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Abstract: The “linear parametric neurotransmitter PET” (lp-ntPET) model estimates time variation in
endogenous neurotransmitter levels from dynamic PET data. The pattern of dopamine (DA) change
over time may be an important element of the brain’s response to addictive substances such as ciga-
rettes or alcohol. We have extended the lp-ntPET model from the original region of interest (ROI) -
based implementation to be able to apply the model at the voxel level. The resulting endpoint is a
dynamic image, or movie, of transient neurotransmitter changes. Simulations were performed to select
threshold values to reduce the false positive rate when applied to real 11C-raclopride PET data. We
tested the new voxelwise method on simulated data, and finally, we applied it to 11C-raclopride PET
data of subjects smoking cigarettes in the PET scanner. In simulation, the temporal precision of neuro-
transmitter response was shown to be similar to that of ROI-based lp-ntPET (standard deviation � 3
min). False positive rates for the voxelwise method were well controlled by combining a statistical
threshold (the F-test) with a new spatial (cluster-size) thresholding operation. Sensitivity of detection for
the new algorithm was greater than 80% for the case of short-lived DA changes that occur in subregions
of the striatum as might be the case with cigarette smoking. Finally, in 11C-raclopride PET data, DA
movies reveal for the first time that different temporal patterns of the DA response to smoking may
exist in different subregions of the striatum. These spatiotemporal patterns of neurotransmitter change
created by voxelwise lp-ntPET may serve as novel biomarkers for addiction and/or treatment efficacy.
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INTRODUCTION

Limitations of Conventional Approaches for

Detecting Dopamine Transients

We previously demonstrated [Sullivan et al., 2013] that
conventional kinetic methods may not be appropriate for
reliably quantifying transient changes in endogenous dopa-
mine (DA) as measured with positron emission tomography
(PET). In that study, simulations were used to determine
the effect of scan duration on DBPND using three of the
most popular analysis methods typically applied to PET
data (reference region models, graphical analysis, and equi-
librium analysis). There was no dependence of DBPND on
the duration of the data window if the DA release was sus-
tained. However, all three methods showed the same
extreme sensitivity of DBPND to scan duration when the
assumption that DA was in steady state was violated (i.e.,
when DA change is short-lived). This is critical because a
number of addictive substances such as nicotine and alco-
hol elicit transient DA release, and various groups have
measured these phenomena with raclopride and PET with
varying degrees of success. DA transients may also arise in
response to tests or tasks that could be performed by sub-
jects in a PET scanner; however, we are currently limited in
our ability to measure this.

Previous Models to Detect Transient

Neurotransmitter Responses

A number of kinetic models have been put forth to
describe neurotransmitter effects on dynamic PET data.
These efforts date back—at least—to 1991 [Endres et al.,
1997; Logan et al., 1991; Morris et al., 1995]. Later models
were designed specifically with the intent of detecting
and/or estimating neurotransmitter changes from PET
data [Alpert et al., 2003; Morris et al., 2005, 2008; Norman-
din and Morris, 2008]. Recently, we chose to focus on line-
arized models that are computationally simple. The first
linearized model that incorporated a time-varying term for
neurotransmitter changes was introduced by Alpert et al.
[2003]. The Alpert model and subsequent linearized mod-
els can be thought of as extensions of the simplified refer-
ence tissue model (SRTM) first introduced by
Lammertsma and Hume [1996]. The linear extension of
SRTM (called LSSRM) developed by Alpert et al. [2003]
introduced a time dependence into the rate of tracer efflux
from the tissue that results from changes in neurotransmit-
ter level. In LSSRM, however, it is assumed that activation
(of DA, for instance) occurs coincident with the initiation
of the task or other stimulus. Furthermore, it is assumed
that the DA level is maximal at the instant of activation
and then diminishes unimodally (exponentially) over time.
These assumptions are probably not satisfied in compli-
cated behaviors and/or drug self-administration such as
cigarette smoking. Our laboratory has worked on
enhanced (nonlinear and linear) kinetic models that do not

impose such restrictions on the shape of the DA curve
[Constantinescu et al., 2008; Morris et al., 2005; Normandin
and Morris, 2008]. We have referred to these models col-
lectively as “ntPET” for neurotransmitter PET.

Normandin et al. [2012] introduced the “linear paramet-
ric ntPET” (lp-ntPET). lp-ntPET is a generalization of
LSSRM that allows for variable timing of the start (take-
off) of neurotransmitter effects as well as for multiple dif-
ferent patterns of dissipation of the effect. Because the
implementation of lp-ntPET uses basis functions to permit
flexibility in temporal characterization of neurotransmitter
release [following Gunn et al., 1997], linearity is preserved
and computational simplicity is guaranteed. In the simula-
tion study by Normandin et al. [2012], the lp-ntPET model
was shown to be a reasonably unbiased estimator of true
DA curves measured at the ROI level.

Extension of lp-ntPET to the Voxel Level

In the lp-ntPET algorithm, the use of preselected basis
functions (a library of functions must be predefined) trans-
forms a nonlinear equation into a series of linear equa-
tions—one for each basis function. In fitting the model to
data, the best basis function wins! That is, the basis func-
tion, along with the linear parameters that best fit the data
are retained. As long as the library of predefined basis
functions includes curves with different take-off times and
shapes, the stimuli whose responses do not adhere to the
assumptions of the Alpert model can be accommodated.
The fact that the model remains linear means that the
computational burden is limited and that voxel-by-voxel
application is feasible.

Extending lp-ntPET to the voxel level is, in a sense, a
new model. It produces a new output—individual neuro-
transmitter responses at every voxel in the search area (for
the D2 antagonist tracer, 11C-raclopride, the search area is
limited to the striatum) of the image. We think it is useful
and intuitive to think of this output as a movie [see Morris
et al., 2013 for a demonstration]. If the tracer is a DA
ligand, the movie is a DA movie. (To be clear, this is not a
cine loop of PET tracer concentration over time). The DA
movie shows both spatial and temporal patterns of DA
activation simultaneously. To progress from ROI-based lp-
ntPET to voxel-based, we needed to adapt the original
algorithm of Normandin to address limitations common to
any voxelwise analysis. Those adaptations and subsequent
tests of the performance of the resulting algorithm are the
subject of this study.

Important Considerations for Voxelwise lp-ntPET

In any voxelwise processing scheme, one must consider
the implication of performing multiple comparisons (e.g.,
the likelihood of generating many false positive findings).
In the original lp-ntPET analysis, a statistical process was
incorporated into the algorithm to test the goodness of fits
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of the extended model when compared with the relevant
conventional model that allows no time variation in neuro-
transmitter [in particular, multilinear reference tissue model
(MRTM); Ichise et al., 2003]. Once we adapt lp-ntPET to the
voxel level, running any such statistical test at many voxels
constitutes multiple comparisons, and a large number of
false positives may ensue simply by chance. Thus, we
decided to couple the single statistical test used in the ROI-
based algorithm (the F-test to compare nested models) to a
secondary culling (a cluster-size threshold) in order to
reduce the false positive rate to an acceptable level. To
determine whether or not the resulting two-part threshold-
ing scheme would perform well on real PET data, we exe-
cuted an extensive study of realistic simulated dynamic
PET data, as presented below. Once we adjusted our
thresholds to attain an acceptable false positive rate, we
then analyzed simulated data with the selected threshold
value to determine its sensitivity to DA activation (i.e., its
true positive rate). As we found, our implementation of
voxelwise lp-ntPET with a false positive rate of 10% was
able to detect small regions of transient DA activation that
peaked at three times the baseline level or that occurred in
clusters of at least 24 voxels of size 2 3 2 3 2 mm3.

Goal of this Work

In this study, we extended the lp-ntPET model from the
original ROI-based to a new voxel-based implementation
to produce “movies” of transient neurotransmitter activa-
tion. Simulations were performed to select threshold val-
ues for achieving acceptable performance of our algorithm
when applied to real 11C-raclopride PET data. We com-
bined two thresholding operations into our voxel-by-voxel
method: a statistical threshold and a spatial threshold. We
tested the new voxelwise method on simulated data, and
finally, we applied it to 11C-raclopride PET data of subjects
smoking cigarettes in the PET scanner. The resulting DA
movies are presented along with preliminary observations
of the unique potential of this new method to sequence
activation events.

MATERIALS AND METHODS

Theory

lp-ntPET model

lp-ntPET has a linear extension of MRTM. lp-ntPET is
an extension of LSSRM developed by Alpert et al. [2003].
lp-ntPET replaces the fixed exponential term h(t) by a pre-
defined library of possible response functions hi(t). Basis
functions [Bi(t)] are created as the integral of the product
of the time-activity curve (TAC) in the target region with
each response function. As shown in the following equa-
tions, lp-ntPET [Eq. (1)] can also be seen as an extension of
the MRTM [Eq. (2); Ichise et al., 2003]:
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where CT and CR are the concentrations in the target and
reference region, respectively. R1 is delivery ratio, k2 is a
transfer rate constant between the free compartment and
the plasma, and k2a is the apparent transfer rate constant
between the target tissue (taken as one compartment) and
the plasma. The coefficient c is the magnitude of the time
varying response h(t).

lp-ntPET assumes a flexible form for the response function.
The response function h(t) is described by a gamma-variate
function [Eq. (3a)] to model plausible transient DA release pat-
terns introduced previously by Normandin et al. [2012]. In a
gamma-variate function, three parameters must be defined.
The variable tD is a response start time (relative to the start of
the tracer), tP is a peak response time (relative to the start of the
tracer), and a represents sharpness of the function.

hðtÞ5 t2tD

tP2tD

� �a

exp a 12
t2tD

tP2tD

� �� �
uðt2tDÞ; (3a)

hðtÞ5exp bðt2tDÞð Þuðt2tDÞ; (3b)

where u(t) is the unit-step function, and thus, u(t 2 tD) is a
unit-step beginning at tD.

The library of response functions was constructed to
include pure exponential functions as well [Eq. (3b) and
Fig. 1]. The exponential time constants b for e2bt were 0,
0.01, 0.03, 0.05, 0.1, 0.3, and 0.5.

lp-ntPET estimation process. The library of response
functions hi(t) are determined by selecting discrete param-
eter values (tD, tP, and a) [Eqs. (3a) and (3b)] over finite
intervals. Basis function [Bi(t)] candidates are then created
as the integral of the product of the TAC in the target
region and each response function. Four explicit model
parameters (R1, k2, k2a, and c) in Eq. (1) are estimated
using weighted least squares with each candidate basis
function. As the final output, one basis function Bi(t) is
selected that yields the best fit to the PET data when com-
pared with all other candidate basis functions.

Significance testing. After fitting data using the lp-ntPET
model, the F-test is performed to test the goodness of fit of
lp-ntPET when compared with the simpler MRTM model
using Eq. (4). The F-test is appropriate for comparing the
fits of “nested” models such as MRTM and lp-ntPET. The
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null hypothesis is that there is no improvement in the fit-
ting by including the time-varying response term, Bi(t),
that is unique to lp-ntPET [Eqs. (1) and (2)].

F5

WRSSMRTM2WRSSlp2ntPET

plp2ntPET2pMRTM

� �
WRSSlp2ntPET

n2plp2ntPET

� � ; (4)

where WRSS is the weighted residual sum of squares, p is
the number of model parameters, and n is the number of
data points in a TAC.

The details of the theory of lp-ntPET have been
described in a previous paper by Normandin et al. [2012].

Study Design

We chose a single scan design to detect the DA
response to cigarette smoking. The radiotracer (11C-

raclopride) was administered as a bolus-plus-constant
infusion (B/I). The subject smoked two successive ciga-
rettes (of their own brand) in the PET scanner beginning
45 min after the start of the PET scan. To validate our
method’s specificity for the smoking-induced DA signal,
a rest scan was obtained as well. The rest scan was per-
formed on a separate day in the same way, with the
same subject but without smoking.

Extension to Voxel-Based lp-ntPET Model

Because the lp-ntPET model is a linear, basis function-
based method for fitting the dynamic PET data, it is practi-
cal to implement it as a voxel-by-voxel method. In this
study, we have extended lp-ntPET to voxel-based lp-
ntPET. The resulting analysis process is composed of four
main steps: preprocessing, modeling, statistical compari-
sons, and visualization.

Figure 1.

Response functions of lp-ntPET to model transient dopamine release at td 5 40 min. Gamma-

variate function with a equal to 0.25 (a), 1 (b), and 4 (c) and exponential function with

b 5 [0, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5] (d).
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Preprocessing

In the preprocessing step, a spatial smoothing filter is
applied to the PET data. We used the highly constrained
back-projection (HYPR) spatial filter [Christian et al., 2010]
to reduce spatial noise with the hope of preserving critical
temporal information (i.e., temporal “edges”). The spatially
filtered PET data is registered to a standard template
space. Next, a reference tissue TAC is extracted. For 11C-
raclopride data, we used the cerebellum as the reference
region. Only voxels in precommissural striatal region were
examined because (a) this region has sufficient signal to
background contrast with 11C-raclopride and (b) it is the
region of the brain that is implicated in drug addiction,
craving, and reward.

Modeling

In the modeling step, the PET TAC at each individual
voxel is fitted using both the lp-ntPET model and MRTM.
For lp-ntPET fits, response functions are selected first. We
used the following discrete set of parameter values for the
gamma-variate function for this 11C-raclopride smoking
study. Three a values were 0.25, 1, and 4 for sharpness.
Response start times (tD) were set between (smoking time-
2 5 min) to (smoking time 1 15 min) in increments of 1.5
min, which is one half the frame duration. Peak response
times (tP) were set between (tD 1 1.5 min) and (total scan
time 2 5 min) in increments of 1.5 min (Fig. 1a–c). In the
case of smoking at 45 min, the lowest possible value of tD

was chosen to be 40 min to allow for DA response due to
anticipation of smoking. We included pure exponential
functions, h tð Þ5e2bt , in the response function library to
allow for instantaneous increases in DA at individual vox-
els. The seven different preselected exponential time con-
stants b for e2bt were 0, 0.01, 0.03, 0.05, 0.1, 0.3, and 0.5
(Fig. 1d). For a total scan time 5 90 min, 300 response
functions were generated. Fitting the lp-ntPET model at
each voxel produces not only images of the parameters
(R1, k2, k2a, and c) but also a WRSS image (WRSSlp-ntPET).
Fitting MRTM to voxelwise data yields estimates of only
three parametric images (R1, k2, and k2a) and a WRSS
image (WRSSMRTM).

Statistical comparison

The statistical comparison requires two steps.

F-statistic. The F map was generated from the two
WRSS maps by calculating the F-statistic [Eq. (4)] at each
voxel. The F-statistic compares the WRSSlp-ntPET to the
WRSSMRTM, correcting for differences in degrees of free-
dom in the respective fits. For this test, we considered the
number of lp-ntPET model parameters to be seven. Four
are explicit kinetic parameters [see Eq. (1)], and three are
implicit gamma-variate function parameters [Eq. (3a)].
When the response function is a simple exponential [Eq.
(3b)], there are only two implicit parameters. Thresholding

(P< 0.05) was performed based on degrees of freedom in
the model fits. The threshold was the same at every voxel.
The resulting binarized image after thresholding is called
the “significance mask.”

Cluster-size threshold. After the F-test, we applied a
cluster-size threshold as a means of correcting for multiple
comparisons. This idea has been advanced by Holmes
et al. [1996]. Clusters are defined as non-negative voxels in
the significance mask that are connected with each other.
Separate clusters were identified in a binarized 3D image
using a blob coloring algorithm (Label_region function in
IDL). Cluster size is determined by counting the number
of voxels in the cluster. In our data, the number of sepa-
rate clusters and their respective cluster sizes were deter-
mined in each significance mask following F-statistic
thresholding. Cluster-size distributions that result entirely
by chance were created by applying the entire lp-ntPET
analysis process to simulated 4D rest data (i.e., null data).
Cluster-size thresholds were set to exclude 99% of the
clusters that were produced by chance through the lp-
ntPET analysis of simulated rest data. Only the largest 1%
of clusters were retained. In the analysis of smoking data,
all clusters were eliminated that were smaller than the pre-
determined cluster-size threshold.

Visualization (4D DA movie)

For each voxel retained in the final significance mask,
the estimated DA values over time [ch(t)] normalized by
the estimated k2a at each respective voxel was stored.
These normalized DA images are four-dimensional (4D).
They represent the DA value at each time point for each
voxel found to have a significant DA response to the stim-
ulus. Color-coded image series were created by applying a
color lookup table to the normalized DA images. The
color-coded 4D images were overlaid on a static MR tem-
plate for the corresponding brain slices to create “DA
movies.”

Simulation

Generating 4D-simulated PET phantom data

To help in selecting appropriate thresholds and to fully
characterize our method, we simulated phantom data with
a similar noise level to our real PET data. For simulated
data, noiseless target and reference region TACs were first
generated using the full ntPET model [Morris et al., 2005],
which is a nonlinear model of tracer binding to a receptor
in the presence of a time-varying endogenous competitor.

Simulated rest data

For the simulated rest data, target region parameters
were set to K1 5 0.0918 mL/(min g), k2 5 0.4484/min,
kon 5 0.0282 mL/(pmol min), koff 5 0.1363 min21, Bmax 5 44

r Kim et al. r

r 4880 r



pmol/mL, Fv 5 0.04 mL/mL, and kDA
on and kDA

off 5 0 [Pap-
pata et al., 2002]. A reference region was simulated by set-
ting as Kref

1 5 0.0918 mL/(min g) and kref
2 5 0.4484 min21.

Each simulated dataset contains 1,004 TACs of 120 min of
data with 3-min frame duration to match our real PET data.

Simulated smoking data

Four versions of simulated smoking data were produced
to represent a variety of weak to strong responses to a
stimulus. Free endogenous DA (FDA) release in the form of
a gamma-variate function [Eq. (3a)] was applied to the full
ntPET model. The FDA function was simulated with
kDA

on 5 0.25 mL/(pmol min), kDA
off 5 25 min21, and basal DA

level 5 100 nM [Morris et al., 1995]. For the gamma-variate
function, tD 5 45 min, tP 5 50 min, a 5 2, and peak DA lev-
els (peak DA) 5 150, 200, 300, and 800 nM.

Noise

Gaussian noise with zero mean and the following var-
iance [Eq. (5)] were added to the ith time frame of the
noiseless tissue TAC.

r5l3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CTðtiÞ3e2ktið Þ=Dti

q� �
3ekti (5)

The constant l is the scaling factor that determines the
noise level. k is the decay constant for 11C, and Dti is the
ith frame length. For setting the constant l to reflect our
real data, we measured the average coefficient of variation
(ratio between averaged noise variance and mean of the
last 15 min of 11C-raclopride PET concentration) in two
real PET rest datasets. To confirm the similarity of the
noise level in simulations with the noise level in the data,
F-distributions after lp-ntPET in both PET data and simu-
lations were compared.

Making 4D phantom data

To create a 4D phantom, noisy simulated TACs were
placed at each voxel in the dorsal striatal mask in template
space. The dorsal striatum mask consisted of 1,004 voxels.
Therefore, 1,004 noisy TACs were generated for each data-
set. In total, 100 rest and 4 3 100 smoking datasets for dif-
ferent DA level were generated. Random noise was
generated anew each time. Two different styles of smoking
data were generated: (1) a smoking phantom was created
with DA activation in every voxel of the dorsal striatum
region, and (2) a second smoking phantom was created
with DA activation only in clusters of different sizes each
smaller than the striatum region.

Cluster-size distribution as correction for multiple
comparisons

lp-ntPET was applied to 100 rest 4D phantoms. After
thresholding the F map at each voxel (at P< 0.05), adjacent

voxels in the significance mask were counted as a single
cluster using the blob coloring algorithm based on six-
neighbor connectedness. The number of voxels of each
cluster was counted to determine the cluster size. The his-
togram of cluster size was plotted for all 100 datasets. The
cumulative probability density function was plotted to
obtain the cluster threshold corresponding to the P< 0.01
level.

Sensitivity map

Sensitivity maps were created to estimate the true posi-
tive detection rate at each voxel in the simulated striatum.
To create sensitivity maps, we started with 100 simulated
smoking datasets. Each dataset was analyzed with lp-
ntPET, and a cluster-size threshold was applied based on
the cluster-size distribution calculated above. The resulting
100 binary significance masks were summed to a single
map representing the percent true positive rate at every
voxel.

Bias of DA parameters

tP, tD, and peak DA were estimated using lp-ntPET at
each voxel in the smoking phantoms. Biases in the esti-
mated parameters were calculated based on the analysis of
phantom smoking datasets.

All simulations were implemented in Matlab (R2008b;
MathWorks, Natick, MA) using modeling functions pro-
vided by the COMKAT library [Muzic and Cornelius,
2001] and using IDL 8.0 (Exelis Visual Information Solu-
tions, Boulder, CO).

Experiments With Human Smokers

Subjects

All study procedures were approved by the Yale Uni-
versity Human Investigations Committee. Two male
tobacco smokers (aged 20 and 48 years) were scanned.
Subjects were abstinent from smoking for at least 2 h prior
to their rest scan and at least 12 h prior to their smoking
scan to increase craving for the cigarette. On arrival at the
PET Center, subjects completed questionnaires to rate their
smoking urges (QSU-Brief) [Cox et al., 2001] and with-
drawal symptoms (MNWS) [Hughes and Hatsukami,
1986]. Plasma cotinine and nicotine levels were assayed
before scans to confirm compliance with abstinence on
smoking days. Subjects were instructed to smoke at their
normal pace during the PET scan. The order of smoking
and rest was opposite between two subjects.

Data acquisition

Subjects received a 3T structural MRI on a different day
from the PET scan days for use in aligning PET data to
the template space. Typical acquisition parameters for the
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structural MRI were 3D MPRAGE MR pulse sequence
with TE 5 3.3 ms, flip angle 5 7�; slice thickness 5 1.0 mm,
and 0.98 3 0.98 mm2 pixels.

PET scans were acquired for 2 h (40 3 3 min) with B/I
(Kbol 5 105 min) of tracer in the HRRT PET scanner (Sie-
mens/CTI, Knoxville, TN). Injected doses and specific
activities of 11C-raclopride were 741 6 29 MBq and
450 6 189 MBq/nmol, respectively. The Vicra optical track-
ing system (Vicra, NDI Systems, Waterloo, Canada) was
used to measure and record subject head movement dur-
ing each scan. List-mode dynamic data were reconstructed
with all corrections (attenuation, normalization, scatter,
randoms, dead time, and motion) using the MOLAR algo-
rithm [Carson et al., 2003].

Data analysis

A spatial filter, HYPR [Christian et al., 2010], was applied
with 3D box kernels (6 3 6 3 6 mm3) to all PET images in
a frame-by-frame manner to reduce spatial noise without
degrading the temporal information at every voxel.

PET data were aligned to each subject’s MR data and
then registered to the AAL MR template. Reference TACs
were extracted from an AAL-defined cerebellum. Follow-
ing Mawlawi et al. [2001], we applied a mask of the pre-
commissural striatum (ventral striatum, dorsal caudate,
and dorsal putamen) to all the PET data in template space
because this brain area is implicated in drug addiction.

For lp-ntPET modeling, the same basis functions were
used that were used in creation of the phantoms. A
cluster-size threshold of 17 voxels was applied based on
the simulation result. Significance masks and DA curves in
the significance masks from both the rest and smoking
conditions were assessed.

RESULTS

Simulation

Simulated noisy rest data at the voxel level

Experimental and simulated TACs at the voxel level are
shown in Figure 2. For illustration purposes, the data
points in Figure 2a show a 11C-raclopride TAC taken from
a single voxel in the ventral striatum during the rest scan
of a smoker. The smooth curve in Figure 2a represents the
fit of MRTM to the data points. The smooth curve in Fig-
ure 2b is a noiseless simulation using the complete ntPET
model [Morris et al., 2005] with no DA activation (no devi-
ation of DA from basal level). The data points in Figure 2b
represent random noise (average coefficient of var-
iation 5 20%) added to the noiseless curve. The choice of
20% coefficient of variation is based on the analysis of 11C-
raclopride scans performed on two different smokers at
rest (not smoking). In those two subjects, the coefficients
of variation in the PET data were 17.8% and 21.7%, respec-
tively. Note the similarity in apparent noise level between
the simulation and the real data.

The distributions of F values for both a simulated rest
dataset and a real-rest PET dataset are shown in Figure 3.
Figure 3a shows the F-distribution for the simulated data-
set, and Figure 3b corresponds to the real data. Note the
very close similarity of the two distributions. Taken
together, Figures 2 and 3 suggest that the noise character-
istics in our noisy simulations properly reflect the noise in
our human [11C]raclopride PET data.

Cluster-size distribution as a means of correcting for
multiple comparison

The cluster-size distribution from the lp-ntPET analysis
of 100 simulated rest datasets is shown in Figure 4 (gray
bars). The solid curve represents the cumulative probabil-
ity distribution, that is, the probability of finding a cluster
of a given size or less. The cluster-size threshold required
to exclude 99% (P< 0.01) of all clusters from occurring by
chance in an lp-ntPET analysis of rest data is shown as a
dotted vertical line at 15 voxels.

Figure 2.

Single PET voxel rest data (a) with fitted curve using MRTM in

ventral striatum region (solid line) and single voxel level-

simulated rest data (b) with true value (solid line).
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After eliminating clusters smaller than 15 voxels, we
observed that 87/100 datasets had no remaining clusters
in their final significance mask (Table I). When we
adjusted the cluster-size threshold to 17 voxels, 90% of the
significance masks were completely free of random clus-
ters (Table II). Thus, we can say that the likelihood of
detecting clusters larger than 17 voxels by chance (i.e., the
false positive rate) is less than or equal to 10%.

Simulated smoking data and sensitivity of voxelwise

lp-ntPET

The DA responses used to create simulated smoking
data are shown in Figure 5a. The resulting noiseless TACs
for each of the four different peak DA levels are shown in
Figure 5a (inset). An example of single noisy simulated
smoking TAC corresponding to a peak DA level of 200 is
shown in Figure 5b.

Every voxel in the dynamic phantom of smoking data
contains a TAC similar to the noisy one shown in Figure 5b.
A sensitivity map based on the lp-ntPET analysis of a smok-
ing phantom with peak DA level set to 200 (four coronal sli-
ces of striatum) is shown in the bottom row of Figure 6.

Sensitivity values at the edge of each slice are lower than
those at the center. In addition, the first and last slices have
low sensitivity when compared with the middle slices. A
sensitivity map for a phantom containing multiple, isolated
clusters of activation, each with peak DA level 200 but dif-
fering in size, is shown in Figure 7. The size of each cluster
in the phantom is indicated on the slice at the left in the
first row of the figure. The average sensitivity values as a
function of both cluster size and peak DA level are sum-
marized in Table III. No significant clusters were found in
the right caudate, which contained no true DA responses.
The dependence of sensitivity on cluster size and peak DA
level is plotted as a surface in Figure 8.

Figure 3.

Distribution of F-ratio based on (a) simulated rest data and (b) real-rest PET data in human sub-

ject. F-ratios are generated at each voxel in dorsal striatum by comparing the weighted residual

sum of squares of the lp-ntPET fit to that of the MRTM fit to the same TAC.

Figure 4.

Cluster-size distribution after thresholding F maps produced

from the simulated rest data. Solid curve represents cumulative

probability. Dotted vertical line shows where to set cluster-size

threshold to exclude 99% (P< 0.01) of clusters that will occur

by chance in the lp-ntPET analysis of rest data (no dopamine

activation) based on 100 simulations of phantom images.

TABLE I. Probability of cluster size

Number of clusters bigger
than 15 voxels Number of datasets

0 87
1 12
2 1

Total 100
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Bias of DA parameters in simulated smoking data

The means and standard deviations of estimated DA
parameters (response start time tD, peak response time tP,
and peak DA level) from the analysis of multiple versions
of the smoking phantom with clusters of activation (see
the top row of Fig. 7) are shown in Figure 9.

The dotted lines in Figure 9a,b represent the true values
of the parameters. With the exception of the very smallest
cluster, the mean estimated values of tD and tP at peak DA
levels of 150, 200, and 300 are very close to the true values
(Fig. 9a,b). Note that the smallest cluster is below the
cluster-size threshold. At peak DA level 800, the bias in tD

is slightly negative (underestimation). tP was slightly over-
estimated for high peak DA level. However, even these
biases were less than 2 min. The error bars in Figure 9a,b
indicate that the variation in the estimates of tD and tP

decreased as cluster size increased (temporal precision
improves with cluster size). At peak DA level 800, how-
ever, peak DA levels are severely underestimated as
shown in Figure 9c. At lower peak DA levels (150, 200,
and 300), we find a linear relationship between estimated
and true peak DA level.

PET Experiments With a Human Smoker

Significance mask for smoke and rest conditions

Final significance masks for smoking and rest conditions
are shown in Figure 10 for two different smokers. Clusters
larger than 17 voxels were detected in the smoking scans
of both smokers, but not in their rest scans (second and
fourth rows of Fig. 10). Caudate was found to contain sig-
nificant clusters of activation in both subjects. Significant
voxels were also detected in ventral striatum and in the
putamen region in one subject (third row of Fig. 10).

DA movies (curves) for smoking scans

DA response curves for each voxel in the three clusters
isolated from the second subject’s smoking data are plotted
in Figure 11. The three different clusters are marked with
different colors (green: ventral striatum; orange: putamen;
and red: caudate). The mean 6 one standard deviation of
the DA responses in each cluster are shown in Figure 12.
Peak times of the mean curves were 52.5 min for ventral
striatum and putamen and 58.5 min for caudate.

The multislice, multicondition DA movies for two smok-
ers are available in Supporting Information. Each DA
movie displays the frame-by-frame DA level relative to the
baseline DA level. All slices of precommissural ventral
striatum are displayed simultaneously for rest and smok-
ing conditions. Neither subject showed any significant vox-
els in the rest state. In contrast to the second subject, the
first subject showed a DA response only in the right cau-
date during the smoking scan. The DA peak time for the
cluster of activation in the caudate was 55.5 min.

DISCUSSION

Visualization of DA Movies

We have extended a new linearized mathematical tech-
nique [Normandin et al., 2012], lp-ntPET, to be applicable at
the voxel level in order to capture brief, localized DA events
embedded within PET data. A key endpoint of our work is
a DA movie (in contrast to a movie of PET activity) resulting

TABLE II. Probability of cluster size

Number of clusters bigger
than 17 voxels Number of datasets

0 90
1 9
2 1

Total 100

Figure 5.

(a) Dopamine response with increasing peak height used to cre-

ate simulated smoking data. Baseline DA level equals to 100

pmol/mL. Simulated TAC is decay-corrected. (b) Single noisy

simulated smoking TAC with peak DA level 200.
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Figure 7.

Four-slice phantom containing clusters of different sizes (top) and sensitivity map (peak

DA 5 200; bottom). Number with arrow indicates the number of voxels contained in each clus-

ter. Voxel size is 2 3 2 3 2 mm3.

Figure 6.

Sensitivity map in whole dorsal striatum region at given uniform dopamine signal over 100 runs

(peak DA 5 200).

Figure 8.

Sensitivity (ability to recover true DA activation) as a function of peak dopamine level and clus-

ter size. Voxel size is 2 3 2 3 2 mm3.



from the estimation of transient DA changes at each voxel
in the dynamic data. The DA movie is a 4D output. Thus,
due consideration must be paid to how it can best be visual-
ized. In general, the movie results from the color coding of
DA values, which represent fractional increases in DA
above baseline. Without any further processing, associated
voxels that peak at different (fractional) levels will be shown
in different colors and thus may appear to belong to distinct

populations (clusters). Alternatively, DA values at each
voxel could be normalized by their individual peak values.
If so, then voxels that peak at the same time would be dis-
played in the same color at that peak time. Thus, the similar-
ities of two voxels would be more apparent. For the
moment, we have chosen to display the DA movies using
the former scheme, but going forward, as we seek to capital-
ize on the pattern recognition powers of the human
observer, we may choose to follow the latter—or yet
another—visualization strategy. In any case, revealing the
temporal patterns of DA activation in local brain regions is
our goal and this work is motivated, in part, by the theory
that the speed of DA release in response to drugs encodes a
drug’s addiction liability [Volkow and Swanson, 2003].

Sensitivity of lp-ntPET

In this study, four DA signals of different magnitude
were simulated to consider a wide range of activations.
In previous microdialysis studies, administration of nico-
tine in doses relevant to smoking produced 200% [Pon-
tieri et al., 1996] and 250% [Domino and Tsukada, 2009]

Figure 9.

Bias of dopamine parameters for different dopamine levels.

TABLE III. Sensitivity table

Peak DA level
(pmol/mL)

Cluster size (number of voxels)

16 24 32 64 128

150 2.5% 8.6% 14.4% 25.4% 35.8%
200 13.6% 32.5% 48% 68.7% 80.9%
300 51.1% 86.4% 84.2% 94.4% 97.5%
800 98.9% 100% 99.3% 100% 99.8%

1 voxel 5 2 3 2 3 2 mm3; baseline DA level equals to 100 pmol/
mL. Numbers represent sensitivity (%) to the presence of dopa-
mine activation.

r Kim et al. r

r 4886 r



increases in extracellular DA above baseline in the stria-
tum of rats and monkeys, respectively. Cocaine and
amphetamine can increase DA anywhere from 250 to
1,000% in the rat striatum [Carboni et al., 2001]. Our sen-
sitivity maps (Figs. 6 and 7) and related surface plot (Fig.
8) show that our ability to detect activation is not simply
a matter of magnitude but a joint function of magnitude
and spatial extent. Based on our sensitivity maps, we
assert that lp-ntPET can detect moderate DA responses
(those that peak at two times the baseline level) 80–90%
of the time if the DA response occurs uniformly in a
large portion of the striatum (Fig. 6). On the other hand,
if the DA response occurs in a very small area (i.e., 24
voxels 3 8 mm3; approximately one-tenth of the ventral
striatum volume), the signal must peak at three times
baseline or higher for signal detection to reach 80%
sensitivity.

Timing Parameters Are Minimally Biased

lp-ntPET showed good precision in estimating timing
parameters (tD and tP) of the DA responses at the voxel level
(Fig. 9). This finding was consistent with the previous evalu-
ation of ROI-based lp-ntPET [Normandin et al., 2012]. Good

temporal resolution would be important for sequencing
activation events (involving the same neurotransmitter sys-
tem) that occur in different brain areas at different times. In
our sample PET data from an ongoing study of cigarette
smoking, we observed that the DA response peaked at 52.5
min (7.5 min after the start of smoking) in clusters in the
ventral striatum and dorsal putamen but at 58.5 min (13.5
min after the start of smoking) in a cluster in the dorsal cau-
date (Fig. 12). Each of the significant clusters identified with
voxelwise lp-ntPET analysis of our smoking data were
larger than 17 voxels. On the basis of our simulation studies,
the standard deviations of tD and tP for small to moderate
DA responses most relevant to smoking (DA peaks between
two and three times baseline) were both less than 4 min in
small clusters (16 voxels; Fig. 9). Thus, we feel confident in
claiming that the average responses identified in clusters in
the ventral striatum and putamen of the subjected depicted
in Figures 10 (bottom), 11, and 12 were both distinct tempo-
rally from, and earlier than, the (average) temporal response
in the caudate. We hope to use this type of temporal resolu-
tion to explore the nature of the DA responses to addictive
substances and the effect of treatments. It may also be possi-
ble to improve the temporal resolution of our estimates by
reducing the duration of PET time frames below the 3-min

Figure 10.

Significant voxels detected in PET data for two different smokers at rest and during smoking

(top and bottom).
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bins used in our sample studies here. Naturally, there is an
ever-present trade-off between shorter time bins and higher
noise that must be heeded.

Cluster-Size Threshold to Correct for Multiple

Comparisons

We are applying a statistical test (DA present or not) at
many voxels. Therefore, we must correct for multiple com-
parisons. Without such a correction, the sheer number of
comparisons will lead to a considerable number of false
positive findings. One common approach to this problem
is the family-wise error correction method, for example,
Bonferroni correction [Hochberg and Tamhane, 1987]. In
brief, Bonferroni method uses a corrected P value by
dividing the desired P value by the number of compari-
sons (voxels). However, this method can be overly con-
servative. When Bonferroni correction was applied to our
data, no significant voxels were found in our experimental
PET data. Instead, we chose the cluster-size threshold
approach to retain adequate sensitivity to activation while

still eliminating false positives. The idea of cluster-size
inference dates back at least to work in 1993 by Poline and
Mazoyer [1993] and Roland et al. [1993]. Shortly thereafter,
Votaw and Li [1995] used the technique to detect regions
of activation in difference images. In their study, the sig-
nificance level was selected to permit no more than one
false positive cluster per every 20 brains (i.e., “global”
P< 0.05). In the same way, we set our desired global level
of significance as P< 0.1. It is satisfying to note that when
we applied our algorithm to our simulated image sequen-
ces, we did not find any false positive clusters in the back-
ground areas in which there was no DA response (e.g.,
right caudate in Fig. 7). In our real PET data, in the rest
condition, no significant clusters were found.

LSSRM Versus lp-ntPET

LSSRM is another advanced imaging technique that is
aimed at detecting the effect of time-varying neurotransmit-
ter release in PET brain images. This technique is based on
an enhanced kinetic model that allows for time-dependent

Figure 11.

DA response curves for each voxel in each significant cluster (b–d) in four different slices

through the striatum (a) in one subject’s smoking scan (VST, ventral striatum; PUT, putamen;

CAU, caudate).
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changes in the apparent efflux rate parameter [i.e., k2a in
Eq. (2)]. However, the configuration of LSSRM [fixed DA
response shape (exponential), fixed take-off time for activa-
tion (tD 5 task start time)] limits the application of LSSRM
to certain stimuli that elicit a DA response at a known time
and are instantaneously maximal. In contrast, lp-ntPET
incorporates flexibility into the selection of the temporal
aspects of the DA response. This flexibility is conveyed
through the use of a predefined library of response func-
tions that produce a corresponding library of basis func-
tions to describe the effect of the neurotransmitter
activation on the PET curve. To create a reasonable library
of possible responses to smoking, we included a large set of
gamma-variate functions and exponential functions in the
library. In our analysis of our real smoking study data, we
found that the model returned DA responses that peaked
between 8 and 14 min after smoking and disappeared �10
min later (see Fig. 12). LSSRM cannot differentiate
responses with different delay times or peak times and thus
may not be equipped to adequately fit data from smoking
or from studies of other similar behaviors.

As with LSSRM, lp-ntPET does not have an explicit
term for change in blood flow. However, we remind the
reader that in the previous simulation study by Norman-
din et al. [2012], the changes imposed on K1 and k2 (the
two parameters that depend on flow in the model used to
simulate the data) in the middle of the scan do not appre-
ciably alter the estimates of DA parameters.

Computation Time

Although the implementation of lp-ntPET dictates that it
must perform one fit for every predefined response func-
tion in its library, these are linear fits and the overall com-
putation time is quite small. In our analysis of the PET
data from our smoking study, we used a library with
�300 response functions. The analysis of the entire dorsal
striatal region (about 1,000 TACs corresponding to 1,000
voxels) took less than 1.2 min on a moderately powered
PC (Intel Core2 Duo CPU 2.93GHz with 3.5 GB RAM)
including some prefiltering of the images. This computa-
tional load is certainly manageable for routine analysis of

Figure 12.

Average DA curves in the significant clusters of one subject’s smoking scan. Solid curves repre-

sent the mean of the data curves in Figure 11, and the dotted curves represent the mean 1 SD

and the mean 2 SD, respectively.
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dynamic images—even if a different tracer was used that
demanded analysis of the whole brain.

Possible Uses and Advantages of

Voxelwise lp-ntPET

In the recent study by Sullivan et al. [2013], a previously
unexplained discrepancy between two early smoking studies
[Brody et al., 2004, 2006] was explained in terms of the
severe dependence of DBP, as a measure of DA release, on
the size (duration) of the PET data window. This depend-
ence—caused by violation of the assumption of steady DA
levels—makes the comparison of different studies using DBP
and different paradigms to characterize the response to
smoking almost impossible. It also supports the idea that the
DA response to cigarette smoking is not long-lasting. Indeed,
animal studies using microdialysis have shown that the DA
response to nicotine is brief [Di Chiara and Imperato, 1988;
Maisonneuve et al., 1997]. lp-ntPET can capture brief DA
activation, whereas conventional methods cannot. In addi-
tion, recent studies have found highly localized clusters of
DA activation in the cortex in response to a reward-learning
task [van Eimeren et al., 2013] and a mathematical task
designed to induce stress [Lataster et al., 2014; Vrieze et al.,
2013]. As we have shown here, voxelwise lp-ntPET can be
used to detect short-lived responses of the DA system occur-
ring in small brain areas (small clusters of voxels). Thus, we
believe that lp-ntPET offers two possible advantages over
other methods. (1) In circumstances, such as the study of
addictive liability of drugs or the effect of treatment for
addiction, where the precise timing of DA release may be at
issue, the lp-ntPET model can estimate (and differentiate)
the timings of the local DA responses. Here, one could imag-
ine monitoring the speed of DA release regionally, with the
progression of dependence or before and after treatment for
dependence. (2) More generally, in the use of PET to study
responses to various behaviors and behavioral tasks that
induce local and short-lasting DA changes, lp-ntPET will, by
virtue of its time-varying terms, be a better model than con-
ventional ones for the effect of DA release on dynamic PET
data. The use of a more appropriate model may yield signifi-
cant findings where the conventional ones would not.

CONCLUSION

In this study, lp-ntPET has been extended to the voxel
level to create neurotransmitter release movies. These mov-
ies reveal interesting and previously unobserved localized,
transient changes in DA levels in the striatum in response
to cigarette smoking. The analysis of realistic simulations
showed that the sensitivity to rapid DA changes that are
relevant for smoking is greater than 80%. Biases in the esti-
mates of timing parameters (DA response start time, peak
response time) were close to 0. The false positive rate,
caused by the large number of voxels examined, and hence
large number of statistical tests performed, was well con-

trolled using the F-test (proposed in the original algorithm)
and a cluster-size threshold (introduced specifically for vox-
elwise lp-ntPET). We presented novel DA movies of the
response to smoking cigarettes in the PET scanner. The
movies revealed the possibility of distinct timing of DA
changes in different subregions of the striatum. These spa-
tiotemporal patterns of DA release could serve as novel
markers of disease (e.g., dependence), additive liability of
drugs of abuse, or signatures of treatment efficacy.
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