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Dermatological problems are the most widely spread skin diseases amongst human beings. They can be infectious, chronic,
and sometimes may also lead to serious health problems such as skin cancer. Generally, rural area clinics lack trained
dermatologists and mostly rely on the analysis of remotely accessible experts through mobile-based networks for sharing the
images and other related information. Under such circumstances, poor image quality introduced due to the capturing device
results in misleading diagnosis. Here, a genetic-algorithm- (GA-) based approach used as an image enhancement technique
has been explored to improve the low quality of the dermatological images received from the rural clinic. The diagnosis is
performed on the enhanced images using convolutional neural network (CNN) classifier for the identification of the
diseases. The scope of this paper is limited to only motion blurred images, which is the most prevalent problem in capturing
of the images, specifically when any of the two (device or the object) may move unpredictably. Seven types of skin diseases,
namely, melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, vascular lesion, and
squamous cell carcinoma, have been investigated using ResNet-152 giving an overall accuracy of 87.40% for the blurred
images. Use of GA-enhanced images increased the accuracy to 95.85%. The results were further analyzed using a confusion
matrix and ¢-test-based statistical investigations. The advantage of the proposed technique is that it reduces the analysis time
and errors due to manual diagnosis. Furthermore, speedy and reliable diagnosis at the earliest stage reduces the risk of
developing more severe skin problems.

1. Introduction

Skin is the largest organ of the human body protecting us
against injuries, infections, and environmental hazards. In
clinical evaluation, it helps in the assessment of a patient’s
prime health status. Functioning of the liver, heart, and
immune system may be empirically estimated from the
analysis of the patient skin. Skin diseases are the most
prevalent among other health issues. Skin diseases are
generally categorized into degenerative, infectious, inflam-
matory, viral, and malignant [1]. Malignant skin diseases
such as psoriasis, eczema, and melanoma may lead to fatal

consequences if not timely diagnosed. Furthermore, the
increase in the cases of skin cancers has been reported
worldwide, especially in the United States. About 9,500
people per day in the U.S. are diagnosed with skin cancer [2].
Melanoma is the most common form of skin cancers. It is a
malignant tumor of melanocytes produced due to mutations
occurring within the skin [3]. The main cause of the oc-
currence of melanoma is the continuous high-intensity
exposure to Ultraviolet (UV) radiations. Sometimes, sun-
burns developed during childhood may increase the chances
of occurrence of the melanoma [4]. According to the sur-
veys, about 87110, 91270, and 192310 patients were reported
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to be suffering from melanoma in America during 2017,
2018, and 2019, respectively [5-7]. The American Cancer
Society has predicted that melanoma cases would rise to
100350 by the end of 2020 and will result in death of about
6,850 patients in America alone [3]. Similar cases have also
been reported in Australia and Europe [8, 9].

Accurate timely diagnosis of skin diseases can rarely be
achieved in rural areas due to poor availability of resources
including well-trained domain experts. In these areas, either
patients or their clinical samples are sent for diagnosis to the
experts in urban areas, which can be quite time consuming,
and sometimes, the delay may lead to serious problems. One
of the solutions for reducing the delay and enhancing the
accuracy of the diagnosis may be using mobile-based ap-
plications for capturing and sending the skin images to
experts in well-equipped catheterization labs in urban cities.

The problem associated with images of skin captured
using a mobile is that it introduces some blurredness, re-
ducing the capability of visual analysis. This can be tackled
by automatically enhancing and classifying the captured
images using nature-inspired evolutionary algorithms, such
as Genetic Algorithm (GA) and Convolution Neural Net-
works (CNNs), respectively. In this paper, GA has been
employed as a preprocessing technique for enhancing the
low-quality blurred dermatological images, followed by
CNN-based diagnosis or classification. Section 2 gives the
related work. Section 3 discusses the proposed methodology
for GA-based enhancement, CNN classifier, and the in-
vestigations carried out. Section 4 presents the results of the
investigations, and Section 5 is devoted to conclusions along
with the future work.

2. Related Work

This section includes relevant works in convolutional-
neural-network-based classification of skin lesions, image
blurring mechanisms, and genetic algorithm. CNNs are a
subset of neural networks using mathematical convolutional
operation instead of deriving parameters by simple multi-
plication as used in common neural network architectures.
CNNss use a multiple-layer approach for machine learning.
The concept of CNN was introduced by Krizhevsky et al. [9]
during investigations with the ILSVRC dataset for image
classification applications. In general, a CNN is a hierar-
chical neural network consisting of the convolutional layers,
pooling layers, and fully connected layers [10, 11], as shown
in Figure 1. CNNs have found their applications in various
fields, especially in dermatology [12-18].

Pixel-based seed segmented image fusion for automatic
detection and classification of melanoma was investigated by
Rehman et al. [19]. In the technique, contrast stretching,
fusion-based lesion segmentation, and multilevel feature
extraction followed by classification using support vector
machine were employed for melanoma classification with
accuracy above 90%. Similar work has been carried out by
Nasir et al. [20]. In [21], for localization and recognition of
skin cancer lesions, an automated Newton-Raphson-based
deep feature selection method with a deep learning model
has been reported. Classification accuracy using ISBI 2016
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and ISBI 2017 datasets was reported as 94.5% and 93.4%,
respectively.

Recently, Artificial Intelligence (AI), Computer Vision
(CV), Deep Learning (DL), Machine Learning (ML), and
particularly, convolution neural networks have been
employed successfully for identification and classification of
diseases from images obtained from different sources such as
MRYI, CT scan, ultrasound, and digital cameras [22-24]. The
main limitation of these techniques is the computational
complexity and requirement of a huge dataset for training.
Mostly available datasets are limited in size, and hence,
transfer-based learning is generally preferred. Another
problem with the medical images may be the distortions
introduced because of the variations in lighting conditions,
resolution of the acquiring devices, rotation angles, scaling,
and other manufacturer-dependent limitations of the cap-
turing devices. Some of these limitations may be compen-
sated by the use of preprocessing of the images obtained by
the various sources [25].

There are several types of blurring mechanisms present
in the optical system and the environment [26]. In blurred
images, the mechanism involves more than one blurring
basic submechanism. In most of the cases, the blurring can
be attributed to the undesired movement of the optical
system of the capturing devices. In [26], the authors have
conducted experiments with Gaussian blur filters and
concluded this method is better over other techniques such
as bilateral-filter-based methods. Investigations involving
depth-based blurring of images are reported in [27], and
blurring based on environmental parameters has been re-
ported in [28].

Classification of skin lesions using the CNN has been
successfully carried out by Yu et al. [29] taking dermoscopy
images of acral melanoma and benign nevi. A total of 724
images (350 acral melanoma) and (374 benign nevi) were
used in the investigations, giving an accuracy of more than
80% for the classification of the skin diseases. Zhang et al.
[30] reported more than 87% accuracy for classification of
seborrheic keratosis, psoriasis, melanocytic nevus, and basal
cell carcinoma using a dataset consisting of 1067 images.
Delibasis et al. [31] investigated a prefiltering-based skin
lesion characterization using deep transfer learning and
reported the enhancement in classification accuracy of
melanoma from 70% to 77%.

Preprocessing followed by neural-network-based clas-
sifier showed an accuracy of 95%. Sultana et al, using a
regularized discriminant CNN-based framework for mela-
noma, reported an accuracy of 73.8%, 98.5%, 68.8%, and
78.83% for four standard medical datasets (ISBI 2016, ISBI
2017, PH2, and MED-NODE) [32]. Alam et al. [33] reported
an identification accuracy of 80% for mild eczema and 93%
for severe eczema on the basis of texture using a severity
index tool. Accuracy more than 97% has been also reported
by Albahar [34] for the classification of the skin lesions using
binary regularized classifier. AlexNet, VGG, GoogLeNet,
and ResNet models have been successfully investigated for
the classification of skin lesions.

The accuracy of the classification of skin diseases is
highly dependent upon the quality of the input images.
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Several techniques such as unsharp masking, pyramid re-
combination, homomorphic filtering, dynamic histogram
equalization, multiscale adaptive histogram equalization,
wavelet, orthogonal, and homological transform techniques
have been attempted for the enhancement of input images
[35-37]. The main limitations of these techniques are dig-
itization effect, noise amplification, underenhancement, and
overenhancement. To compensate these limitations, opti-
mization techniques are used. They provide the optimum
solution out of all the possible outcomes. Genetic algorithm
(GA) is one of the best optimization approaches giving
promising results under multiple constraints. Introduced by
John Holland, GA mimics the process of biological evolution
of the nature discovered by Charles Darwin [38]. Since the
last decade, GA has been effectively used in image en-
hancement, feature extraction, segmentation, classification,
and image reconstruction [39].

The basic operations of GA are selection, crossover, and
mutation. In genetic algorithm, population is a set of
chromosomes, each indicating a possible solution to the
given problem. Each chromosome is associated with a fitness
function capable of ranking a particular solution against all
the available possibilities. The fitness score helps in the
selection of the individuals for reproduction. Selection is
analogous to the concept of the survival of the fittest. Various
techniques to implement selection are tournament, roulette
wheel, rank, and steady-state selections [38]. After applying
the selection operation, crossover randomly chooses two
chromosomes with predefined priorities. Mutation intro-
duces some random changes in the offspring chromosomes
to maintain the diversity in the solution space. The number
of iterations required for the final solution depends upon the

convergence of the intermediate results. GA is useful for
problem solving associated with huge and complex datasets.
The main advantage of GA is that it requires less prior
information about the problems to be solved [39].

Munteanu and Rosa [40] observed that better results
could be obtained using GA in comparison to other methods
such as histogram equalization and linear stretching. Su-
periority of GA has also been reported in [41] for the en-
hancement of natural images captured in poor lighting
conditions using ten randomly initialized DNAs over 1000
successive iterations, and a quality index of 0.2 was reported.
GA has also been used for developing an input-output re-
lation between their gray levels for enhancing the contrast of
the given images [42].

3. Proposed Methodology

Overall workflow of the proposed system for analysis and
diagnosis of dermatological diseases is shown in Figure 2. A
health worker at a rural clinic center captures the patient’s
skin lesion using some mobile application. The images are
transferred over the mobile network to the well-equipped
catheterization lab which may be situated in some urban
area. Prior to diagnosis using the CNN, the received images
are enhanced using GA-based algorithm as the quality of the
images may generally be low because of unpredictable errors
introduced at the rural clinic such as random movement of
the device or the patient. The classified images are sent to the
domain experts for analysis and report preparation. Fur-
thermore, the database is also updated as per the feedback
received from the experts, and the final analysis report is sent
to the rural clinic center. The CNN is retrained regularly in
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FIGURE 2: Proposed methodology architecture.

accordance with the updated information from the domain
experts. The scope of this paper is limited to investigations
related to GA enhancement capability and CNN classifi-
cation efficiency for accurate diagnosis of the skin disease.
For training, a publically available dataset (International
Skin Imaging Collaboration 2019 challenge) [43-45] has
been used. The dermatofibroma class from this dataset has
not been taken for investigations as it did not give satis-
factory results during preanalysis. To simulate the effect of
unpredictable movement caused by motion blurring using
(1), 589 test images were randomly taken from the dataset
such that each of the seven classes was adequately consid-
ered, as represented in Table 1.

h=f(Pml0) (1)

where h represents a set of filter coefficients to be used for
blurring by convolving it with the input image. The type of
relative motion of the capturing device is specified by p,,,, /
specifies the length of the motion, and 6 defines the angle of
motion in degrees in a counterclockwise direction [46]. The
value of length has been varied in the range 9 to 100 and that
of theta from 0 to 5 degrees.

For the GA-based investigations, these blurred test
images were used as input. The chromosome structure used
in GA enhancement with various parameters is shown in
Figure 3, where type specifies the filter, hsize refers to the

TaBLE 1: Detail of the images used for testing of the proposed
technique.

Classes No. of test images
Actinic keratosis 40
Basal cell carcinoma 128
Beningn keratosis 54
Melanoma 130
Melanocytic nevus 201
Squamous cell carcinoma 23
Vascular lesion 13
Total 589

filter size, radius represents the influential filter area, sigma
represents the standard deviation, and alpha represents the
Laplacian shape. The remaining parameters length and theta
have already been explained. Equivalent vector represen-
tation of these parameters is also shown in Figure 4.

An initial population of ten chromosomes was randomly
generated. Fitness value (or image quality) was calculated for
each chromosome. Naturalness image quality evaluator
(NIQE) has been used for intermediate quality assessment. It
evaluates the quality of the image based on the natural scene
statistics model [47]. Smaller score indicates better per-
ceptual quality. These fitness values obtained in each iter-
ation for every chromosome were sorted in descending
order. The length parameter of the chromosome was chosen
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FIGURE 3: Chromosome structure for GA-based image enhancement.

FIGURE 4: Vector representation of chromosome parameters.

as the crossover point for generating new offsprings. The
mating was carried out using random combinations of the
chromosomes from the whole population. For mutation, one
random candidate from the best 80% population was ran-
domly selected. The algorithm was run for about 1000
generations for each blurred image.

Overall, for investigating the classification accuracy
using the CNN (ResNet-152) [40], the blurred images given
to the GA as input and the corresponding enhanced one by
the GA were separately applied to the CNN for classification.
Quantification of the accuracy of classification of the CNN
was estimated using a confusion matrix and t-test-based
statistical analysis.

4. Experimental Results and Discussion

The quality of the original, motion-blurred dermatological
disease images and that of their intermediate images ob-
tained during GA-based processing has been discussed in

this section. The investigations showed that about 1000
generations are adequate for achieving satisfactory quality of
the blurred images. GA-enhanced and their corresponding
blurred image datasets were further sent to RESNET-152 for
their classification in their respective classes. Figures 5 to 11
show the results of GA-based enhancement for different
dermatological diseases.

The results for melanoma are presented in Figure 5. The
quality of the original image (Figure 5(a)) was obtained as
3.43, and that of the motion-blurred image (Figure 5(b))
using parameters (19, 3) was 5.06. After 55 iterations using
the GA approach, the image showed some improvement in
fitness score as 4.82. The adapted chromosome after these
generations was [7.00, 7.00, 5.00, 0.20, 0.50, 19.54, 2.89]. It
may be seen from the image (Figure 5(c)) that there is some
enhancement of the quality. After 75 iterations
(Figure 5(d)), the chromosome adapted to [8.00, 6.00,
10.00, 0.60, 0.50, 19.02, 2.98] leading to a fitness score value
of 3.50.
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FIGURE 5: Genetic-algorithm-based processing of dermatological images corresponding to the melanoma disease category taken from the
head region of a 35-year-old male subject: (a) the original image, (b) modified image using motion blurring with parameters (length = 19,
theta=3), (c) GA-processed image after 55 generations, (d) GA-processed image after 75 generations, and (e) GA processed image after 100

generations.

The investigations showed that, after 100 iterations
(Figure 5(e)), the quality stabilizes to 3.42 and the chro-
mosome to [3.00, 6.00, 10.00, 0.70, 0.20, 19.18, 3.00]. It may
be noted that the final fitness score approaches to the quality
of the original image, but the change from iteration to it-
eration is not appreciably visible in the processed images.

Analysis of melanocytic nevus is presented in Figure 6.
The quality of the original image (Figure 6(a)) was 2.78,
whereas that of the motion-blurred image (Figure 6(b))
using parameters (20, 1) was 5.30. The GA-based approach
showed negligible enhancement even after 25 iterations
(Figure 6(c)), and the quality score achieved was just 5.24.
The chromosome after these iterations was [7.00, 3.00, 4.00,
0.70, 0.10, 29.00, 0.00]. After 55 iterations (Figure 6(d)), the
chromosome adapted to [4.00, 5.00, 5.00, 0.30, 0.40, 20.65,
0.93], thus improving the image quality and generating a
fitness score value of 3.23. Further analysis after 100 gen-
erations (Figure 6(e)) showed that the image quality ap-
proaches to 2.77 which is almost the same as that of the
original image, and the chromosome generated for this it-
eration was [5.00, 6.00, 10.00, 0.10, 0.20, 20.39, 1.00].

The results for basal cell carcinoma are shown in Fig-
ure 7. The original image (Figure 7(a)) quality was 3.31, and
that of the motion-blurred image (Figure 7(b)) using pa-
rameters (19, 3) was estimated as 6.03. After 25 iterations,
very less improvisation is observed (Figure 7(c)) having a

fitness score of 5.41. The adapted chromosome was [4.00,
5.00, 2.00, 1.00, 0.20, 17.70, 2.97]. After 38 iterations
(Figure 7(d)), the chromosome modified to [5.00, 5.00, 4.00,
0.60, 0.10, 19.20, 3.05] and fitness score to 3.50. Investiga-
tions showed that, after 100 iterations (Figure 7(e)), the
quality becomes stable near to 3.41 and the chromosome to
[5.00 5.00, 4.00, 0.60, 0.10, 19.20, 2.97].

The results for actinic keratosis are presented in Figure 8.
The quality of the original image (Figure 8(a)) was obtained
as 3.49, and that of the motion-blurred image (Figure 8(b))
using parameters (16, 2) was 6.71. After 7 iterations
(Figure 8(c)), the image shows improvement in fitness score
giving it as 4.77 leading to a somewhat enhanced image, and
the chromosome adapted to [1.00, 7.00, 1.00, 0.40. 0.50,
16.00, 1.00]. It adjusted to [1.00, 7.00, 1.00, 0.40, 0.50, 16.00,
2.02] along with a fitness score of 3.54 after 20 iterations
(Figure 8(d)). After 100 iterations (Figure 8(e)), the quality
approaches to 3.50 and the chromosome to [1.00, 7.00, 1.00,
0.40, 0.50, 16.00, 2.00].

The results for benign keratosis are shown in Figure 9.
The original image (Figure 9(a)) quality was 3.58, and that of
the motion-blurred image (Figure 9(b)) using parameters
(16, 2) was 5.24. After 20 iterations, the image (Figure 9(c))
shows some improvement in the image giving a fitness score
of 4.66 and the chromosome was [7.00, 6.00, 9.00, 0.50, 0.10,
16.43, 1.32]. The chromosome adapted to [6.00, 5.00, 1.00,



Journal of Healthcare Engineering 7

(d) (e)

FIGURE 6: Genetic-algorithm-based processing of dermatological images corresponding to the melanocytic nevus disease category taken
from the lower extremity of a 10-year-old female subject: (a) the original image, (b) modified image using motion blurring with parameters
(length =20, theta=1), (c) GA-processed image after 25 generations, (d) GA-processed image after 55 generations, and (e) GA-processed
image after 100 generations.

(d) (e)

FIGURE 7: Genetic-algorithm-based processing of dermatological images corresponding to the basal cell carcinoma disease category taken
from the neck area of a 45-year-old female subject: (a) the original image, (b) modified image using motion blurring with parameters
(length =19, theta=3), (c) GA-processed image after 25 generations, (d) GA-processed image after 38 generations, and (e) GA-processed
image after 100 generations.
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(b)

(d) (e)

FIGURE 8: Genetic-algorithm-based processing of dermatological images corresponding to the actinic keratosis disease category taken from
the neck region of an 80-year-old male subject: (a) the original image, (b) modified image using motion blurring with parameters
(length = 16, theta =2), (c) GA-processed image after 7 generations, (d) GA-processed image after 20 generations, and (e) GA-processed
image after 100 generations.

(d) (e)

FIGURE 9: Genetic-algorithm-based processing of dermatological images corresponding to the benign keratosis disease category taken from
the anterior torso of a 55-year-old male subject: (a) the original image, (b) modified image using motion blurring with parameters
(length = 16, theta=2), (c) GA-processed image after 20 generations, (d) GA-processed image after 50 generations, and (e) GA-processed
image after 100 generations.
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(d)

FIGURE 10: Genetic-algorithm-based processing of dermatological images corresponding to the vascular lesion disease category taken from
the head region of a 75-year-old male subject: (a) the original image, (b) modified image using motion blurring with parameters (length = 15,
theta=2), (c) GA-processed image after 8 generations, (d) GA-processed image after 65 generations, and (e) GA-processed image after 100

generations.

0.90, 0.50, 16.77, 2.06] after 50 iterations (Figure 9(d)),
reaching to an image quality of 3.78. After 100 iterations
(Figure 9(e)), the quality stabilizes to 3.59 and the chro-
mosome to [6.00, 7.00, 1.00, 1.00, 0.30, 16.98, 2.00].

The results for vascular lesion are presented in Figure 10.
The quality of the original image (Figure 10(a)) was 2.99, and
that of the motion-blurred image (Figure 10(b)) using pa-
rameters (15, 2) was 5.60. After 8 iterations, the fitness score
obtained was 8.16 and the adapted chromosome was [6.00,
3.00, 1.00, 0.50, 0.30, 15.70, 0.00]. It may be noted that the
image shows almost negligible improvement (Figure 10(c)).
But, after 65 iterations (Figure 10(d)), the chromosome
modified to [6.00, 3.00, 1.00, 0.50, 0.30, 15.70, 2.10] giving a
score of 4.10. Further investigations showed that, after 100
iterations (Figure 10(e)), the quality stabilizes to 3.43 and the
chromosome to [1.00, 4.00, 7.00, 0.40, 0.50, 15.14, 1.93]. The
important point to note in this case is that the quality does
not stabilize within 100 iterations but takes several more
iterations to become satisfactory.

The results for squamous cell carcinoma are shown in
Figure 11. The quality of the original image (Figure 11(a))
was 3.86, and that of the motion-blurred image
(Figure 11(b)) using parameters (20, 1) was 5.63. After 30
iterations, the image (Figure 11(c)) shows no significant
improvement, but after 50 iterations (Figure 11(d)), the
fitness score settles around 3.50 with the chromosome vector
near [1.00, 5.00, 1.00, 0.80, 0.20, 20.83, 0.91]. After 100 it-
erations (Figure 11(e)), the quality further improves, giving
the score of 3.42 along with the chromosome vector of [3.00,
6.00, 10.00, 0.70, 0.20, 19.18, 3.00]. The analysis shows that

the proposed method efficiently improves the quality of the
motion-blurred images.

The analysis based on confusion matrices (Figures 12
and 13) also supports this conclusion as the diagonal ele-
ments in the GA-enhanced matrix (Figure 12) are greater
than the corresponding elements in the motion-blurred
matrix (Figure 13), indicating superiority of the proposed
technique.

The results of CNN-based classification are presented in
Tables 2 and 3. The results have also been graphically
represented in Figures 14 and 15. Table 2 lists the individual
class accuracy. The classification accuracy for GA-processed
images varies from 84.62% (vascular lesion) to 99.50%
(melanocytic nevus). In case of blurred images, the maxi-
mum accuracy (96.88%) was obtained for basal cell carci-
noma and minimum (60.87%) for squamous cell carcinoma.
Relatively more standard deviation, i.e., 11.86, was obtained
for blurred images in comparison to 5.97 for GA-enhanced
images around their mean values of 82.35 and 93.65, re-
spectively. The reasons of the variations in the classification
accuracy may be due to less number of available images for a
particular disease or similarity among the visual patterns of
the diseases.

Table 3 presents the overall classification accuracy of the
CNN, and the same is graphically represented in Figure 15.
The overall accuracy is defined as the ratio of correctly
classified images to the total number of input images [39].

For estimating statistical significance, two-tailed paired
t-test analysis was also carried out, as in Table 3, with the
following hypothesis.
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(d)

(e)

FIGURE 11: Genetic-algorithm-based processing of dermatological images corresponding to the squamous cell carcinoma image category
taken from the head region of an 80-year-old female subject: (a) the original image, (b) modified image using motion blurring with
parameters (length = 20, theta = 1), (c) GA-processed image after 30 generations, (d) GA-processed image after 50 generations, and (e) GA-

processed image after 100 generations.
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FiGure 12: Confusion matrix for GA-enhanced images. The true
class type is shown along the Y-axis and the predicted one along the
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example, 4 in (4, 5) represents that the disease melanoma is
predicted incorrectly as melanocytic nevus in 4 test cases out of 130
total images in the melanoma class.
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TaBLE 2: Classification accuracy of the individual classes (%).

Images
Classes
GA enhanced Blurred
Melanoma 94.62 91.54
Melanocytic nevus 99.50 87.56
Basal cell carcinoma 99.22 96.88
Actinic keratosis 92.50 77.50
Benign keratosis 98.15 85.19
Vascular lesion 84.62 76.92
Squamous cell carcinoma 86.96 60.87
TaBLE 3: Overall classification accuracy of the GA-enhanced and motion-blurred images (%).
Images Overall accuracy
GA enhanced 95.85
Motion blurred 87.40
100
80
60
40
20
0
Melanoma Melanocytic Basal cell Actinic Benign Vascular ~ Squamous
nevus carcinoma  keratosis  keratosis lesion cell
carcinoma
B GA-enhanced images
B Motion-blurred images
FiGure 14: Classification accuracy of the individual classes (%).
100 Null hypothesis (i.e., the mean of GA-enhanced and
blurred images is the same):
80 Hy: py—py =0. (2)
60 Alternate hypothesis (i.e., significant enhancement has
been introduced by the proposed technique):
40
H,:yu, —u,>0. (3)
20 The sample mean d =11.30, standard deviation s=8.13,
0 sample size n="7, degree of freedom df =6, and the t value

3.68. As the p value (0.005) comes out to be less than the
significance level (0.05), the null hypothesis gets rejected
leading to the conclusion that the proposed technique is

F1GuRre 15: Overall classification accuracy of the GA-enhanced and significantly effective for enhancing the input dermatological
motion-blurred images (%). images

B GA-enhanced images
B Motion-blurred images
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5. Conclusions and Future Work

An automated image enhancement followed by a CNN-
based skin lesion diagnosis has been implemented and
investigated for applications in resource-poor environ-
ments such as rural areas. Investigations showed the
ResNet-152-based system is able to enhance the classifi-
cation accuracy from 87.40% to 95.85% when GA-en-
hanced images are used for diagnosis. The GA-based
enhancement was able to improve the blurred images to a
satisfactory level. Use of additional datasets and imple-
mentation of the complete system for rural areas is on our
future plan.

This work is licensed under a Creative Commons At-
tribution 4.0 International License, which permits unre-
stricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
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