW = (X,Y ,Z).

Under the null hypothesis of Granger non-causality X and Z are conditionally indepen-
dent given Y = y∗, where y∗ is a given unconditional quantile of Y. This, in fact, allows to
estimate the relation by adding a time lag over Y-dimension to the basic CoVaR quantile
regression.We call this model specification by CoVaR-GC. Following Definition 1, the null
hypothesis H0 implies that the conditional quantiles of Z, being the future Y-variable, are
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independent of X given Y, or, the conditional quantiles of Z|X = x, Y = y and Z|Y = y
are the same for all (x, y) in the support of (X,Y).

Note that unlikeCoVaR,CoVaR-GC is directional also inmultivariateGaussian settings,
i.e. the effect ofX on future values ofY need not be the same as that ofY on futureX-values.
As such it is a measure of Granger causality from one variable to another. This provides an
adaptation of the linear CoVaR, which for Gaussian processes is correlation-driven, and
hence inherently symmetrical under multivariate Gaussian conditions [23].

2.4. NCoVaRGranger causality (NCoVaR-GC)

Recall that for (X,Y ,Z) ∼ (Xt ,Yt ,Yt+1) under the null hypothesisH0 vectors X and Z are
conditionally independent given Y. As with NCoVaR, we take a nonparametric approach
for estimation, starting by considering events where nowA is a subset of the outcome space
of Z, and C and D of that of X. For the simulations and applications presented below, we
use the specific sets

A = [zγ − μ, zγ + μ], C = [xγ − μ, xγ + μ], D = [x0.5 − μ, x0.5 + μ], (5)

however, in general one may also utilize the above-quantile specification of the events (for
a discussion see Section 2.2).

For general sets A, C and D, the null hypothesis implies (see Appendix B for the
derivation)

P(Z ∈ A,X ∈ C|Y = y)
P(X ∈ C|Y = y)

= P(Z ∈ A,X ∈ D|Y = y)
P(X ∈ D|Y = y)

, ∀A,C,D, y.

The analogy with �NCoVaR above now suggests testing the null hypothesis

H′
0 : P(Z ∈ A,X ∈ C|Y = y∗)P(X ∈ D|Y = y∗)

− P(z ∈ A,X ∈ D|Y = y∗)P(X ∈ C|Y = y∗) = 0,

for a given past Yt value y∗ (e.g. some unconditional Y-quantile) and givenA,C andD. For
instance P(X ∈ D|Y = y∗) is now estimated by counting the frequency of events X ∈ D,
among the vectors close to y∗.

A plug-in estimator for P(X ∈ D|Y = y∗) is the Nadaraya-Watson nonparametric
regression function estimator

P̂(X ∈ D|Y = y∗) =
1
n

∑n
k=1 ID(Zk)Kh(y∗ − Yk)

1
n

∑n
k=1 Kh(y∗ − Yk)

, (6)

where we take Kh(·) to be a density estimation kernel. Although the theory holds more
general, in the simulations and applications presented herein we focus on the Gaussian
kernel

Kh(s) = 1√
2πh

exp(−s2/(2h2)),

and its associated higher-order kernels (see e.g. [15]). Note that the denominator in
Equation (6), which is preventing us from writing the estimator as a U-statistic, is just
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a kernel density estimate of fY(y∗). We can get rid of the denominator and obtain sim-
ple U-statistics estimates3 if we multiply the probabilities by fY(y∗). Therefore, for a given
unconditional quantile y∗ of Y we define

q∗ = f 2Y(y∗)
(
P(Z ∈ A,X ∈ C|Y = y∗)P(X ∈ D|Y = y∗)

−P(Z ∈ A,X ∈ D|Y = y∗)P(X ∈ C|Y = y∗)
)
.

By construction, q∗ = 0 under H0. Now the term

fY(y∗)P(X ∈ D|Y = y∗)

e.g. can be simply estimated as

1
n

n∑
k=1

ID(Xk)Kh(y∗ − Yk).

The corresponding U-statistic kernel used for estimation of q∗ is

K(Wk,W�; h) = 1
2

[
IA(Zk)IC(Xk)Kh(y∗ − Yk)ID(X�)Kh(y∗ − Y�)

− IA(Zk)ID(Xk)Kh(y∗ − Yk)IC(X�)Kh(y∗ − Y�) + k ↔ �
]
, (7)

where ‘k ↔ �’ represents the same terms with k and � swapped and Kh(w) = h−1K(w/h)
a scaled version of the kernel function K(w), satisfying

∫
|K(w)|dw < ∞,

∫
K(w)dw = 1 and|wK(w)| → 0 as|w| → ∞. (8)

The next theorem states that the U-statistics estimator of q∗, given by

q∗,n = 1
n(n − 1)

∑∑
��=k

K(Wk,W�; h),

is asymptotically normally distributed provided that the bandwidth h = hn tends to zero
with n at an appropriate rate.

Theorem 2.2: Consider a strictly stationary bivariate random process {(Xt ,Yt)}with t ∈ Z,
and a kernel density bandwidth parameter tending to zero at the rate hn = cn−β with β ∈
( 1
2α ,

1
2dY ), where α is the order of the kernel and dY the dimension of the conditioning variable

Y. Then, given the events A, C and D, and Y-quantile y∗,

√
n
q∗,n − q∗

S′
n

d−→N(0, 1),

where S′2
n is any consistent (HAC) estimator of the asymptotic variance of

√
n(q∗,n − q∗)

The proof of Theorem 2.2 is provided in Appendix C. The conditions on the bandwidth
rate β for a second-order (α = 2) density estimation kernel, and dY = 1 (first Markov-
order bivariate process), imply β ∈ ( 14 ,

1
2 ). TheMSE-optimal rate in that case is β = 1

3 (see
Appendix C for details).
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In addition to theMSE optimal bandwidth rate β , one could also find the asymptotically
optimal value of c in the sequence hn = cn−β . Unfortunately, the optimal value of c will be
not independent of the data generating process assumed. We offer a guide how to find the
c parameter in Appendix D on an example of stylized VAR and ARCH processes.

2.5. Extensions to higher order processes and/or confounding variables

Most of the remarks above concern the bivariate case, with Markov order k = 1 lag and
density estimation kernel order α = 2. Adding more conditional variables, such as lagged
Y-variables or possibly confounding variables puts additional restrictions on the feasible
bandwidth rates (β-values). Mathematically, extra lagged Y-values or additional variables
can be added to the conditioning variable Y, in W = (X,Y ,Z), when testing whether X
and Z are conditionally independent given Y. The increase of the dimension of Y places
additional conditions on the feasible ratesβ at which hn can tend to zerowithout letting the
bias or the variance of q∗,n dominate asymptotically. Specifically, α and dY put the restric-
tions 1

2α < β < 1
2dY , on β . Note that for the usual second order density estimation kernels,

which have α = 2, there are already no feasible rates β as soon as we increase the dimen-
sion dY of Y from 1 to 2, e.g. by adding a single extra lag of Yt or the first lag of a possible
extra, confounding, variable, Vt , say.

When addressing this issue, one has a choice between Data Sharpening (DS) on one
hand, and the use of higher order kernels on the other. Both these methods reduce the
order of the bias, opening up some room for the bandwidth to tend to zero slower, and
hence reduce the variance. However, there is a huge practical difference between these
methods, in that higher order kernels require only a single bandwidth to be considered,
while in DS there is one bandwidth for the data sharpening step and another for the esti-
mation step, and these need to be carefully adjusted to each other. For instance, as noted
by Diks and Wolski [10] the DS bandwidth should go to zero at a slower rate than the
density estimation bandwidth, to make sure that the gradient of the density is estimated
consistently. Therefore, in this study we decided to use higher-order kernels rather than
DS when Y is multivariate. In the case described above, with dY = 2, using a 4th-order
(α = 4) kernel provides a range of feasible β-values, β ∈ ( 18 ,

1
4 ).

Formally, if we denote the vector of extra conditioning variables byV, one can represent
the null hypothesis for the multivariate �NCoVaR as

H0 : P(Y ∈ A|X ∈ C,V = v∗) = P(Y ∈ A|X ∈ D,V = v∗),

and for multivariate NCoVaR-GC as
P(Z ∈ A,X ∈ C|Y = y∗,V = v∗)

P(X ∈ C|Y = y∗,V = v∗)
= P(Z ∈ A,X ∈ D|Y = y∗,V = v∗)

P(X ∈ D|Y = y∗,V = v∗)
.

The latter equation illustrates explicitly that adding extra control variables to condition on
is mathematically equivalent to increasing the dimension of the conditioning variable Y.

3. Size/power simulations

Our strategy is to simulate processes with stylized transmission channels and to verify sta-
tistical power of the methodologies proposed in Table 1. Since CoVaR and NCoVaR focus
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on instantaneous dependence, whereas CoVaR-GC and NCoVaR-GC considers Granger-
type dependence, for the former we simulate processes with simultaneous and for the
latter with lagged dependence.We then benchmark the results against standard and lagged
parametric CoVaR specifications, respectively.

As argued by Adrian and Brunnermeier [2], �CoVaR can be estimated as �CoVaR =
β̂ i

γ × (VaRi
γ − VaRi

0.5), where β̂ i
γ comes from the quantile regression4

Ŷj|X
γ = α̂i

γ + β̂ i
γX, (9)

where Ŷj|X
γ is the predicted value for γ -quantile of institution j conditional on a return

realization X of institution i. In fact, variable β̂ i
γ captures the tail dependence between the

institutions and is the core variable of interest for our further investigation. Under standard
distributional assumptions, the estimated coefficient follows a Student’s t-distributionwith
n−2 degrees of freedom. The statistical significance of β̂ i

γ is therefore a direct measure to
assess the size and power of the parametric approach. Furthermore, to correct for possible
heteroskedasticity we compute the t-statistics for β̂ i

γ with robust standard errors.
We carry out a one-sided t-test where under the nullH0 : β i

γ ≤ 0 and under the alterna-
tive Ha : β i

γ > 0, to make the test size directly comparable with our further investigation.
To construct CoVaR estimates for lagged dependence structure, we adjust the lag com-

position of Equation (9) to match Definition 2.1. Besides, the testing framework follows
the same principles as described above.

We consider two groups of processes, highlighting the dependence in the first and sec-
ond conditional moments of the random variables. These processes constitute a natural
testing environment, used before by Li and Racine [21] and Diks and Wolski [10].5 One
could also focus on a combination of both types of dependencies simultaneously. However,
as we demonstrate later, the sensitivity of parametric and nonparametric methods is vastly
different across these two groups of processes. We therefore consider them separately.

3.1. Dependence in the first conditional moment

To give an example of a data-generating process with causality in mean, consider the linear
bivariate Vector Autoregressive model of order 1 (VAR(1)) given by

Xt = aXt−1 +
√
1 − a2ε1,t ,

Yt = aXt−τ +
√
1 − a2ε2,t ,

(10)

where a ∈ (0, 1) is a tuning parameter and ε1,t and ε2,t represent i.i.d. zero-mean inno-
vations. We restrict the parameter a to be within the unit interval and keep the process
stationary. The process is designed so that the causality runs from X to Y, which consti-
tutes a foundation for power assessment. For the size assessment we use the same process,
but switch the causality from Y to X, so that the null hypothesis of non-causality holds.

The subscripts denote the time dimension. Here we make an important distinction
between instantaneous and lagged dependence spillovers or, by a slight abuse of termi-
nology, ‘instantaneous’ and ‘standard’ Granger causality. By adjusting the dependence lag
structure, we match the timing of the data generating process to (N)CoVaR (Granger
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causality) measures, providing an appropriate testing framework for each. In particu-
lar, we set τ = 0 for ‘instantaneous’ Granger causality to assess the size and power of
CoVaR and NCoVaR. We investigate the properties of the CoVaR-GC and NCoVaR-GC
tests on the process with lagged dependence, i.e. τ = 1. The sets A, C and D correspond
with Equation (4) for CoVaR and NCoVaR, and with Equation (5) for CoVaR-GC and
NCoVaR-GC, respectively.

For the simulations we set a = 0.4 and run 1000 independent realizations of the pro-
cess in Equation (10), after a burn-in period of 100 time steps. Sample size-dependent
bandwidths are set at the calculated MSE-optimal value and the fixed-range parameter is
set at μ = 0.8, as this seems to provide consistently good size and power properties (for
comparison see Appendix F).

The detailed results for selected nominal size levels are summarized in Table 2. Pre-
sentation focuses on the risky quantile of γ = 0.95 but the results for γ = 0.99 and for
above-quantile specification are available upon request.

There are three main observations that can be made based on this experiment. Firstly,
the instantaneous CoVaR and NCoVaR measures seem to be nondirectional, at least in
multivariate Gaussian cases, whereas the Granger causality-based specifications are sensi-
tive to the direction of causality. Regarding the former, we note that [2] consider such a
property a virtue, as the methodology captures the co-risk effects between variables. Our
numerical exercise confirms this feature for both CoVaR andNCoVaRmeasures. Secondly,
regarding the Granger causality measures, it seems that parametric estimation modestly
over-rejects under the null, i.e. the methodology finds evidence for CoVaR-GC too often
when it is actually absent. This over-rejection is confirmed for conventional nominal size
levels and doesn’t seem to diminish with increasing sample size (see Table 2). On the
contrary, NCoVaR-GC displays much more conservative size properties.

Thirdly, for the VAR(1) process we find a considerable power gain for CoVaR relative
to NCoVaR in small samples for the γ = 0.95 quantile. The differences evaporate as the

Table 2. Performance summaryofCoVaRandNCoVaRmethodologies inVARclass ofmodels for selected
nominal size levels (α).

Instantaneous dependence Granger causality

Size Power Size Power

α n CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR CoVaR CoVaR

0.01 100 0.395 0.147 0.462 0.142 0.053 0.007 0.511 0.087
200 0.621 0.391 0.625 0.374 0.024 0.004 0.681 0.186
500 0.976 0.850 0.972 0.831 0.016 0.002 0.979 0.432
1000 1.000 0.991 1.000 0.990 0.030 0.003 1.000 0.702

0.05 100 0.610 0.394 0.633 0.397 0.100 0.037 0.698 0.289
200 0.837 0.661 0.825 0.675 0.070 0.035 0.857 0.473
500 0.998 0.957 0.997 0.953 0.058 0.034 0.999 0.730
1000 1.000 1.000 1.000 1.000 0.074 0.042 1.000 0.908

0.1 100 0.734 0.560 0.741 0.567 0.141 0.081 0.789 0.468
200 0.907 0.803 0.904 0.803 0.115 0.098 0.923 0.648
500 0.999 0.979 0.999 0.983 0.114 0.095 1.000 0.849
1000 1.000 1.000 1.000 1.000 0.130 0.078 1.000 0.958

Notes: Actual rejection rates under X → Y causality (power) and Y → X causality (size) for different sample sizes (n), gener-
ated under process in Equation (10) with instantaneous dependence (τ = 0) and with lagged dependence (τ = 1). The
quantile at which the risk is defined is set to γ = 0.95. We apply the MSE-optimal bandwidth and we set the fixed-range
parameter toμ = 0.8. The results are aggregated over 1000 simulations.
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sample size increases and the instantaneous NCoVaR converges faster in power than the
Granger causality setup. There are several possible reasons for these results. As confirmed
by Rothe [26], parametric models are characterized by higher efficiency (in terms of MSE)
for correctly specified models. Our simulation setup assumes the simplest process dynam-
ics, which corresponds to the model specifications. Secondly, the strong power of CoVaR
can be partially driven by its over-rejection bias, at least to some extent. Thirdly, the slower
convergence for NCoVaR-GC can be attributed to the ‘curse of dimensionality’, i.e. less
precise estimates in higher dimensions. There are several possible remedies to this prob-
lem, including data sharpening, principal components, projection pursuit or informative
components analysis [14,27]. This topic is, however, beyond the scope of this paper and we
leave it for further investigation.

3.2. Dependence in the second conditional moment

The second-moment dependence is analyzed through a prism of a class of (Generalized)
Autoregressive ConditionalHeteroskedasticity ((G)ARCH)models. In particular, we focus
on a stylized bi-variate (G)ARCH process with (possibly lagged) volatility spillovers from
{Xt} onto {Yt} of the form

Xt ∼ N(0, 1),

Yt|Xt ∼ N(0, 1 + aX2
t−τ ),

(11)

where a>0 is again tuning parameter and N(0, σ 2) denotes the zero-centered normal
distribution with variance σ 2.

The nomenclature and testing procedure are the same as for the VAR(1) process
described in Section 3.1. In the simulations we set a = 0.4 and we focus on a risky quantile
of γ = 0.95 but the results for alternative specifications are also available upon request. The
size-size and size-power results for selected nominal size levels can be found in Table 3.

The experiments on the (G)ARCH process confirm the first two findings reported in
Section 3.1, i.e. the limited directionality of the CoVaR and NCoVaR measures, and the
over-rejection bias of CoVaR-GC, although the latter seems to be somehow contained.
Regarding the power results, parametric CoVaR estimation is unable to detect the volatil-
ity spillovers generated by process in Equation (11), irrespective of the sample size. On the
contrary, NCoVaR and NCoVaR-GC still capture this type of dependence, however, the
power is considerably subdued compared to the VAR experiments, and it is also lower for
smaller samples. While the latter can be viewed as a small sample problem of nonparamet-
ric setups, such effects are relatively modest in our examples. For instance, for the nominal
level of α = 0.05, the power gains associated with nonparametric procedures are already
visible for n = 200.

The poor performance of CoVaRmeasures in (G)ARCH environment can be explained
by its methodological design. As argued by Mainik and Schaanning [23], CoVaR is a
correlation-driven measure. Having pointed this out, it misses any type of dependence in
the higher moments of the conditional variable distributions. To put it pragmatically, β̂ i

γ

estimates capture the average linear quantile effects between the variables of interest. In
the case of (G)ARCH (or volatility spillovers) processes, the left-tail effects are offset by
the right-tail equivalents, on average, which escalates the standard errors and reduces the
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Table 3. Performance summary of CoVaR and NCoVaR methodologies in (G)ARCH class of models for
selected nominal size levels (α).

Instantaneous dependence Granger causality

Size Power Size Power

α n CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR CoVaR NCoVaR

0.01 100 0.023 0.006 0.042 0.008 0.042 0.002 0.061 0.008
200 0.018 0.027 0.020 0.024 0.026 0.004 0.025 0.017
500 0.018 0.078 0.017 0.066 0.029 0.000 0.025 0.022
1000 0.009 0.146 0.018 0.120 0.015 0.005 0.011 0.065

0.05 100 0.061 0.080 0.088 0.086 0.096 0.028 0.129 0.070
200 0.043 0.118 0.062 0.116 0.066 0.026 0.073 0.109
500 0.045 0.235 0.062 0.229 0.086 0.029 0.063 0.158
1000 0.045 0.363 0.063 0.324 0.066 0.043 0.060 0.240

0.1 100 0.114 0.176 0.139 0.169 0.150 0.070 0.174 0.141
200 0.084 0.220 0.096 0.211 0.106 0.072 0.129 0.207
500 0.084 0.381 0.115 0.351 0.141 0.071 0.107 0.290
1000 0.091 0.505 0.105 0.485 0.108 0.083 0.117 0.380

Notes: Actual rejection rates under X → Y causality (power) and Y → X causality (size) for different sample sizes (n), gener-
ated under process in Equation (11) with instantaneous dependence (τ = 0) and with lagged dependence (τ = 1). The
quantile at which the risk is defined is set to γ = 0.95. We apply the MSE-optimal bandwidth and we set the fixed-range
parameter toμ = 0.8. The results are aggregated over 1000 simulations.

statistical power of the method. Under such circumstances, NCoVaR framework provides
a robust alternative.

4. Empirical illustration

To demonstrate the performance of NCoVaR and NCoVaR-GC we choose the Euro Area
(EA) financial environment. In particular, we investigate the feedback loops (after [24])
between sovereigns and banks in selected EA Member States. Feedback loops are of par-
ticular importance for policy makers and regulators as they serve as a shock transmission
channel during distress times. Banks, as key sovereign debt holders, are directly exposed
to debt valuation and sovereign risk. On the other side, sovereigns are implicit guarantors
of the banking sector and they took a huge hit on their debt accounts during the financial
and subsequent sovereign debt crises. In essence, the prices of both instruments showed a
high degree of co-movement in the recent history across different parts of the Europe [5].

The data used in the empirical analysis covers seven countries, i.e. two core EA Mem-
ber States: Germany and France, and five vulnerable EA Member States: Spain, Portugal,
Italy, Ireland andGreece. The Sovereign Price Index (SPI) is calculated from the price-yield
relation of a 1-year zero-coupon bond, on the basis of a generic 1-year sovereign bond
yield for each country. The Banking Price Index (BPI) is taken as the FTSE banking price
index for each country. SPI come from Bloomberg and BPI come from Datastream. The
missing observations are interpolated using linear interpolation technique but the results
fully hold when excluding themissing values.We focus on daily observations between Jan-
uary 1994 and September 2016, however, due to data availability the precise ranges differ
across countries. The exact coverage together with basic summary statistics are depicted
in Appendix G.

In the empirical analysis, we look at the log returns of respective variables.We also stan-
dardize the data magnitude by the standard normal transformation. The fixed-bandwidth
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are set to μ = 0.8 and the size-dependent window is chosen as indicated for the VAR(1)
process.

The goal of the exercise is to quantify the sovereign-bank feedback loops on the sample
countries and to compare theNCoVaRandNCoVaR-GCestimates against their parametric
CoVaR equivalents. The main results for γ = 0.95 are depicted in Table 4.6

It can be readily observed that the NCoVaR estimates are somehow more conserva-
tive than the CoVaR estimates. This finding holds for both quantile specifications as well
as across the variables and countries. In fact, this evidence is in line with our numerical
conclusion that the linear CoVaR framework over-rejects under the null (see 3 for more
detailed discussion). Looking at the results, the size of over-rejection is quite substan-
tial. They strongly suggest CoVaR-GC spillovers from sovereign onto banks in all sample
countries, with moderate support from NCoVaR-GC only in the case of Spain and Italy.
Consequently, we consider the CoVaR-GC results to be inconclusive.

Looking at the instantaneous NCoVaR results, we find evidence for feedback loops in
Spain and risk spillovers from sovereigns onto banks in Italy. NCoVaR-GC results appear
to confirm the directional dependence from sovereigns onto banks in both countries,
however, the spillovers from banks onto sovereigns in Spain disappear.

The parametric CoVaR results largely support the findings of simultaneous NCoVaR,
suggesting also further bi-directional effects in Portugal and bank-to-sovereign spillovers
in Greece.7 Overall, with the exception of Ireland, the exercise confirms the differences in
bank-sovereign feedback loops between vulnerable and core EA countries [24].

Interestingly, we find a surprisingly strong similarity between the CoVaR results and
the simple linear OLS regressions between the variables (the linear results are depicted in
Appendix G).We explain that by the proximity of bothmethodologies, which are designed
to capture the dependence in the first moments, due to the fact that the quantile regression
method puts a higher weight on central observations in estimating the tail co-dependence.

We also investigate the performance of both methodologies on two sub-samples, i.e.
during the global financial crisis and the sovereign debt crisis. Following a stylized time-
line given by St. Louis FED, we take that the former started on 27 February 2007 when
Freddie Mac announced that it would no longer buy the most risky sub-prime mortgages
and mortgage-related securities, and it finished on 13 April 2011 with the publication of
the final report on the key causes of the crisis by the US Senate Permanent Subcommit-
tee. Similarly, we assume that the sovereign debt crisis begun on 4 October 2009 with the

Table 4. Bank-sovereign feedback loops in selected euro area countries.

CoVaR NCoVaR CoVaR-GC NCoVaR-GC

X Y X → Y Y → X X → Y Y → X X → Y Y → X X → Y Y → X

Germany BPI SPI ***
France BPI SPI ***
Spain BPI SPI *** ** *** *** ** *** **
Italy BPI SPI *** *** ** *** *** *
Portugal BPI SPI *** *** *** ***
Ireland BPI SPI *** ***
Greece BPI SPI *** ** ***

Notes: BPI and SPI denote the Banking Price Index and Sovereign Price Index, respectively. Columns CoVaR and NCoVaR
denote the instantaneous specifications, whereas columns CoVaR-GC and NCoVaR-GC correspond to Granger causality
setups. ***, **, ** denote 1%, 5% and 10% significance levels. For NCoVaR and NCoVaR Granger causality tests we set
μ = 0.8. Risky quantiles are estimated at γ = 0.95.
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PASOK’s victory in the Greek Parliamentary elections, and lasted until the announcement
of the new economic recovery plan for Europe on 30May 2013. For transparency, the exact
results are depicted in Appendix G.

It turns out thatmany of the EAbank-sovereign dependencies, in particular in the crisis-
hit countries, are brought to light by the sovereign debt crisis. This somehow confirms
different characteristics and propagation mechanisms between the two crises, exempli-
fied by increased sovereign debt holdings of banking sectors in Spain, Italy, Portugal and
Ireland [3].

4.1. Extra controls

As a robustness check we tests whether the nonlinear dependencies between banks and
sovereigns found above can be explained by potential common-factor effects. As pointed
out in Section 2.5, Theorems 2.1 and 2.2 require higher-order kernel smoothing and slower
convergence rate of the bandwidth. In our example, we take the 4th-order Gaussian ker-
nel, allowing to include two extra conditioning variables, which makes the bandwidth
rates equal to n−1/6 for NCoVaR and n−1/7 for NCoVaR-GC.We take the bandwidth con-
stants consistent with the higher-order kernels and under the no-dependence condition
against extra co-variates. As common-factor benchmarks, we take the daily changes of the
USD/EUR exchange rate and the STOXX Europe 600 equity index. Both time series cover
the entire time span of the main variables of interest so that the number of observations
matches for each country. The conditioning densities are evaluated around the median of
the conditioning variables so that the results are indicative of the bank-sovereign depen-
dencies in the absence of substantial shocks in the extra control variables, which in our
example represent currency and equity markets.

The results are given in Table 5. The framework assumes γ = 0.95 but again the more
conservative quantiles confirm the main findings. It can be observed that both linear
CoVaR and CoVaR-GC vastly resemble the structure observed in the basic specification
in Table 4. However, the statistical significance of dependence between variables weakens
in the nonparametric results after controlling for the confounding variables. Again, the
CoVaR results are vastly similar to the evidence delivered by a standard linear framework
(see Appendix G for comparison).

The cross-sectional NCoVaRmeasure does suggest some evidence for a bank-sovereign
feedback loop in Italy. Yet, it seems that the dynamics behind the Spanish feedback loop
discovered in Table 4 is fully captured by the information present in the extra variables.
Similarly, NCoVaR-GC detects weak evidence for a bank-onto-sovereign risk spillovers in
Spain when conditioning for confounding variables.

The results indicate a clear difference how the parametric and nonparametric setups
incorporate extra information from the confounding variables. It seems that the former
remains intact whereas the latter is more agile. It may be that the extra information is
present at higher moments of distribution of the confounding variables, which may be dif-
ficult to be discovered by linear frameworks. Similarly, the linear and nonlinear results may
yield different predictive power. Although it is difficult tomeasure their exact performance,
it seems that the lagged CoVaR results are largely driven by the central observations, and
therefore deliver relatively less convincing results about the tail co-dependence. The exact
nature of these phenomena is, however, beyond the scope of this paper.
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Table 5. Bank-sovereign feedback loops in selected euro area countries correcting for common-factor
effects.

CoVaR NCoVaR CoVaR-GC NCoVaR-GC

X Y X → Y Y → X X → Y Y → X X → Y Y → X X → Y Y → X

Germany BPI SPI **
France BPI SPI **
Spain BPI SPI *** *** ** *** *
Italy BPI SPI *** *** * * **
Portugal BPI SPI *** *** *** ***
Ireland BPI SPI *** ***
Greece BPI SPI *** ** ***

Notes: BPI and SPI denote the Banking Price Index and Sovereign Price Index, respectively. Columns CoVaR and NCoVaR
denote the instantaneous specifications, whereas columns CoVaR-GC and NCoVaR-GC correspond to Granger causality
setups. ***, **, * denote 1%, 5% and 10% significance levels. For NCoVaR and NCoVaR Granger causality tests we setμ =
0.8. Risky quantiles are estimated at γ = 0.95.

5. Conclusions and discussion

NCoVaR and NCoVaR Granger causality (NCoVaR-GC) build a new methodological
framework to assess co-risk relations, designed to capture the possible nonlinear effects.
We derive the regular asymptotic properties of the NCoVaR tests and we confirm them
numerically. Importantly, the framework is able to capture risk dependencies even in highly
nonlinear environments, mimicking for instance volatility spillovers, which the standard
CoVaR methodology is unable to capture. Moreover, we demonstrate that the CoVaR-GC
measure is vulnerable to a false positive error.

We apply our methodology to assess the bank-sovereign co-risk relations in the Euro
Area (EA). Our findings suggest substantial differences between core and vulnerable EA
countries, as often highlighted in the literature [3,24]. The findings are preserved when
conditioning for common-factor effects, which include currency and equity markets’
dynamics. In particular, our findings suggest substantial instantaneous and lagged co-
movement between bank and sovereign asset returns in Spain, Italy, Portugal and Greece,
with negligible effects in Germany, France and Ireland. Furthermore, the evidence suggests
that the bank-sovereign co-risk spillovers were much stronger during the sovereign debt
crisis rather than during the global financial crisis, exemplifying a different nature between
the two.

The NCoVaR framework can be of great use for macroprudential policy makers. Our
extensive numerical and empirical studies suggest that NCoVaR tests provide more con-
servative estimates, compared to their parametric equivalents. In other words, standard
CoVaR estimates may overprice the co-risk relevance between given entities or asset
classes, possibly leading to inefficient allocation of macroprudential attention. To further
test these predictions, the NCoVaR and NCoVaR-GC may be extended in the directions
dictated by the semi-parametric extreme value theory.

The novel methodology reveals some intriguing phenomena on the nonlinear nature of
the co-risk relations. A tempting idea is to investigate the underlying structures analytically
in models of the aggregate economy. Such settings would allow to capture not only the risk
contribution of relevant sectors but also measure the dynamics of aggregate disturbances.
For practical applications, it would be also relevant to analyze algebraic similarities and
differences between CoVaR and NCoVaR. Finally, we would like to mention that, as one
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of the reviewers noted, Theorems 1 and 2 depend on the metric used, and it might be
worthwile to investigate the use of other metrics such as the Wasserstein distance.

Notes

1. Throughout the paper by causality we refer to causality in Granger’s sense.
2. While the new risk metric is formally denoted by �NCoVaR, for the ease of exposition we will

often skip the � symbol when talking about the concept rather than an exact formulation. We
will keep the � when refering to the specific metric though.

3. Note that we slightly abuse language here. Strictly speaking, we should call the resulting
estimators sample averages of kernel functions rather than U-statistics, since they are only
asymptotically unbiased.

4. An alternative approachwould be to estimate�CoVaR via amultivariateGARCHmodel. Under
the Gaussian case, the main difference between two techniques is that whereas in the quan-
tile regression case the estimate is proportional to the overall correlation between variables, the
multivariate GARCH estimate is proportional to the instantaneous correlation. Consequently,
neither method can capture the dependence structure which is not related to correlation, which
builds an argument for the �NCoVaR metric proposed herein.

5. We also carry out an extra simulation study on an example of a GARCH-BEKKmodel, which is
more widely applied by practitioners. The results are fully confirmed and desribed in detail in
Appendix E.

6. The results for γ = 0.99 are largely in line but their statistical significance is weaker. For trans-
parency reasons we do not report them in this paper but they are available from the authors
upon request.

7. The fact that CoVaR results are asymmetric for Greece is a result of its subdued sovereign debt
prices during the crisis period, which makes the SPI dynamics non-Gaussian. After removing
the outliers, the results are bi-directional, as expected.
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