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Abstract
Refugia are critical for the maintenance of biodiversity during the periods of 
Quaternary climatic oscillations. The long‐term persistence of refugial populations in 
a large continuous refugium has resulted in a homogenous pattern of genetic struc‐
ture among populations, while highly structured evolutionary lineages characterize 
the restriction of refugial populations to smaller subrefugia. These mechanisms have 
resulted in the identification of hot spots of biodiversity within putative glacial refu‐
gia. We studied phylogeography of Potamon ibericum (Brachyura: Potamidae) in the 
drainages of the western Caucasus biodiversity hot spot (i.e., Colchis and the 
Caucasus) to infer spatial genetic structure and potential refugia for a freshwater 
crab in this region. These areas have traditionally considered as a refugium due to the 
presence of Tertiary relict species. We integrated population genetic data and his‐
torical demographic analysis from cytochrome oxidase subunit I sequences and pale‐
oclimatic data from species distribution modeling (SDM). The results revealed the 
lack of phylogeographic structure and provided evidence for demographic expan‐
sion. The SDM presented a rather homogenous and large refugium that extended 
from northeast Turkey to Colchis during the last glacial period. In contrast to these 
findings, previous phylogeographic study on P. ibericum of the eastern Caucasus bio‐
diversity hot spot (i.e., Hyrcania) identified multiple independent refugia. By combin‐
ing these results, we explain the significance of this important western Palearctic hot 
spot of biological diversity in shaping the geographic distribution of intraspecific ge‐
netic diversity in a freshwater taxon.
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1  | INTRODUC TION

Climatic oscillations during the glacial‐interglacial cycles of the 
Pleistocene period had a significant influence on the present‐day 
patterns of biological diversity (Hewitt, 2000,2004). The most 
noticeable changes in the distribution pattern and population size 
of many species occurred during the last glacial maximum (LGM; 
23–18 ka BP; Hewitt, 2004; Provan & Bennett, 2008) when the 
temperate‐adapted species of the Northern Hemisphere endured 
the adverse climatic conditions in southern glacial refugia (Stewart, 
Lister, Barnes, & Dalén, 2010). In the western Palearctic realm, the 
southern European refugia and their postglacial recolonization 
routes are quite well understood (reviewed in Taberlet, Fumagalli, 
Wust‐Saucy, & Cosson, 1998; Schmitt, 2007), but the patterns of 
spatial genetic structuring, colonization, and microendemism in 
the Near East refugia have been obscured behind the sparse phylo‐
geographic evidence. However, these areas have long been consid‐
ered as refugia due to the presence of many Tertiary relict species. 
Nevertheless, the importance of phylogeographic patterns in the 
Near Eastern refugia is now becoming more well defined and appre‐
ciated. (Erichsen et al., 2018; Neiber & Hausdorf, 2015; Pokryszko, 
Cameron, Mumladze, & Tarkhnishvili, 2011; Tarkhnishvili, 2014; 
van Riemsdijk et al., 2017; Wielstra et al., 2010).

For many temperate species, hot spots of intraspecific genetic 
diversity have been identified within putative glacial refugia. Hot 
spots, areas where diversity has evolved (Petit et al., 2003), are sup‐
posed to be generated from two main evolutionary scenarios. Under 
the first scenario, the formation of hot spots for wide‐ranging tem‐
perate species would be a matter of long‐term survival of large, de‐
mographically stable populations in homogeneous refugia (Hewitt, 
2000; Taberlet et al., 1998). Other fine‐scale phylogeographic 

evidence from populations within glacial refugia demonstrated that 
hot spots of genetic diversity may reflect the cycles of allopatric frag‐
mentation within subrefugia which were followed by secondary con‐
tact and admixture of divergent lineages (Byrne, 2008; Canestrelli, 
Bisconti, Sacco, & Nascetti, 2014; Fijarczyk et al., 2011; Gomez & 
Lunt, 2007; Wielstra, ZieliŃski, & Babik, 2017). The second scenario 
suggests that refugia would represent evolutionary “melting pots” 
(Canestrelli, Aloise, Cecchetti, & Nascetti, 2010). Understanding the 
geographic distribution of hot spots of intraspecific diversity is not 
only important to enhance our knowledge in addressing fundamen‐
tal questions in biogeography and speciation, but also is crucial for 
developing management plans for species conservation (Canestrelli 
et al., 2014 and citations therein).

Potamon ibericum (Bieberstein, 1808) is a primary freshwater 
crab with a relatively wide range of distribution from river systems 
of the southern Caspian Sea to the Caucasus, through the river 
systems of the southern and western Black Sea, to the northern 
Aegean Sea in its western limit (Figure 1a; Brandis, Storch, & Turkay, 
2000). Potamid crabs have limited dispersal abilities and seawater, 
large dry terrestrial landscapes and mountain ranges can act as 
their dispersal barrier (Parvizi, Naderloo, Keikhosravi, Solhjouy‐
Fard, & Schubart, 2018; Shih, Zhou, Chen, Chien, & Ng, 2011; Yeo 
et al., 2008). They also lack pelagic larval dispersal, which intensi‐
fies their prolonged restriction to a freshwater system (Yeo et al., 
2008) and consequently influences the spatial genetic pattern of 
their populations during colonization (Ibrahim, Nichols, & Hewitt, 
1996). Previous studies on P. ibericum revealed the presence of at 
least seven separately evolving lineages within its total distribu‐
tion (Jesse, Grudinski, Klaus, Streit, & Pfenninger, 2011; Parvizi et 
al., 2018). The eastern distribution of P. ibericum extends into two 
glacial refugia (Figure 1a): Hyrcania, located along the southern 

F I G U R E  1   (a) The known distribution 
of Potamon ibericum species complex; the 
crosshatched region shows the Caucasus 
biodiversity hot spot and different 
groupings represent the geographic 
distribution of mtDNA lineages (see 
Supporting Information Figure S1 for 
more details); (b) Statistical parsimony 
network showing the frequency of each 
unique COI haplotype. The smallest 
colored circles represent single sample. (c) 
Sampling sites and geographic distribution 
of P. ibericum haplotypes in the western 
Caucasus. Numbers correspond to the 
localities as defined in Table 1. Pie charts 
on each locality represent the proportion 
of different haplotypes sampled by 
location

(a)

(b) (c)
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Caspian Sea, and Colchis, in the western part of the southern 
Caucasus (Tarkhnishvili, Gavashelishvili, & Mumladze, 2012). These 
areas altogether form the Caucasus biodiversity hot spot that is 
among the 25 most biologically rich hot spots worldwide, with 
considerable levels of endemism (Myers, Mittermeier, Mittermeier, 
Fonseca, & Kent, 2000). A recent phylogeographic study of P. iberi-
cum inhabiting the drainages of Hyrcania elucidated three parapat‐
rically distributed lineages, including western, central, and eastern 
Caspian lineages with substantial genetic diversity and strong pop‐
ulation structure within each lineage (Parvizi et al., 2018). These 
findings showed that the Caspian Sea level fluctuations during 
glacial‐interglacial periods contributed to the cyclic expansion and 
contraction of populations from several independent local refugia 
in the southern Caspian Sea. Accordingly, the Hyrcanian region of 
the Caucasus biodiversity hot spot includes multiple Pleistocene 
refugia for the freshwater crab, P. ibericum. However, the impor‐
tance of the Colchis region of the Caucasus biodiversity hot spot 
in shaping intraspecific genetic diversity of P. ibericum remains 
unclear. This study will provide evidence on whether the Colchis 
region harbored a single homogenous refugium or multiple inde‐
pendent local refugia for this taxon, or whether postglacial recolo‐
nization occurred from outside the Colchis. In addition, geographic 
structuring of genetic lineages in freshwater organisms, with spe‐
cial consideration of the vicinity of headwaters of the drainages in 
this area, is of importance and has remained unclear.

In the present study, we aim to understand the population 
genetic structure and demographic history of P. ibericum in the 
western parts of the Caucasus biodiversity hot spot, including 
the lowlands of Colchis and, to a smaller extent, the rivers that 
originate from highlands of the Greater and Lesser Caucasus. 
These areas include the refugial forests of the Caucasus as well 
as the sites where cold/arid condition and steppe vegetation were 
dominant during the LGM (Denk, Frotzler, & Davitashvili, 2001; 
Pokryszko et al., 2011). Due to the survival of Tertiary relict spe‐
cies, these areas are “traditionally” seen as important refugia. 
Nevertheless, more phylogeographic evidence will be essential to 

describe local refugia, postglacial dispersal dynamics, and levels of 
endemism in different taxa, especially the understudied freshwa‐
ter crabs of these regions. By integrating genetic data from cyto‐
chrome oxidase subunit I (COI) sequences and paleoclimatic data 
from species distribution modeling, we explain the importance of 
the western Caucasus biodiversity hot spot in forming the intra‐
specific genetic diversity in P. ibericum.

2  | MATERIAL S AND METHODS

2.1 | Sample collection and laboratory methods

Our studied area included eight localities across Georgia, cover‐
ing the major geographic range of Potamon ibericum in this region 
(Figure 1a,c; Table 1). These localities included the drainage systems 
of both the Caspian Sea and the Black Sea. We used leg muscle 
tissue, preserved in absolute ethanol at −20°C, to extract genomic 
DNA, using a Puregene protocol (Gentra Systems, Minneapolis). 
Partial fragments of the cytochrome oxidase subunit I gene were 
amplified by polymerase chain reaction with primer pairs COL6 
(Schubart, 2009) and COH10Po (Parvizi et al., 2018) following the 
procedures as described in Keikhosravi, Fratini, and Schubart (2015). 
The amplified products were sequenced by Macrogen (Seoul, South 
Korea). We read and manually corrected the resulting DNA se‐
quences with Chromas v.2.6.2 (http://technelysium.com.au) and 
used the MUSCLE algorithm in MEGA 6 (Tamura, Stecher, Peterson, 
Filipski, & Kumar, 2013) to align the sequences and check amino 
acid translation for the presence of stop codons. Sequences of the 
different haplotypes have been deposited in the GenBank (http://
www.ncbi.nlm.nih.gov) under accession numbers MK570620–28.

2.2 | Genetic diversity and population structure

We evaluated diversity parameters including number of haplotypes 
(h), haplotype diversity (Hd), nucleotide diversity (π), and number 
of segregating sites (S) in DnaSP v.5.10 (Librado & Rozas, 2009) 

TA B L E  1  Sampling details and genetic diversity indices for COI dataset (869 bp) of Potamon ibericum in the western Caucasus

No.
Local 
population

Drainage 
system latitude longitude N h S HD (SD) π

1 Jochostskali Black Sea 41.566267° 41.687067° 12 3‐H1‐H2‐H7 2 0.318 (0.164) 0.00038

2 Khanistskali Black Sea 42.016017° 42.821033° 5 2‐H2‐H6 1 0.6 (0.175) 0.00069

3 Dzirula Caspian Sea 42.092734° 43.422219° 10 3‐H2‐H7‐H8 2 0.644 (0.101) 0.00087

4 Dzama Caspian Sea 42.011050° 43.955750° 8 2‐H2‐H3 1 0.25 (0.18) 0.00029

5 Aragvi Caspian Sea 42.113717° 44.780317° 13 3‐H2‐H7‐H9 2 0.295 (0.156) 0.0005

6 Ilto Caspian Sea 42.053250° 45.125350° 5 3‐ H2‐H4‐H5 3 0.8 (0.164) 0.00029

7 Jvari Black Sea 42.697566° 42.039862° 12 3‐H1‐H2‐H7 2 0.667 (0.091) 0.00091

8 Rioni Black Sea 42.584317° 43.430117° 10 2‐H1‐H2 1 0.356 (0.159) 0.00041

Total 75 9 5 0.534 (0.064) 0.00074

Notes. Numbers correspond to the locality numbers as presented in Figure 1c.
h: number of haplotypes; Hd: haplotype diversity; N: number of samples; S: number of segregating sites; π: nucleotide diversity.

http://technelysium.com.au
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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for each local population and for the complete dataset. Overall 
mean p‐distance was analyzed with MEGA v.6 (Tamura et al., 2013). 
We computed pairwise ΦST with 1,000 permutations in Arlequin 
v.3.5.2.2 (Excoffier & Lischer, 2010) to investigate population dif‐
ferentiation pattern among local populations (only populations 
with n ≥ 8 were included). Analysis of molecular variance (AMOVA) 
was performed to test for the genetic partitioning of the two main 
drainages (i.e., the Caspian Sea and the Black Sea drainage sys‐
tems) by computing among drainage differences (ΦCT) and 1,000 
permutations to test for significance in Arlequin v.3.5.2.2 (Excoffier 
& Lischer, 2010). In order to test if the haplotype distribution of 
P. ibericum in the Colchis and western Caucasus regions demon‐
strates a phylogeographic structure (NST > GST; Pons & Petit, 1996), 
we calculated population differentiation (GST) and the estimate of 
genetic differentiation for phylogenetically ordered alleles (NST) 
with 10,000 permutations in SPADS 1.0 (Dellicour & Mardulyn, 
2014).

We inferred relationships among P. ibericum COI haplotypes by a 
parsimony‐based haplotype network using TCS 1.21 with 95% cut‐
off (Clement, Posada, & Crandall, 2000). The haplotype network was 
edited and visualized in tcsBU (dos Santos, Cabezas, Tavares, Xavier, 
& Branco, 2016). In order to identify the relationship of the obtained 
haplotypes from this study with the previously recognized evolution‐
ary lineages of P. ibericum species complex (Jesse et al., 2011; Parvizi 
et al., 2018), we retrieved COI sequences from GenBank (accession 
numbers MG729705–MG729772; HQ223156.1; HQ223158.1; 
HQ223162.1–67.1; HQ223201.1) and reconstructed a phylogenetic 
tree with Bayesian Inference (BI) by using MrBayes 3.2.2 (Ronquist 
et al., 2012). We used HKY+I as best‐fitting model of nucleotide 
substitution (previously selected with Jmodeltest 2.1.4, Darriba, 
Taboada, Doallo, & Posada, 2012) and conducted the BI analy‐
sis with four Markov Chain Monte Carlo (MCMC) simulations that 
were run for 5 000 000 generations and parameters sampled from 
each chain every 5000th generation. Potamon kreation and Potamon 
setiger were used as out‐groups (accession numbers HQ223177.1; 
HQ223198.1). The initial 25% of trees were discarded as burn‐in and 
the remaining trees were used to construct the Bayesian consen‐
sus tree. The resulting tree was viewed and edited in FigTree v.1.4.2 
(Rambaut, 2014).

2.3 | Demographic history

We tested for population expansion patterns in the Colchis and west‐
ern Caucasus regions by estimating Fu's Fs (Fu, 1997) and Tajima's D 
(Tajima, 1989), and their significance through coalescent simulations 
with 1,000 permutations in DnaSP v.5.10 (Librado & Rozas, 2009). 
Fu's Fs statistic is based on the distribution of haplotypes, while 
Tajima's D is based on the frequency of mutations (Ramírez‐Soriano, 
Ramos‐Onsins, Rozas, Calafell, & Navarro, 2008). In addition, we 
calculated the distribution of pairwise differences (i.e., mismatch 
distribution; Rogers & Harpending, 1992) to trace population size 
change in DnaSP v.5.10 (Librado & Rozas, 2009). In order to measure 
the smoothness of the mismatch distribution, which discriminates 

between sudden population expansion or constant population size, 
we calculated Harpending's raggedness index (Harpending, 1994; 
Ramos‐Onsins & Rozas, 2002) and its significance level with 1,000 
coalescent simulations in DnaSP v.5.10 (Librado & Rozas, 2009).

To assess how mtDNA effective population size changed 
through time, we analyzed historical demographics by using coales‐
cent‐based Bayesian skyline plot (BSP) in BEAST 2.4.7 (Bouckaert et 
al., 2014). We selected F81+I as the best model of nucleotide substi‐
tution and considered a substitution rate of 2.33% per MY for COI 
(according to Schubart, Diesel, & Hedges, 1998). We set a strict clock 
model as prior and ran three independent MCMC analyses with 50 
million generations, sampling every 5,000 steps, to verify the consis‐
tency of results. The results in log and tree files of independent runs 
were combined using LogCombiner v.2.4.7 (Rambaut & Drummond, 
2017). The initial 25% of the samples were discarded as burn‐in. 
We tested the convergence of all parameters and produced BSP in 
Tracer 1.6 (Rambaut, Suchard, Xie, & Drummond, 2014).

2.4 | Distribution modeling

To illustrate the suitable habitats and distribution modeling of 
Potamon ibericum, 13 localities were used. We retrieved localities’ in‐
formation from our field observations and from Brandis et al. (2000). 
Nine bioclimatic variables, including mean diurnal range (bio2), tem‐
perature annual range (bio7), mean temperature of warmest quarter 
(bio10), mean temperature of coldest quarter (bio11), precipitation 
seasonality (bio15), precipitation of wettest quarter (bio16), precipi‐
tation of driest quarter (bio17), precipitation of warmest and coldest 
quarter (bio18 and bio19), and altitude layer as a topology predic‐
tor, were applied to construct the current potential distribution of 
the species. The variables were selected based on the biology of the 
species, the previous species distribution modeling (SDM) on P. iberi-
cum (Parvizi et al., 2018), and correlations among the 19 bioclimatic 
predictors and altitude layer. The correlation analysis was assessed 
by ENMTools version 1.4.3 (Warren, Glor, & Turelli, 2010) in order to 
avoid highly correlated and redundant variables.

To generate past distribution modeling of the species, the cli‐
matic data were extracted from the general circulation model (GCM) 
including the Last Glacial Maximum (LGM) scenario. The Community 
Climate System Model (CCSM4) and the earth system model 
(MIROC‐ESM) were used as the general atmospheric circulation 
models for this scenario. All the data were downloaded as raster for‐
mat with 30 arc second for current layers and 2.5 min spatial resolu‐
tion for the LGM. All the variables were extracted from WorldClim 
dataset (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005).

Models were generated by Maxent version 3.3.3k as a general‐
purpose machine learning method (Phillips, Anderson, & Schapire, 
2006; Phillips, Dudík, & Schapire, 2004). Maxent is known to sim‐
ulate species distribution using the minimum number of records 
and generate accurate species distribution models (Proosdij, Sosef, 
Wieringa, & Raes, 2016). In all models’ settings, 10 cross‐validate 
replicated run types were used. Also, we set 10,000 randomly 
background points as pseudo‐absence in the entire studied area, 

info:ddbj-embl-genbank/MG729705
info:ddbj-embl-genbank/MG729772
info:ddbj-embl-genbank/HQ223156.1
info:ddbj-embl-genbank/HQ223158.1
info:ddbj-embl-genbank/HQ223162.1–67.1
info:ddbj-embl-genbank/HQ223201.1
info:ddbj-embl-genbank/HQ223177.1
info:ddbj-embl-genbank/HQ223198.1
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1,000 maximum iterations with a 10−5 convergence threshold and 
regularization multiplier of 1. Logistic output format was set to de‐
scribe a continuous probability of presence which ranges between 
0 and 1 (Phillips & Dudík, 2008). The average maps of each analysis 
were used as final outputs to identify the potential distribution of 

P. ibericum. The final maps in ASCII format were visualized and pro‐
cessed using ArcGIS version 10.2® (ESRI, 2013).

To evaluate the predicted models, a threshold‐independent re‐
ceiver operating characteristic (ROC) analysis (Elith et al., 2006) was 
used. Considering the ranges of the area under the curve (AUC) 

Locality Rioni Dzama Jvari Dzirula Aragvi

Dzama –0.013 (ns) 0

Jvari 0.088 (ns) 0.112 (ns) 0

Dzirula 0.305*  0.287*  –0.006 (ns) 0

Aragvi 0.008 (ns) –0.004 (ns) –0.013 (ns) 0.129 (ns) 0

Jochostskali –0.032 (ns) –0.042 (ns) 0.038 (ns) 0.214*  –0.072 (ns)

*Significant values (p > 0.05) from 1,000 permutations, ns indicates nonsignificant values and lack of 
genetic structuring. 

TA B L E  2  Pairwise ΦST values 
representing COI genetic structuring 
between the studied localities (n ≥ 8) of 
Potamon ibericum in the western Caucasus

F I G U R E  2   (a) Unimodal distribution of the numbers of pairwise COI differences among Potamon ibericum individuals in the western 
Caucasus. (b) Bayesian skyline plot shows population size change over time. Maximum time in the X‐axis is the root height mean, dotted 
vertical line represents lower 95% highest posterior density (HPD). Horizontal line represents the median parameter estimate with the 95% 
HPD interval
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derived from ROC plot, AUC is valued from 0 to 1. A model with an 
AUC value higher than 0.75 (Pearce & Ferrier, 2000) indicated accept‐
able and robust model. The importance of each predictor was explored 
by Jackknife analysis of regularized training gain.

The lowest presence threshold (LPT) (Pearson, Raxworthy, 
Nakamura, & Townsend Peterson, 2007) as a threshold‐dependent 
test, was applied to represent the locations that were at least as 
suitable as those where the species has been recorded (Hernandez, 
Graham, Master, & Albert, 2006; Pearson et al., 2007).

3  | RESULTS

3.1 | Phylogeographic pattern and demographic 
history

Overall, moderate haplotype diversity (0.534, SD = 0.064), low mean 
nucleotide diversity (0.00074), and shallow evolutionary divergence 
(mean uncorrected p‐distance = 0.00007) were observed in Potamon 

ibericum within the studied area. We found only nine unique haplo‐
types among 75 COI sequences (Figure 1b and Table 1). There is a 
clear evidence of gene flow between the studied rivers as revealed 
by pairwise ΦST values (Table 2). Also, hierarchical AMOVA did not 
show significant genetic partitioning between the two main drain‐
ages of the region (COI among‐drainages variance = –2.98%, df = 1, 
FCT = –0.029, p = 0.5). The lack of phylogeographic structure was 
approved from phylogeographic structure analysis (NST = 0.1728, 
GST = 0.1785, p = 0.48).

The phylogeographic reconstruction of P. ibericum revealed that 
the haplotypes of Colchis and western Caucasus are clustered with 
the previously recognized haplotypes of P. ibericum tauricum from 
the localities Hemsin and Goreme in northeast Turkey (Supporting 
Information Figure S1). These haplotypes altogether correspond to 
the “Eastern Black Sea lineage” of the P. ibericum species complex 
(see Parvizi et al., 2018).

The evidence of population expansion was provided by the de‐
mographic analyses. Negative values of Fu's Fs (–5.6, p = 0.003) and 

F I G U R E  3  Species distribution 
modeling predictions of Potamon ibericum 
of the western Caucasus, representing 
distribution models of present and the 
Last Glacial Maximum (LGM) based 
on Community Climate System Model 
(CCSM4) and Model for Interdisciplinary 
Research on Climate (MIROC)
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Tajima's D (–1.1, p = 0.1) tests support an excessive number of rare 
haplotypes as a result of a recent population expansion (Fu and Li, 
1993; Fu, 1997). Nevertheless, the nonsignificant Tajima's D re‐
stricted our inference about demographic expansion based on this 
analysis. The distribution of pairwise haplotype differences was 
skewed to the left, which supports a sudden population expansion 
hypothesis (Figure 2a). Additionally, positive and statistically non‐
significant Harpending's raggedness index failed to reject sudden 
demographic expansion in the region (r = 0.1, p = 0.14). A Bayesian 
skyline plot showed an increase in the mtDNA effective population 
size toward the present with a marked expansion which began at 
about 25,000 years BP (Figure 2b).

3.2 | Distribution modeling

The generated models based on 13 presence records of the west‐
ern Caucasus performed well and presented good models with a 
Maxent‐generated AUC evaluation. The potential distribution mod‐
els of P. ibericum showed good AUC test value, with 0.92 ± 0.01 and 
0.90 ± 0.01 for training and test data, respectively. Furthermore, the 
binomial omission test with the lowest presence threshold was sta‐
tistically significant and the test omission rates did not exceed 5%.

According to the Jackknife analysis of regularized training gain 
(Supporting Information Figure S2), when used in isolation, precip‐
itation of driest quarter (bio17) was the strongest predictor. The 
next important variable is precipitation of coldest quarter (bio19). 
Following these two variables, the species was also influenced by 
mean temperature of coldest quarter (bio11), precipitation of wet‐
test quarter (bio16), precipitation seasonality (bio15), and altitude.

Under current bioclimatic conditions (Figure 3), the model pre‐
dicts highly suitable areas along the Black Sea coasts and the drain‐
ages of the Greater and Lesser Caucasus. This fits well with the 
current distribution of P. ibericum in these regions. The projection of 
the model over the LGM layers (Figure 3) represented high habitat 
suitability along the Black Sea coasts and Colchis region irrespective 
of the global circulation models.

4  | DISCUSSION

4.1 | Population structure, demographic history and 
glacial refugia

There is relatively little known about the intraspecific diversity 
and population demography of Potamon ibericum in the western 
Caucasus. The last comprehensive study on the zoogeography and 
taxonomy of potamid crabs (Brandis et al., 2000) provided only one 
record of P. ibericum in Natanebi, Georgia, and two records from an 
undetermined Caucasian country. Accordingly, the present study is 
the first comprehensive phylogeographic study of a potamid crab in 
this region.

Although we found private haplotypes (H3, H4, H8, H9) in four 
localities, including Dzirula, Dzama, Aragvi, and Ilto, the overall lack 
of geographic and population genetic structure was confirmed in the 

studied area. Most of the haplotypes are present in more than one 
population (Figure 1c), which implies extensive gene flow among 
populations. Freshwater crabs have limited dispersal abilities, are 
unable to surmount terrestrial, marine and mountainous barriers, 
and are highly philopatric and restricted to a freshwater system even 
for their lifetime (Daniels, Gouws, & Crandall, 2006; Poettinger and 
Schubart, 2014; Shih et al., 2011; Yeo et al., 2008). However, popu‐
lations from nearby drainages can disperse over short land bridges 
during periods of heavy rainfall which will result in an invariant pop‐
ulation genetic structure within a drainage system, as it was previ‐
ously reported for freshwater crabs of the family Potamonautidae 
(Daniels, Stewart, & Cook, 2002; Daniels, Stewart, & Gibbons, 
1998,1999), Pseudothelphusidae (Schubart, Rivera, Crandall, & Santl, 
2011) and Potamidae (Keikhosravi et al., 2015). Some studies have 
also suggested that freshwater crabs can potentially disperse over 
short terrestrial barriers under high humidity conditions (Gherardi, 
Tarducci, & Vannini, 1988; Phiri & Daniels, 2014). The considerable 
shared polymorphism of P. ibericum among the rivers of Colchis and 
western Caucasus confirms the possibility of gene flow within a 
drainage system. The nonsignificant genetic partition between the 
two main drainages, the Caspian Sea Basin and the Black Sea Basin, 
determined by hierarchical AMOVA. AMOVA results also strongly 
support that different drainages cannot act as a barrier to disper‐
sal if environmental variables, such as precipitation, temperature 
and topographic conditions, are in the favor of unconstrained gene 
flow in P. ibericum of the western Caucasus (Supporting Information 
Figure S2; see SDM results). Such inference can also be drawn from 
the continuity of suitable habitats for P. ibericum in the studied area 
under the current climate scenario (Figure 3). It is worth noting that 
when all studied individual crabs share a quite recent common ances‐
try (inferred from low pairwise ΦST values and the star‐like shape of 
the haplotype network) and when the evidence of recent and rapid 
demographic expansion in the region is pronounced, it would not be 
implausible to observe genetic homogeneity across a relatively small 
and homogeneous landscape like the Colchis and western Caucasus. 
A thorough genetic sampling would unravel true haplotype diversity 
across this region.

We found congruent evidence of a recent and rapid demographic 
expansion from different demographic analyses, including negative 
and significant Fu's Fs, unimodal mismatch distribution (Figure 2a), 
and positive and nonsignificant Harpending's raggedness index. The 
analyses of population genetic indices, including moderate haplotype 
diversity, low nucleotide diversity, and shallow genetic divergence 
also imply a recent and rapid population expansion. The coalescent‐
based BSP shows relatively slight increase in female effective pop‐
ulation size during the LGM, which is followed by a rapid postglacial 
expansion (Figure 2b). Moreover, SDM, in line with molecular find‐
ings, shows the maintenance of highly suitable habitats for P. iberi-
cum along the eastern and southeastern coasts of the Black Sea and 
in Colchis (Figure 3). The area of predicted species presence during 
the LGM varies between circulation models; nevertheless, it has 
been suggested that for temperate forest species of the Caucasus, 
the MIROC climatic simulation provides a more realistic pattern of 
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the LGM climate rather than the CCSM simulation (Tarkhnishvili et 
al., 2012). Due to their complex geography and peculiar topogra‐
phy, the eastern coasts of the Black Sea are well‐known refugia for 
many plant and animal taxa (Denk et al., 2001; Kikvidze & Ohsawa, 
2001, Pokryszko et al., 2011; Sochor & Trávníček, 2016; Tarasov et 
al., 2000; Wielstra et al., 2013). Our results altogether strongly sup‐
port that Colchis and western Caucasus served as a glacial refugium 
for the freshwater crab, P. ibericum. Although some studies imply 
multiple, independent glacial forest refugia in these areas (Neiber & 
Hausdorf, 2015; Tarkhnishvili, Thorpe, & Arntzen, 2000), our results 
suggest a homogeneous and large refugium along the eastern Black 
Sea coast.

The major forest refugium (MFR) is an area between the west‐
ern Lesser Caucasus and northeast Turkey which, based on pale‐
ontological data, harbored a homogeneous refugium during the 
LGM (see Mumladze, Tarkhnishvili, & Murtskhvaladze, 2013). 
Phylogeographic studies on the Caucasian Salamander, Mertensiella 
caucasica (see Tarkhnishvili et al., 2000), and the large endemic 
Caucasian snail, Helix goderdziana (see Mumladze et al., 2013), have 
shown that the ancestors of these taxa survived in the MFR. Based 
on the phylogenetic reconstruction of the P. ibericum species com‐
plex, the Colchis and western Caucasus haplotypes clustered to‐
gether with individuals from northeast Turkey, forming the Eastern 
Black Sea lineage, without revealing any phylogeographic break 
in this region (Figure 1a and Supporting Information Figure S1). 
Additionally, suitable habitats for P. ibericum were uninterruptedly 
available during the LGM in these areas (Figure 3). Therefore, our 
results imply that the ancestral Eastern Black Sea lineage of P. iberi-
cum survived in a homogeneous refugium that extended from 
Colchis to the MFR. These areas are among the few regions in the 
western Palearctic where mixed broadleaf forests and warm and 
humid condition were dominant during the LGM as a consequence 
of warm and humid winds across the Black Sea, while northern, 
southern, and eastern areas were characterized by extreme cold or 
arid condition with steppe vegetation (Denk et al., 2001; Pokryszko 
et al., 2011). Here we present evidence concerning the notion that 
the presence of a rather homogenous and large refugium in the 
northeast Turkey and Colchis can be inferred from those species 
“confined to,” but not “restricted within” these areas (Pokryszko et 
al., 2011).

4.2 | Intraspecific genetic diversity of P. ibericum 
in the Caucasus biodiversity hot spot

The Caucasus biodiversity hot spot connects two distinct zoo‐
geographic regions of the western Palearctic: the Euro‐Siberian 
and Irano‐Turanian (Zazanashvili, Sanadiradze, Bukhnikashvili, 
Kandaurov, & Tarkhnishvili, 2004). This region encompasses the 
mountain ranges of the Greater and Lesser Caucasus and the Alborz 
mountains in the southern Caspian Sea. Generally, biodiversity is 
often higher in mountainous regions because mountains provide 
topographic complexities and ecological gradient which can af‐
fect diversification and endemism (Hoorn, Mosbrugger, Mulch, & 

Antonelli, 2013; Noroozi et al., 2018). Accordingly, species diversity 
and endemism are remarkably high in the Caucasus biodiversity hot 
spot. In addition, the presence of two important western Palearctic 
glacial forest refugia, Colchis and Hyrcania, has contributed to the 
evolution of divergent lineages and considerable levels of intraspe‐
cific diversity.

The interaction between climatic fluctuations during the 
Pleistocene and landscape features of the Caucasus biodiver‐
sity hot spot have initiated the microevolutionary processes 
that shaped the current phylogeographic structure of P. ibericum 
in this region. Following postglacial expansions, the northern 
coasts of the Black Sea and the drainages of the central Caucasus 
were colonized from Colchis and the MFR, while the populations 
within a Hyrcania refugium colonized westward through the 
drainages of Azerbaijan. Although, there is still lack of informa‐
tion on the genetic pattern and the LGM geographic ranges of 
P. ibericum in the Azerbaijan region, our single genetic sample 
from Karabakh, Azerbaijan (voucher specimen SMF 2730, un‐
published data) suggests a Hyrcanian origin of populations in this 
region. Our findings together with previous study on P. ibericum 
suggest a pattern of “refugia‐within‐refugia” in the Hyrcanian re‐
gions of the Caucasus biodiversity hot spot, in contrast to a large 
homogenous refugium in the Colchis region. In order to clarify 
the phylogeographic breaks and the spatial distribution of evo‐
lutionary lineages of potamids in the Caucasus biodiversity hot 
spot, we recommend that future studies pursue a more thorough 
investigation of the drainages of Azerbaijan and incorporate vari‐
able nuclear markers.
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