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microRNA-146a promotes 
mycobacterial survival in 
macrophages through suppressing 
nitric oxide production
Miao Li1,2,*, Jinli Wang1,2,3,*, Yimin Fang4, Sitang Gong1, Meiyu Li1,2, Minhao Wu1,2, 
Xiaomin Lai2, Gucheng Zeng2, Yi Wang1,2, Kun Yang1,2 & Xi Huang1,2

Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated 
by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was 
markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the 
biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both 
in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress 
the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting 
mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production 
and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and 
mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed 
iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression 
and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-
mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a 
novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing 
NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis.

Tuberculosis (TB) is still a leading public health threat worldwide with high morbidity and mortality1. In 2014, 
World Health Organization reported that an estimated 9.0 million incident cases of TB occurred, with 1.5 million 
deaths caused by the disease2. Mycobacterium tuberculosis (MTB) is the causative agent responsible for TB, and 
infects approximately one-third of the human population globally. However, only about 10% of infected individ-
uals develop active TB, while the remaining 90% cases exhibit latent infection, indicating a critical role of the host 
immunity in the containment of MTB infection3.

Macrophages act as the first line of host immune defense against MTB4. The infectious bacilli are inhaled as 
aerosol particles, and phagocytosed by resident macrophages. Invading MTB are recognized by macrophages 
through pattern-recognition receptors (PRRs), which trigger innate immune defense, and subsequently initiate 
adaptive immune responses to pathogenic MTB5–7. During TB infection, Toll-like receptors (TLRs) are involved 
in host innate recognition of MTB8–11. Engagement with cognate ligands activates the TLR signaling pathway via 
the adaptor myeloid differentiation primary response gene 88 (MyD88)12. Sequentially, tumor necrosis factor 
(TNF) receptor-associated factor 6 (TRAF6) relays MyD88-dependent TLR signaling and leads to the activation 
of downstream nuclear factor kappa B (NF-κ B) and mitogen-activated protein kinases (MAPKs, including JNK, 
ERK and p38) pathways13, which ultimately results in the production of inflammatory cytokines and direct anti-
microbial mediators, such as TNF and nitric oxide (NO)14.
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The role of NO in macrophage-mediated anti-mycobacterial defense has been well characterized in 
mouse model of TB7,15. In macrophages, NO is generated by inducible nitric oxide synthase (iNOS)-mediated 
metabolism of amino acid L-arginine16. Several lipoproteins from MTB stimulate TLR-dependent transcrip-
tion of iNOS and subsequent production of NO in macrophages, which kills intracellular MTB directly17,18. 
Deficiency of iNOS renders mice highly susceptible to MTB infection with high mycobacterial burden and 
decreased survival19. In addition, inhibition of iNOS in human alveolar macrophages from TB patients abol-
ishes the macrophage-mediated anti-mycobacterial activity in vitro20. These studies establish a critical role of 
iNOS-mediated NO production in host defense against MTB. In macrophages, the expression of iNOS is mainly 
regulated at the transcriptional level15. Microbial products, pro-inflammatory cytokines and interferons are pro-
totypical inducers of iNOS15. These factors trigger NF-κ B, MAPK or signal transducer and activator transcription 
1 (STAT1) pathways, which initiate the transcription of iNOS gene in macrophages16,21. Nevertheless, whether 
microRNAs (miRNAs) regulate iNOS expression and NO production during innate immune response remains 
largely unknown.

miRNAs are small non-coding RNAs that control gene expression in diverse biological processes, such as 
proliferation, differentiation and immune response22. Through targeting 3′ UTR of mRNA, miRNAs result in deg-
radation of transcripts or repression of translation23. To date, several miRNAs have been reported to participate in 
the regulation of host immunity to MTB infection24. Our previous study reveals that several miRNAs are induced 
in macrophages during MTB infection, including miR-155, miR-146a and miR-13225. Mycobacteria-induced 
miR-155 targets Ras homolog enriched in brain (Rheb) to enhance autophagy in macrophages, which, in turn, 
promotes elimination of intracellular bacilli26. In lymphocytes, miR-29 has been reported to be a suppressor of 
IFN-γ  production by directly targeting its mRNA, thus facilitating the survival of MTB and other intracellu-
lar pathogens27. In patients with active TB, miR-582-5p is up-regulated and reduces MTB-induced apoptosis of 
monocytes by targeting FOXO128. However, it remains unclear whether mycobacteria-triggered miRNAs regulate 
NO-mediated bacterial clearance.

In the present study, we sought to investigate the potential role of miR-146a in host immune defense against 
mycobacteria. Our data demonstrated, for the first time, that mycobacteria-induced miR-146a repressed iNOS 
expression and NO production in macrophages, which facilitated mycobacterial survival. Moreover, miR-146a 
suppressed NF-κ B and MAPKs pathways by targeting TRAF6, thus inhibiting iNOS expression. These findings 
unravel a novel regulatory mechanism of anti-mycobacterial response by miRNA, and may provide a promising 
therapeutic target for TB.

Results
M. bovis BCG infection induces miR-146a expression both in vitro and in vivo.  To explore the 
expression of miR-146a during mycobacterial infection, murine primary BMDMs and macrophage-like cell 
line RAW264.7 were challenged with M. bovis BCG. Real-time PCR was used to determine the expression level 
of miR-146a. We found that the expressions of miR-146a in BCG-infected BMDMs increased in a time- and 
dose-dependent manner (Fig. 1a,b). The level of miR-146a in BMDMs at 72 h post-infection was about 6-fold 
higher than that in uninfected control (Fig. 1a). Similarly, miR-146a expressions were elevated in RAW264.7 
cells after BCG challenge (Fig. 1c,d). More than 20-fold increase in miR-146a expression was observed in BCG-
challenged RAW264.7 cells at 72 h post-infection compared to uninfected cells (Fig. 1c). Together, these results 
indicated that BCG infection induced miR-146a expression in murine macrophages.

To further determine the expression pattern of miR-146a after mycobacterial infection in vivo, we challenged 
C57BL/6 mice with M. bovis BCG intraperitoneally for 7 days, and tested miR-146a expression in lungs, spleens, 
livers and peritoneal lavage fluid with real-time PCR. The expression of miR-146a was up-regulated in peritoneal 
lavage fluid and down-regulated in livers of BCG-infected mice, while no significant increase was detected in 
either spleens or lungs (Fig. 1e). These results suggested induction of miR-146a in local infection site but not in 
remote organs.

Moreover, we investigated the signaling pathway involved in miR-146a induction during mycobacterial infec-
tion. The adaptor MyD88 of TLRs is critical for innate recognition of invading mycobacteria29. Therefore, we 
knocked down MyD88 with RNAi technique and examined the expression level of mycobacteria-induced miR-
146a. Silencing MyD88 expression decreased miR-146a expression by 50% approximately (Fig. 1f). Since previous 
study revealed transcription factor NF-κ B binding site in the promoter of miR-146a30, we next tested the hypoth-
esis that NF-κ B mediated the transcription of miR-146a after BCG infection. Pharmacological inhibition of 
NF-κ B signaling reduced miR-146a expression in mycobacteria-challenged macrophages (Fig. 1g). These results 
suggested that the induction of miR-146a during mycobacterial infection was dependent on MyD88-NF-κ B sig-
naling pathway.

miR-146a promotes mycobacterial survival in macrophages.  To investigate the role of miR-146a 
in host defense against mycobacterial infection, macrophages were overexpressed with chemically synthetic 
miR-146a mimic, and the phagocytosis and the survival of mycobacteria were examined. RAW264.7 cells were 
transiently transfected with control or miR-146a mimic, followed by BCG infection. Real-time PCR showed 
that miR-146a levels increased dramatically after mimic transfection, confirming the efficacy of overexpression 
(Fig. 2a). miR-146a mimic-transfected RAW264.7 cells were challenged with Texas Red-labeled BCG, and flow 
cytometry was performed to measure the phagocytosis of mycobacteria in macrophages. Our results showed that 
overexpression of miR-146a had no major effect on the phagocytosis of BCG (Fig. 2b). Furthermore, to deter-
mine whether miR-146a regulates the clearance of mycobacteria in macrophages, miR-146a mimic-transfected 
RAW264.7 cells were challenged with BCG, and the viability of BCG was tested by colony-forming unit (CFU) 
assay. CFU data showed that the survival of BCG increased in miR-146a-overexpressed RAW264.7 cells at 24 h 
and 48 h post-infection (Fig. 2c), suggesting an inhibitory role of miR-146a in host defense against mycobacteria.
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Moreover, inhibitor was used to antagonize endogenous miR-146a to validate its role in mycobacterial 
infection. When specific inhibitor was transfected into RAW264.7 cells, the level of induced miR-146a was dra-
matically reduced after BCG challenge (Fig. 2d). Consistent with mimic results above, inhibition of miR-146a 
enhanced mycobactericidal activity of RAW264.7 cells (Fig. 2f), while had no effect on phagocytosis of myco-
bacteria (Fig. 2e). Collectively, these results suggested that miR-146a decreased macrophage-mediated killing of 
mycobacteria.

Mycobacteria-induced miR-146a impairs iNOS expression and NO production by inhibiting 
NF-κB and MAPKs pathways.  To elucidate the underlying mechanism for miR-146a-mediated inhibi-
tion of mycobactericidal activity in macrophages, we tested the effect of miR-146a on iNOS expression and NO 
production, which is a well-characterized anti-mycobacterial mechanism. RAW264.7 cells were transfected with 
control or miR-146a mimic followed by BCG challenge, and the expression of iNOS and the production of NO 

Figure 1.  The expression of miR-146a were up-regulated after mycobacterial infection both in vivo and  
in vitro. Murine BMDMs (a,b) or RAW264.7 cells (c,d) were infected with M. bovis BCG at an MOI of 5 for the 
indicated time (a,c) or at the indicated MOIs for 24 h (b,d). Peritoneal lavage fluid and different organs were 
collected from BCG-infected or PBS-treated mice (n =  5).The expression levels of miR-146a were measured by 
real-time PCR (e). RAW264.7 cells were transfected with siRNA targeting MyD88 (f) or pretreated with IKKα /β  
inhibitor (BMS345541) (g), followed by BCG infection. The mRNA levels of MyD88 and miR-146a were 
measured by real-time PCR (f,g). Data are shown as mean ±  s.e.m. of three independent experiments. *p <  0.05; 
**p <  0.01; ***p <  0.001; NS, no significance.
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were examined by real-time PCR and Griess assay, respectively. Overexpression of miR-146a mimic reduced 
iNOS mRNA expression (Fig. 3a) and NO production (Fig. 3b) in BCG-challenged RAW264.7 cells. Consistently, 
when endogenous miR-146a was inhibited, both iNOS mRNA level and NO production increased in RAW264.7 
cells (Fig. 3c,d). In addition, autophagy pathway was examined in miR-146a-transfected macrophages, which is 
another antimicrobial mechanism during mycobacterial infection. We found that miR-146a had no major effect 
on autophagy (data not shown).

To determine the mechanism by which miR-146a suppressed iNOS expression, we examined the activation of 
upstream NF-κ B and MAPKs (including ERK, JNK and p38) pathways. Resting NF-κ B distributes in cytoplasm, 
while activated NF-κ B subunits form dimers and translocate into nucleus to initiate the transcription of target 
genes. Therefore, we extracted proteins from nuclei and cytoplasm, and examined the protein levels of NF-κ B 
p65 subunit in both compartments to determine the activation of the pathway. Western blot result showed that 
miR-146a inhibited nuclear accumulation of NF-κ B p65, suggesting inhibition of NF-κ B activation (Fig. 3e). 
Moreover, we observed attenuated nuclear translocation of NF-κ B p65 in miR-146a-overexpressed cells using 
confocal microscopy (Fig. 3f). The activation of the MAPKs signaling pathways in miR-146a-transfected cells 
was detected by Western blot after BCG infection. The result showed that the phosphorylation of JNK and p38 
in BCG-infected RAW264.7 cells were decreased after miR-146a mimic transfection (Fig. 3g). However, there 
was no major difference in ERK phosphorylation between cells transfected with control and miR-146a mimics 
(Fig. 3g). Furthermore, iNOS expression and NO production were examined in BCG-challenged macrophages 
when NF-κ B and MAPK signaling were blocked with small molecule inhibitors. We found that inhibition of 
IKKα /β , JNK or p38 MAPKs in macrophages reduced both iNOS expression (Fig. 3h) and NO production 
(Fig. 3i) after BCG infection. Notably, blocking NF-κ B pathway with IKKα /β  inhibitor decreased NO produc-
tion by 90%, suggesting a dominant role of NF-κ B pathway in NO production during mycobacteria infection. 
Collectively, these data suggested that miR-146a impaired BCG-induced iNOS expression and NO production in 
macrophages by inhibiting NF-κ B, JNK and p38 MAPKs pathways.

miR-146a represses TRAF6 expression post-transcriptionally to inhibit iNOS expression.  To 
identify the specific target of miR-146a that modulated NO production, bioinformatics analysis was performed 
with TargetScan (http://www.targetscan.org). We found that TRAF6, which locates upstream of NF-κ B and 
MAPKs pathways, displayed a potential evolutionarily-conserved seed match for miR-146a in its 3′ UTR (Fig. 4a). 

Figure 2.  miR-146a promotes the survival of M. bovis BCG in macrophages. RAW264.7 cells were 
transfected with miR-146a mimic (a–c) or inhibitor (d–f) for 24 h, followed by BCG infection. The relative 
expression levels of miR-146a were determined by real-time PCR (a,d). Phagocytosis of Texas Red-labeled BCG 
was detected by flow cytometry (b,e). Mycobacterial viability was determined by CFU assay, and the survival 
was expressed as a percentage of the control (c,f). Data are shown as mean ±  s.e.m. of three independent 
experiments. *p <  0.05; **p <  0.01; ***p <  0.001; NS, no significance.

http://www.targetscan.org
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Previous study reported that virus-induced miR-146a targeted TRAF6, and negatively regulated antiviral path-
way31. To confirm whether miR-146a targeted TRAF6 during mycobacterial infection, we examined TRAF6 
expression in RAW264.7 cells transfected with control or miR-146a mimic. As expected, miR-146a did not alter 
mRNA level of TRAF6 (Fig. 4b), but substantially reduced TRAF6 protein levels at 24 h and 48 h post-infection 
(Fig. 4c).

To further determine whether TRAF6 was directly involved in regulating iNOS expression and NO produc-
tion during BCG infection, we silenced TRAF6 expression with siRNA in RAW264.7 cells. Two siRNAs with 
different target sequences were used to knockdown TRAF6 expression, and the efficacy of each siRNA was con-
firmed with both real-time PCR (Fig. 4d) and Western blot (Fig. 4e). Silencing TRAF6 decreased iNOS expression 
in BCG-challenged RAW264.7 cells (Fig. 4f). In accordance, TRAF6-knockdown cells produced less NO upon 
BCG infection (Fig. 4g). Together, our data suggested that BCG-induced miR-146a suppressed TRAF6 expres-
sion, which resulted in impairment of iNOS expression and NO production.

Figure 3.  Mycobacteria-induced miR-146a impairs iNOS expression and NO production by inhibiting 
NF-κB and MAPKs pathways. RAW264.7 cells were transfected with miR-146a mimic or inhibitor for 24 h, 
followed by BCG infection (a–d). The mRNA levels of iNOS (a,c) and NO production (b,d) were measured by 
real-time PCR and Griess assay, respectively. The protein level of NF-κ B p65 subunit in nucleus was detected 
by Western blot (e) and confocal microscopy (f). Arrows indicate NF-κ B p65 accumulation in nucleus (f). 
Scale bar, 5 μm. The phosphorylation of ERK, JNK and p38 were determined by Western blot (g). RAW264.7 
cells were pretreated with inhibitors for IKK, JNK or p38 for 1 h, followed by BCG infection. The mRNA levels 
of iNOS (h) and NO production (i) were measured by real-time PCR and Griess assay, respectively. Data 
are shown as mean ±  s.e.m. of three independent experiments. *p <  0.05; **p <  0.01; ***p <  0.001, NS, no 
significance.
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Overexpression of TRAF6 reverses miR-146a-mediated inhibition of NO production and clear-
ance of mycobacteria.  Furthermore, we explored whether overexpression of TRAF6 could restore NO 
production and BCG clearance in miR-146a-overexpressed macrophages. RAW264.7 cells were co-transfected 
with control or miR-146a mimics, together with empty vector or TRAF6 plasmid. Western blot data showed 
that overexpression of miR-146a decreased TRAF6 expression, but co-transfection of TRAF6 plasmid recov-
ered its expression (Fig. 5a). Consistent with data above, both iNOS expression and NO production were sup-
pressed by miR-146a in RAW264.7 cells co-transfected with empty vector (Fig. 5b,c). However, when TRAF6 
were overexpressed, miR-146a failed to inhibit either iNOS expression or NO production (Fig. 5b,c). CFU assay 
showed that the viability of BCG was increased in miR-146a-transfected RAW264.7 cells (Fig. 5d). Nevertheless, 

Figure 4.  miR-146a represses TRAF6 expression post-transcriptionally to inhibit iNOS expression. 
Sequence of miR-146a and its predicted binding with the TRAF6 3′ UTRs of different species are shown (a). 
The mRNA (b) and protein (c) levels of TRAF6 in control or miR-146a mimic-transfected RAW264.7 cells 
were measured by real-time PCR and Western blot, respectively. RAW264.7 cells were transfected with negative 
control siRNA (siNC), TRAF6 siRNA-1or siRNA-2, followed by BCG infection for 24 h. The mRNA and 
protein levels of TRAF6 were examined (d,e). The mRNA expression level of iNOS (f) and the nitrite level (g) 
were measured by real-time PCR and Griess assay, respectively. Data are shown as the mean ±  s.e.m. of three 
independent experiments. *p <  0.05; ***p <  0.001, NS, no significance.

Figure 5.  Overexpression of TRAF6 reverses miR-146a-mediated inhibition of NO production and BCG 
clearance. RAW264.7 cells were co-transfected with control or miR-146a mimic together with empty vector 
or TRAF6 plasmid for 24 h. The expression levels of TRAF6 were determined by Western blot (a). RAW264.7 
cells were co-transfected with mimics and plasmids as described above, followed by BCG infection for 24 h. 
The mRNA expression level of iNOS (b) and the nitrite level in the culture supernatant (c) were measured by 
real-time PCR and Griess assay, respectively. Mycobacterial viability was determined by CFU assay, and survival 
was expressed as a percentage of the control (d). Data are shown as the mean ±  s.e.m. of three independent 
experiments. *p <  0.05; **p <  0.01; ***p <  0.001, NS, no significance.
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overexpression of TRAF6 abolished miR-146a-mediated enhancement of mycobacterial survival in macrophages 
(Fig. 5d). Together, these data indicated that BCG-induced miR-146a targeted TRAF6 to repress iNOS expression 
and NO production, thus increased the survival of BCG in macrophages.

Discussion
miRNAs have been demonstrated to play an essential role in host response to intracellular mycobacteria32. 
Nevertheless, whether miRNAs regulate NO-mediated anti-mycobacterial defense remains largely unknown. The 
present study reveals a novel role of miR-146a in regulating iNOS expression and NO production in macrophages 
upon M. bovis BCG infection. Our data show that miR-146a impairs NF-κ B, JNK and p38 MAPKs signaling acti-
vation by targeting TRAF6, resulting in an inhibition of NO production and BCG killing. These findings provide 
a better understanding of miR-146a in regulation of host innate defense against mycobacteria.

Emerging evidence has shown that miR-146a expresses in multiple cell types, and closely relates to inflamma-
tion, antiviral response and adaptive immunity33. Several microbial infections can up-regulate miR-146a expres-
sion. Either Dengue virus or Enterovirus 71 infection can induce significant increase in miR-146a expression 
in human monocytes34,35. Moreover, a previous study shows that miR-146a expression is up-regulated in mac-
rophages after Listeria monocytogenes infection36. In this study, we show that miR-146a expression is enhanced 
dramatically after M. bovis BCG infection in murine primary macrophages and macrophage-like cell line in a 
time- and dose-dependent manner. Previous miRNA microarray studies reveal altered expression of miR-146a 
during MTB infection. For instance, miR-146a expression is down-regulated in mononuclear cells obtained from 
peripheral blood of TB patients37. The discrepancy in miR-146a expression between our findings in macrophages 
and others in peripheral blood mononuclear cells (PBMCs) may be due to difference in cell types, since PBMCs 
are composed of T cells, B cells, NK cells, monocytes, etc. These immune cells probably exhibit different expres-
sion pattern of miR-146a during mycobacterial infection, which needs further investigation. In line with this 
notion, mycobacteria-infected mice in our study showed no increase in miR-146a expression in splenocytes 
which also include various cell types. Liu et al. have reported that the expression of miR-146a decreases in alveolar 
macrophages of TB patients, but increases in M. bovis BCG-infected THP-1 cells38. These data revealed different 
expression patterns of miR-146a between ex vivo and in vitro macrophages. While bacilli stimulate macrophages 
directly during in vitro challenge, ex vivo alveolar macrophages isolated from bronchial lavage fluid might not be 
invaded by MTB. In the later setting, the expression of miR-146a in alveolar macrophages may be regulated by 
lung microenvironment rather than triggered by bacilli.

The critical role of miR-146a in modulation of innate immunity has been extensively investigated. For 
instance, virus-induced miR-146a negatively modulates retinoic acid inducible gene I (RIG-I)-like receptor path-
way, thus impairs innate antiviral response31. miR-146a suppresses TLR signaling and is critical for LPS-induced 
tolerance in monocytic THP-1 cells39. Aberrant expression of miR-146a results in the age-associated dysfunction 
of macrophages, which loss responsiveness to LPS40. Nevertheless, the function of miR-146a during bacterial 
infection remains ill-defined. Recently, Li et al. demonstrate that miR-146a increases mycobacterial replication 
by decreasing pro-inflammatory cytokines production in murine macrophages41. Another study also shows that 
miR-146a attenuate M. bovis BCG-induced TNF-α  production in human monocytic THP-1 cells38. In our study, 
we find that miR-146a facilitates the survival of BCG by inhibiting the NO generation in macrophages. Therefore, 
miR-146a functions in distinct signal pathways and exerts diverse effects in macrophages during mycobacterial 
infection.

Due to diversity of targets, several lines of evidence supports that miR-146a is a multifunction molecule in 
regulating immune response. For example, miR-146a is prevalently expressed in regulatory T cells, and is crit-
ical for their suppressive activity on Th1 responses by targeting STAT142. During inflammatory response, miR-
146a inhibits NF-κ B RelB subunit expression and controls the amplitude of the Ly-6Chi monocyte response43. 
Moreover, miR-146a acts as a negative regulator of TLR signaling by targeting TRAF6 and IRAK44. Consistently, 
our findings indicate that miR-146a inhibits expression of TRAF6 at post-transcriptional level, and modulates 
the iNOS expression and NO production during mycobacterial infection. While TRAF6 overexpression abol-
ished miR-146a-induced suppression of iNOS expression and NO generation, miR-146a-mediated inhibition 
of mycobacterial clearance was not completely reversed by TRAF6 overexpression. This finding suggests that 
miR-146a may play a minor antimycobacterial role independent of TRAF6-mediated NO production. In accord-
ance with this notion, a recent study revealed that miR-146a could target prostaglandin-endoperoxide synthase 
2 (PTGS2) to disrupt the killing of intracellular mycobacteria38. Therefore, miR-146a negatively regulates host 
defense against bacterial infection by targeting various genes.

The NO production is precisely regulated by several factors at both transcriptional and post-transcriptional 
levels15. Recent studies reveal fine-tuning of iNOS expression by miRNAs. miR-939 and miR-26a are reported 
to directly interact with the 3′ -UTR of iNOS mRNA in hepatocytes45 and T cell lymphoma46, respectively. In 
LPS-stimulated murine macrophages, miRNA-155 negatively regulates suppressor of cytokine signaling 1 
(SOCS1) expression, leading to enhancement of STAT1 signaling and up-regulation of the iNOS expression indi-
rectly47. Previously, macrophages from TRAF6-deficient mice have been reported to fail to induce the activation 
of NF-κ B and MAPKs pathways and the expression of pro-inflammatory cytokines in response to TLR ligands 
stimulation13. Besides, during mycobacterial infection, NF-κ B and MAPKs signaling pathways mediate induc-
tion of iNOS expression. In accordance, we show that TRAF6 expression is inhibited by miR-146a, which in turn 
impairs NF-κ B and MAPKs signaling activation, thus negatively regulating iNOS gene expression indirectly.

In summary, the present study indicates that miR-146a is induced in macrophages in response to mycobacte-
rial infection. Inducible miR-146a attenuates iNOS expression and NO production in macrophages by targeting 
TRAF6, thus dampening host defense against intracellular bacteria. Our study unravels a crucial role of miR-146a 
in NO generation and mycobacterial elimination, which may provide better understanding of the pathogenesis of 
TB and useful information for developing potential therapeutic interventions against the disease.
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Methods
Ethics statement.  All experimental protocols were approved by Sun Yat-sen University. The methods used 
in this study were carried out in accordance with the approved guidelines. All animal experiments were approved 
by the Animal Ethics Committee of Sun Yat-sen University and performed in accordance with the guidelines of 
Animal Care and Use of Sun Yat-sen University.

Reagents.  Middlebrook 7H10 agar and Middlebrook 7H9 broth medium were purchased from BD Difco 
Laboratories (Sparks, MD). Texas Red dye was obtained from Invitrogen (Carlsbad, CA). Antibodies against 
NF-κ B p65 (sc-109), Lamin B (sc-6216), JNK (sc-571) and p38 (sc-7149) were obtained from Santa Cruz 
Biotechnology (Santa Cruz, CA). Monoclonal (ab33915) and polyclonal (sc-7221) antibodies against TRAF6 
were from Abcam and Santa Cruz Biotechnology, respectively. Antibodies against ERK1/2 (#4695), phospho-
rylated ERK1/2 (#4370), phosphorylated JNK (#4668) and phosphorylated p38 (#9215) were obtained from 
Cell Signaling Technology (Beverly, MA). The β -actin (A1978) antibody was obtained from Sigma-Aldrich (St. 
Louis, MO). Alexa Fluor 488-conjugated Goat Anti-Rabbit IgG and ProLong Gold antifade reagent were from 
Invitrogen. Inhibitors of IKKα /β  (BMS345541), JNK (SP600125) and p38 (SB203580) were obtained from Merck 
(Darmstadt, Germany).

Cells and M. bovis BCG culture.  Murine macrophage-like RAW264.7 cells were maintained in DMEM 
supplemented with 10% fetal bovine serum (FBS), 1 mM sodium pyruvate, 100 U/ml penicillin and 100 mg/ml 
streptomycin (GIBCO). Murine bone marrow-derived macrophages (BMDMs) were prepared from bone mar-
row cells from femurs and tibias of 6- to 8-week-old C57BL/6 mice as described before25,48. All animal experi-
mental procedures were approved by the Medical Ethics Committee and Biosafety Management Committee of 
Sun Yat-sen University. M. bovis BCG strain 19015 was purchased from the American Type Culture Collection 
(ATCC), and were grown in Middlebrook 7H9 broth medium supplemented with 10% OADC and cultured in a 
standard culture incubator as reported before49.

M. bovis BCG infection of mice.  Female 6- to 8-week-old C57BL/6 mice were injected with 1 ×  106 CFU M. 
bovis BCG or PBS intraperitoneally. Mice were sacrificed at day 7 post-infection, and peritoneal lavage fluid and 
organs (lung, spleen and liver) were collected for RNA isolation.

Colony-forming unit (CFU) assay.  RAW264.7 cells were infected with M. bovis BCG at an MOI of 10 for 
24 h or 48 h at 37 °C. Then the infected cells were lysed in 1 ml of sterile distilled water with 0.01% TritonX-100. 
Quantitative culturing was performed using 10-fold serial dilutions. Aliquots of each dilution were inoculated in 
triplicate on Middlebrook 7H10 agar plates supplemented with 10% OADC. After incubation for 3 weeks, colo-
nies on plates were counted. The survival rate was calculated as compared to the control.

Transient transfection of plasmids, siRNA, miRNA mimic or inhibitor.  The cDNA sequence of 
murine TRAF6 was amplified by reverse transcription-PCR and cloned into pSG5 vector following the manufac-
turer’s protocol. Negative control (NC) and TRAF6 siRNAs were purchased from GenePharma (Shanghai, China). 
The target sequences of siRNA are as followings: siTRAF6-1, 5′-GCUACGAUGUGGAGUUUGAdTdT-3′ ;  
siTRAF6-2, 5′-GCGCUGUGCAAACUAUAUAdTdT-3′ . RAW264.7 cells were transiently transfected with miR-
146a mimic (30 nM) or inhibitor (50 nM) (RiboBio, Guangzhou, China), 1.6 μg plasmid or 100 nM siRNA, using 
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions.

Real-time PCR.  Total RNA was isolated using TRIzol reagent (Invitrogen) according to the manufactur-
er’s recommendation50,51. The expression of miR-146a was detected using a Bulge-LoopTM miRNA qRT-PCR 
primer kit (RiBoBio, Guangzhou, China) and normalized to small nuclear RNA (U6). cDNAs were synthesized 
from 1 μg total RNA using RevertAid™  First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, 
MA). Quantitative real-time PCR analysis of TRAF6 and iNOS mRNA was performed on Bio-Rad CFX96 
real-time detection system using SYBR Green Master Mix (Applied Biosystems, Foster City, CA). Primers used 
for real-time PCR amplification were as follows: β -actin, 5′-GATTACTGCTCTGGCTCCTAGC-3′  (forward), 
5′-GACTCATCGTACTCCTGCTTGC-3′  (reverse); TRAF6, 5′- AAAGCGAGAGATTCTTTCCCTG-3′  (for-
ward), 5′ -ACTGGGGACAATTCACTAGAGC-3′  (reverse); iNOS, 5′-TCCTCACTGGGACAGCACAGAATG-3′  
(forward), 5′-GTGTCATGCAAAATCTCTCCACTGCC-3′  (reverse).

Western blot.  Western blot was performed as described previously52–54. In brief, equal amounts of cell 
lysates were resolved by SDS-PAGE and then transferred to polyvinylidene fluoride or nitrocellulose membranes. 
Membranes were blocked and incubated overnight with primary antibodies at 4 °C. The membranes were incu-
bated with appropriate HRP-conjugated secondary antibodies at room temperature for 1 h, and the blots were 
visualized with PlusECL (KeyGEN BioTECH) according to the manufacturer’s protocol. Alternatively, blots were 
detected with IRDye 800 CW conjugated anti-rabbit IgG or IRDye 680 CW conjugated anti-mouse IgG secondary 
antibodies (LI-COR Biosciences, Lincoln, NE), and visualized using Odyssey infrared imaging system (LI-COR 
Biosciences).

Phagocytosis assay by flow cytometry.  Phagocytosis of mycobacteria was examined by flow cytometry 
as described previously26. Briefly, M. bovis BCG was labeled with Texas Red dye for 2 h in dark with gentle shak-
ing, and then rinsed with PBS according to the manufacturer’s instruction. RAW264.7 cells were challenged by 
the Texas Red-labeled BCG at an MOI of 10 for an hour. Then cells were washed thoroughly with cold PBS and 
centrifuged to remove extracellular bacteria. Cells were collected and analyzed using Beckman Coulter EPICS 
XL/MCL (Beckman Coulter Inc) as described before49.
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Measurement of NO production.  NO production was determined by the amount of nitrite accumulated 
in the supernatant of cultured cells using a Griess reagent (Promega Corporation, Madison, WI) according to 
manufacturer’s protocol. Briefly, 50 μl of the supernatants were collected and mixed with 50 μl of Griess reagent 
consists of 0.1% naphtylethylenediamide dihydrochloride in H2O and 50 μl of 1% sulphanilamide in 5% H2PO4. 
The absorbance was measured at 550 nm, and nitrite concentration was calculated using a standard curve of 
sodium nitrite prepared in culture medium.

Confocal microscopy.  Confocal microscopy was performed as described previously26. Briefly, cells 
grown on cover slips were fixed with 4% paraformaldehyde followed by membrane permeabilization, block-
ing and antibodies incubation (anti-NF-κ B p65, #8242, Cell Signaling Technology). Nuclei were stained 
with 4,6-diamidino-2-phenylindole (DAPI). Cover slips were mounted with ProLong Gold antifade reagent 
(Invitrogen) and viewed by confocal microscopy (Zeiss Axiovert, LSM710).

Statistical analysis.  Data were expressed as the mean ±  s.e.m. of at least three independent experiments. 
Statistical analysis was performed using GraphPad Prism 5.0 (GraphPad Software, San Diego, CA). The results 
from real-time PCR, Griess assay and CFU assay were compared by Student’s t test or one-way analysis of variance 
with Bonferroni’s post-test. Differences were considered statistically significant with p <  0.05.
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