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Abstract: There is growing evidence of long-term cardiovascular sequelae in children after in utero
exposure to preeclampsia. Maternal hypertension and/or placental ischaemia during pregnancy
increase the risk of hypertension, stroke, diabetes, and cardiovascular disease (CVD) in the offspring
later in life. The mechanisms associated with CVD seem to be a combination of genetic, molecular,
and environmental factors which can be defined as fetal and postnatal programming. The aim
of this paper is to discuss the relationship between pregnancy complicated by preeclampsia and
possibility of CVD in the offspring. Unfortunately, due to its multifactorial nature, a clear dependency
mechanism between preeclampsia and CVD is difficult to establish.
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1. Introduction

According to the World Health Organization (WHO), preeclampsia (PE) is an impor-
tant problem in obstetrics, affecting 2–8% of pregnancies worldwide [1]. It is one of the
most common causes of maternal morbidity and mortality [2].

PE usually presents after 20 weeks of gestation with characteristic signs of hyperten-
sion and proteinuria. Clinical symptoms include headache, blurred vision, epigastric pain,
nausea, and vomiting. Laboratory investigations show a wide range of abnormalities such
as thrombocytopenia, raised serum creatinine, and abnormal liver function tests, mainly
raised liver enzymes [3].

Physiological pregnancy is characterized by high blood volume, low vascular resis-
tance, and blood pressure decrease, especially in the first and second trimesters. In PE,
on the other hand, low circulating blood volume, high blood pressure, and high vascular
resistance are observed [4]. There are many theories of the pathogenesis of PE, but none
of them reveals a definitive trigger for the condition. The improper recognition by the
maternal immune system of fetal alloantigens deriving from the father (immunological
theory), damage to the endothelium, insufficient blood flow through the placenta, in-
creased vascular reactivity, imbalance between prostacyclin and thromboxane production,
and decreased glomerular filtration rate with water and sodium retention, are all taken
into consideration as possible causes of PE. The common element of these theories is
generalized vasospasms [5,6].

Two manifestations of PE, fetal and maternal, have been proposed. The fetal manifes-
tation mainly affects primigravidas with a normal body mass index (BMI). It results from
abnormal trophoblast invasion, insufficient placental perfusion and vascular endothelial
damage and may present as early as the second trimester. An earlier occurrence of PE is an
unfavorable prognostic sign for both the mother and the fetus. This is because fetal form is
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more often complicated by placental insufficiency. Intrauterine growth restriction (IUGR),
hypoxia and intrauterine death, prematurity and placental abruption can occur [5].

The maternal form is more often seen in pregnant women after 34 weeks of gestation
with risk factors such as insulin resistance, obesity, diabetes mellitus, chronic hypertension,
dyslipidemia, hyperhomocysteinemia, autoimmune diseases, and thrombophilias. Mater-
nal systemic inflammatory response, exacerbated in PE, is responsible for microvascular
damage. In this form, clinical symptoms predominate in pregnant woman [7].

The American Heart Association estimates that in 2017, about 17.8 million people died
from cardiovascular disease (CVD), which constitutes the primary cause of global mortality.
Every year, more people die from CVD than from any other disease [8]. Strategies to
prevent CVD are urgently required as the global obesity epidemic grows and will increase
the proportion of people at risk of CVD.

The aim of this paper is to discuss the relationship between pregnancy complicated
by PE and the possibility of CVD in the offspring.

2. Consequences for Offspring
2.1. Prematurity

Prematurity is the birth of a baby between 22 and 37 weeks of gestation [9]. Children
born prematurely are more likely to die, have worse educational scores, and are at risk
of neurological disorders, chronic lung disease, blindness, deafness, and are hospitalized
more often. The risk of these adverse outcomes increases as the gestational age at birth
decreases [10]. Nearly 10% of the general population is born prematurely [11,12], with PE
responsible for 36% of these cases [13]. Babies born from pregnancies complicated by PE
are also more likely to suffer from complications of preterm birth.

PE is one of the main iatrogenic causes of preterm labor, as delivery remains the only
definitive treatment for this condition [14]. As many as 23% of pregnancies in the United
States are finished due to PE [15].

Prematurity is the leading cause of neonatal morbidity and mortality worldwide [16].
Harmon et al. noticed an increased fetal death rate of 5.2 per 1000 among pregnancies with
PE versus 3.6 per 1000 in uncomplicated pregnancies [17]. Relative risk of stillbirth was
markedly increased with early onset of PE. At 26 weeks of gestation, there were 11.6 still-
births per 1000 pregnancies with PE, compared to 0.1 stillbirths per 1000 uncomplicated
pregnancies. This risk declined with the progress of pregnancy but still remained much
higher than in pregnancy without PE [17].

2.2. Blood Pressure

There is growing body of evidence of long-term cardiovascular sequelae in mothers
following preeclamptic pregnancies [4,18,19]. After in utero exposure, their children also
appear to suffer this risk. In 1993, the Barker hypothesis was proposed [20]. Due to this
concept, hypertension and/or placental ischaemia during pregnancy increase the risk of
hypertension, stroke, diabetes, and CVD in the offspring later in their lives [20,21].

A systematic review performed by Davis et al. showed a 2.39 mm Hg increase in
systolic blood pressure (SBP) and a 1.35 mm Hg increase in diastolic blood pressure (DBP) in
children and youngsters born to preeclamptic mothers [22]. Davis et al. also analyzed four
studies of term-born offspring which presented nearly the same blood pressure increase,
with a 2.26 mmHg higher SBP, and a 1.48 mmHg higher DBP [22].

A similar meta-analysis was performed by Andraweera et al., who investigated
15 articles focusing on SBP and 14 on DBP. The offspring of preeclamptic mothers showed
higher mean values of both SBP and DBP, with a 5.17 mm Hg and 4.06 mm Hg increase
respectively, compared to offspring of non-preeclamptic mothers [23]. These findings
confirm a significant increase in mean blood pressure of children born to preeclamptic
mothers, though the results for particular studies were not the same for each meta-analysis.

A 2.4 mmHg rise in SBP is connected with increased mortality from ischemic heart
disease by 8% and from stroke by 12% [24]. Moreover, youngsters with in utero exposure
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have 2.5 times higher risk to have scores above the 75th centile of global lifetime risk
(QRISK) [25]. Thirty percent of 20-year-old adults with high blood pressure were born from
mothers who suffered from pregnancy-induced hypertension. Another study indicated
that they were more likely to take antihypertensive medications before 50 years of age [26].

Lazdam et al. observed that early-onset PE was associated with higher risk of hyper-
tension in mothers and their offspring [27]. The authors carried out a 60 year follow-up
of the Helsinki birth cohort that showed a 1.1–1.5 increased relative risk of hypertension
in the offspring [27]. Data collected at 6 to 13 years after pregnancy showed higher SBP
in these children compared to children born from mothers with late-onset PE [27]. These
findings agree with those of another study which found a 6 mmHg increase in peripheral
and central SBP in children born from mothers with early-onset PE [22].

PE with vasculotoxic factors that cross the placenta causes defects in the systemic
and pulmonary circulation of the offspring. This leads to exaggerated hypoxic pulmonary
hypertension, and may be responsible for premature CVD in the systemic circulation later in
life [28]. A comprehensive British cohort of maternal-offspring pairs included 3537 mothers
and their 4654 children [29]. This study found an association between both gestational
hypertension and PE, and higher values of blood pressure in offspring. However, the study
did not confirm any associations with flow-mediated dilatation, radial pulse wave velocity,
brachial distensibility coefficient, lipids, apolipoproteins, or inflammatory markers [29].

2.3. Body Mass Index and Lipids

A meta-analysis of 8 studies with 39,611 children, adolescents, and young adults
showed a significant increase of 0.57 kg in the offspring of preeclamptic women. The
assessment of term-born children, including only newborns with a weight greater than
2.5 kg, also presented a significant increase in BMI [22].

A Turkish study assessed 60 neonates born by mothers with PE. The authors ob-
served significantly higher aortic intima-media thickness (aIMT) measurements and serum
triglyceride levels [30]. Concentrations of serum HDL were significantly lower in the
group of PE children. The authors confirmed that children born to mothers with PE had
significantly higher aIMT with lipid alterations. This may play a role in the pathogenesis
of atherosclerosis in adult life [30].

Andraweera et al., in their evaluation of risk factors for increased CVD in children
exposed to PE in utero, found 0.36 kg/m2 greater BMI in these children [23].

In contrast to increased BMI in later life, neonates born from pregnancies complicated
by PE have significantly lower birth weights. The study by Odegard et al. revealed a 5%
reduction in birth weight among newborns after in utero exposure to PE. This reduction
was greater in cases of severe disease and even 23% with early onset [31]. The general risk
of being small for gestational age (SGA) was four times higher in infants born from PE
pregnancies than from the controls [31].

Little data is available regarding cholesterol levels in offspring. Kvehaugen et al.
assessed endothelial function and circulating biomarkers in women and their children after
PE [32]. They found significantly higher median serum concentrations of total cholesterol
in children exposed to PE when compared to children from uncomplicated pregnancies [32].
Andraweera et al. did not confirm the above findings. The authors described no differences
in total cholesterol, triglycerides, LDL, or HDL levels between offspring from PE and
uncomplicated pregnancies, regardless of the use of cord blood [23].

2.4. Congenital Heart Disease

Congenital heart disease (CHD) is a major cause of infant morbidity and mortality,
and also the most common birth defect [33–37]. CHD is diagnosed in up to 3% of all
children and constitutes about 28% of all major congenital anomalies [34,37]. The possible
connection between CHD and PE has been examined. A study performed in Nigeria
found CHD in 21.2% newborns from women with PE and in 3.3% newborns from healthy
mothers by the end of the 4th week of life [38]. Furthermore, isolated atrial and ventricular
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septal defects were observed in 4.4% of the offspring of women with PE [38]. A similar
conclusion was postulated by Auger et al., from Canada [39]. The authors confirmed the
association between preterm birth and PE/eclampsia (24.1%) as well. A large cohort study
was performed in Denmark from 1978 to 2011 [40]. It included almost 2 million pregnancies
without chromosomal abnormalities lasting at least 20 weeks of gestation. In this study, the
risk of CHD was increased 7-fold in offspring from pregnancies with early-onset PE and
3-fold in offspring from pregnancies with late-onset disease [40].

2.5. Long-Term Cardiovascular Morbidity

Long-term cardiovascular effects in offspring were studied by researchers from Israel
in a cohort of 231,298 deliveries, with 3.2% pregnancies complicated by mild PE and 0.9%
by severe PE [41]. The CVDs recorded in this study included cardiomyopathy (n = 38),
hypertension (n = 153), pulmonary heart disease (n = 32), arrhythmias (n = 303), heart
failure (n = 84), and other CVDs (n = 559). The authors observed a linear relationship
between CVD and PE, with the risk increasing with the severity of PE [41]. This study
was the first to demonstrate an association between PE and arrhythmias or heart failure.
However, it did not confirm such a relationship between PE and either cardiomyopathy or
pulmonary heart disease [41]. Importantly, severe PE was found to be an independent risk
factor for long-term cardiovascular morbidity only in term-born children [41]. This stands
in contrast to previous studies which have shown a higher frequency of cardiovascular
morbidity in offspring from pregnancies complicated by the early onset of severe PE before
34 weeks of gestation [27,42].

2.6. Cardiac Structure and Function

Most papers focus on hypertension in offspring from pregnancies complicated by
PE, whilst a few deal with changes in the heart itself. A study by Timpka et al. using
echocardiography in 1592 adolescent subjects reported a concentric type of remodeling,
which means increased relative wall thickness (RWT) and reduced left ventricular end-
diastolic volume (LVED) [43]. The above findings were confirmed by another study,
although it targeted the offspring of women with hypertension, not PE. By 3 months
of age, children had a significantly greater left (LVMI) and right ventricular mass index
(RVMI) as well as smaller RVED [44]. It is worth noting that real-time 3-dimensional
echocardiographic assessment in the second and third trimesters revealed a larger right
ventricle (RV) than left ventricle (LV) in normal fetuses compared to CHD fetuses, but
without any differences between the LV and RV in mass, stroke volume, cardiac output, and
combined cardiac output [45]. As both studies have shown changes in cardiac structure,
there is no evidence of cardiac dysfunction [43,46].

Diastolic dysfunction has been reported in two other studies. Left ventricle diastolic
dysfunction (LVDD) was detected in premature infants born to preeclamptic mothers in
the first week after delivery [47]. The older group of children, aged 5–8, was found to
have smaller hearts, increased heart rates, and increased late diastolic velocity at the mitral
valve attachments [48]. The study of Zhou et al. seemed to confirm that there is diastolic
impairment of LV in fetuses during PE pregnancy with or without IUGR. This was even
more pronounced with preterm delivery at less than 34 gestational weeks or stillbirth [49].

However, the study performed by Hoodboy et al. did not find any differences between
groups of children exposed and unexposed to PE, assessing over 20 parameters including
cardiac morphometry, systolic function, diastolic function, and timing assessment [50]. No
significant associations were observed between groups and cardiac parameters, both in
function and structure, including basal septal hypertrophy, basal septal longitudinal strain,
LV mass, and LV mass Z score. Their results seem to be inconsistent with existing data
concerning changes in cardiac structure and function in children exposed to PE.

It is worth considering why such changes occur in children’s hearts and what con-
sequences this may have in the future. It can be stated that a poorly perfused placenta
could lead to oxidative stress within fetal tissues and in the placenta itself. Moreover, the
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developing heart of the affected child has to deal with increased impedance because of
poorly constructed placental microcirculation [50]. The other issue is the development of
the heart itself. Over the first and second trimesters, intensive replication of cardiomy-
ocytes occurs, resulting in heart growth with concomitant increase in microcirculation. The
third trimester is the period of maturation of the cardiomyocytes, i.e., replication of the
nuclear genome in the absence of mitosis, leading to increased nuclear gene content and
polyploidy, known as endoreduplication [51]. By the time of birth, 70% to 80% of these
cells are terminally differentiated. They are no longer proliferating, practically completing
the division process within a few months [52]. Of course, the heart continues to develop
after this period, but through cardiomyocyte hypertrophy. Fetal myocardial maturation
is influenced by two factors: hormone-mediated regulation and, more interestingly, the
hemodynamic load [53]. Increased systolic load leads to a short spurt of proliferation
among fetal cardiomyocytes and the following cessation of proliferation [54]. Instead, there
is a steady increase in terminal differentiation [54]. A reduced number of cardiomyocytes
and their accelerated maturation leads to abnormal hypertrophy, resulting in altered heart
chamber anatomical characteristics [54]. These experimental data were obtained in large
mammals [54]. It can be conditionally assumed that similar processes occur in human
fetuses, and the early onset of PE may further adversely affect heart formation.

2.7. New Risk Factors

Well-known CVD risk factors include elevated blood pressure, increased BMI, and
elevated levels of circulating lipoproteins. Augmentation index (Aix), microvascular
function, and suprasystolic pulse pressure (ssPP) are indicated as novel risk factors. Aix
is a parameter connected with vascular stiffness. Many studies suggest an association
between Aix and CVD risk and higher mortality rate [55–57].

The impairment of microvascular function occurs long before the onset of clinical
symptoms [58]. This function may be assessed using the two parameters of peak perfusion:
time to max (TM), and recovery time (time to half, TH2) using laser Doppler perfusion
monitoring [59]. With regard to ssPP, this risk factor is associated with obesity in children.
This parameter is a non-invasive measure of vascular stiffness [60].

Plummer et al. focused on the hemodynamic profiles of children aged 8-10 years
exposed to PE or gestational hypertension in utero [59]. Children exposed to PE had
significantly increased Aix, ssPP, TM, and TH2. There was no difference in peak perfusion.
This study defined these parameters according to the childrens’ gender. Female offspring
delivered by preeclamptic mothers had significantly decreased Aix and ssPP, but increased
TM and TH2 when compared to male children. Males had increased vascular stiffness,
whereas females were characterized by endothelial dysfunction [59].

The increased values of Aix and ssPP, as well as an impairment of microcirculation
observed in children born from pregnancies with PE, are probably connected with the fact
that larger vessels may be less compliant [59]. In spite of increasing TM, there was no
difference in peak perfusion. According to Plummer et al. this observation may suggest an
impaired post-ischaemic vasodilation and delay in the endothelial independent myogenic
response [59]. The authors did not observe a decrease in peak perfusion associated with
the increased recovery, but did observe that endothelial function was compensating for
the endothelial independent pathway and the beginnings of vascular stiffness in the
bigger vessels [59]. One of the most important findings in this study was the fact that
microvascular impairment progressed more slowly in the cases of children delivered by
mothers with gestational hypertension compared to those from pregnancies complicated
by PE [59]. Nevertheless, the authors did not observe any differences between children
born from uncomplicated pregnancies and pregnancies complicated by PE or gestational
hypertension, nor male between female children. Only the recovery time was decreased in
the case of females [59].

The carotid artery intima-media thickness (cIMT) is an essential parameter of CVD [60],
which is measured in B-mode ultrasound examination of the carotid tree as a typical double
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line of the arterial wall [61]. This marker of subclinical atherosclerosis is an estimated
valid tool to assess cardiovascular risk in adults. It could also be a useful parameter for
such assessment in children [62]. Lazdam et al. showed that offspring from hypertensive
pregnancies had significantly greater cIMT [63]. However, it should be emphasized that
prematurity, which is usually connected to PE pregnancies, is an independent risk factor for
increased cIMT [64]. cIMT varies with age, sex, and race in adults, and as such, establishing
the causality of PE and vascular remodeling may be difficult [62].

2.8. Kidneys

A kidney dysfunction represents another important aspect in the analysis of car-
diovascular risks in preeclamptic offspring. The renal impact on the blood pressure is
well-defined. PE often coexists with low birth weight and prematurity, which in turn is
associated with the reduced number of nephrons and cardiomyocytes [65]. This reduction
in the number of nephrons decreases the rate of renal filtration. Consequently, more blood
circulates in the bloodstream, and this translates into higher pressure [66]. There is also
an issue of the glomerular hypertrophy and reduced renal vascular dilation, which may
contribute to hypertension [67,68].

Many of the proposed mechanisms of hypertension observed in these offspring are due
to the function and development of the kidneys [69]. Since human nephrogenesis occurs in
the third trimester of pregnancy, when PE is often the most staggering, it is reasonable that
the resulting changes in blood flow and circulatory factors may adversely affect the fetal
kidneys. PE is known to be the major cause of IUGR and preterm labor [70,71]. IUGR, due
to uteroplacental insufficiency, results in a nephron deficiency and glomerular hypertrophy
in both male and female rats [72]. Human studies appear to support these data because
infants with SGA, which is often associated with placental insufficiency, have an increased
risk of end-stage kidney disease compared to controls [73].

Physiologically, fetal renal arteries are high-resistance vessels. After birth, there is
a rapid decrease in their resistance, with a simultaneous increase in blood flow through
the kidneys [74]. Moreover, the glomerular filtration rate in the fetal kidneys begins
to increase rapidly from 34 weeks of gestation [75]. It is associated with an increase in
urinary flow rate in the fetus [74]. During early renal development, the renin-angiotensin
system is upregulated, which leads to the vasoconstriction of the renal arteries [76]. Fetal
serum renin concentrations are consistently higher than those of the mother. There is also
an increase in sympathetic tone in the renal vessels, as well as an increased sensitivity
to adenosine in the fetus compared to that of the neonate, which results in an increase
in the tone of the renal arteries. These vasoconstricting effects are counterbalanced by
vasodilatory peptides including prostaglandins, nitric oxide (NO) and the Kallikrein–Kinin
system [74]. Meanwhile, placental hypoxia in PE may result in dysfunction of the maternal
vascular endothelium and the disturbance of the balance of vasoactive compounds [77,78].
This vasoactive imbalance includes the increased formation of vasoconstrictors (such as
thromboxane A2 [TxA2] and endothelin), decreased formation of vasodilators (including
prostacyclin [PC] and NO), and increased vascular sensitivity to angiotensin II [79,80]. It
seems that levels of TxA2 and PC in the fetal circulation increase during the course of
PE [81]. Levels of TxA2 and PC are measured indirectly using the levels of their stable
metabolites thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6KPG), respectively.
The ratio of TXB2 / 6KPG in fetal umbilical cord blood in PE is lower compared to normal
pregnancy, which suggests an increased relative concentration of PC [74,81]. In the adult
population, it has been shown that abnormalities in renal artery resistance are associated
with the progression of renal dysfunction in patients with chronic kidney disease [82].
Moreover, placental insufficiency in PE is associated with a reduction in the number of
nephrons in the offspring [83], which may affect their long-term health.
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3. Pharmacotherapy

A meta-regression analysis of randomized clinical trials by Magee et al. assessed
42 trials in 3892 women. The authors revealed that antihypertensive therapy could in-
crease the risk of IUGR [84]. They also described a significant relationship between the
antihypertensive-induced decrease in mean arterial pressure and the risk of SGA or lower
birth weight. Heida et al. showed an association between intrauterine labetalol exposure
and hypotension in neonates. They observed this effect in 29.1% of children exposed to
labetalol in utero vs. 7.4% in controls [85]. More research is needed into the effects of the
treatment used in the mothers with PE.

4. Molecular Aspects

A relationship between CVD in the offspring and pregnancies complicated by PE
seems to be a combination of genetic, molecular, and environmental factors that can
be defined as fetal and postnatal programming. The primary mechanism for the onset
of chronic disease may be altered by changes in the homeostatic set points, including
the hypothalamic–pituitary–adrenal axis, vascular structure and sensitivity, the rennin–
angiotensin–aldosterone system (RAAS), and metabolic and hormonal aspects [86–89]. It is
well-known that vascular and endothelial dysfunctions play a key role in the development
and progression of PE [90]. Rodent studies showed that vascular function was altered in the
offspring of mice with soluble fms-like tyrosine kinase-1 (sFlt-1) [87]. An anti-angiogenic
status was found in the adulthood of PE offspring with elevated plasma levels of sFlt-1
and soluble endoglin associated with elevated blood pressure [91].

The kidneys can be programmed by a variety of perinatal insults, including placental
insufficiency [92]. Singh et al. observed that reduced excretory capacity may be due to
impaired expression of renal sodium transporters and channels [93]. In addition, RAAS and
sympathetic nervous system programming may also be connected to hypertension in the
offspring. Placental insufficiency has been reported to affect RAAS programming [94,95].
Animal models have revealed increased sensitivity to angiotensin II [96]. Furthermore, the
blockade of RAAS by the angiotensin-converting enzyme inhibitor (ACEI) or angiotensin
II type 1 receptor blockers may prevent the development of hypertension in the adult
offspring of female rats with reduced uterine perfusion pressure (RUPP) [97,98]. It could
also confirm the involvement of RAAS in the fetal programming.

Prenatal exposure to elevated testosterone levels in mothers with PE is associated with
increased blood pressure in the female offspring during adulthood [89,99,100]. Animal
studies have revealed that elevated androgen concentrations during pregnancy may lead
to hyperactivity of the hypothalamic–pituitary–gonadal axis and changes in the expres-
sion of steroid genes in the gonads of the offspring, resulting in increased testosterone
production [101,102]. More et al. observed that prenatal exposure to elevated testosterone
concentrations was associated with a decrease in CYP11B2 expression, leading to a reduc-
tion in the plasma aldosterone levels in the offspring, but the plasma volume and balance
between sodium and potassium ions were normal [103]. However, the plasma concentra-
tions of vasopressin and angiotensin II, the vascular response to angiotensin II, and blood
pressure were all increased in female offspring exposed to higher testosterone levels, which
may serve as a compensatory response to maintain plasma volume and the sodium and
potassium balances. Henley et al. demonstrated that levels of adrenocorticotropic hormone
and cortisol were significantly increased in the 17-year-old offspring of women with PE,
which is suggestive of the reprogramming of the hypothalamic–pituitary–adrenal axis [86].

Models of IUGR and maternal protein restriction have shown alterations of RAAS in
offspring subjected to these insults in utero [69]. Woods et. al. used the maternal protein
restriction model in order to show that the intrarenal RAAS is suppressed in the male
offspring of these pregnancies, and to propose a link between the reduction of developed
glomeruli and later hypertension [104]. They also observed the relative protection of the
female offspring subjected to the same gestational insult [105]. Hypersensitivity of blood
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pressure to angiotensin II has also been demonstrated in the offspring of the RUPP-IUGR
model in a similarly sex-specific fashion [69,106].

Nitric oxide is supposed to contribute to the epithelial–mesenchymal transformation
in the endocardial cushion areas, myocardial survival and angiogenesis, and myocardial
remodeling. Impaired NO production in the heart causes structural defects that lead
to heart failure and increased mortality. It is known that the inhibition of NO during
cardiac development promotes bicuspid aortic valve defects, congenital septal defects, and
increased cardiomyocyte apoptosis [69].

The vasodilatory response of normal pregnancy is highly dependent upon NO, with
the levels of both NO and NO synthase (NOS) shown to be consistently increased in both
animals and humans with normal pregnancies [69]. NO, by diffusing into the vascular
smooth muscle, binding guanylyl cyclase, and producing the second messenger molecule
cyclic guanosine monophosphate (cGMP), activates protein kinase G to reduce the calcium
concentration and cause vasodilation [107]. The endothelium is also a major source of NO,
from the NOS isoform called endothelial NOS (NOS3) [108]. NO production, as measured
by its metabolic end products (NOx) and NOS3 expression, seems to be decreased in the
animal models of PE, while in humans NO production is likely to be reduced only in
the kidney [69,109,110].

5. Genetics
5.1. Hereditary Factors

The hypotheses of both Barker and the Developmental Origins of Health and Dis-
ease are based on the concept that exposure to negative conditions during fetal life at a
critical time of organ development may increase risk of disease in later life [20,111,112].
These theories may be also emphatically confirmed in the case of PE. The pathogenesis
of PE includes excessive inflammation, ischemia/perfusion, angiogenic imbalances, and
disturbances in the renin angiotensin system [113,114].

In PE, the placenta releases factors such as sFlt and sEng into the maternal circulation
due to stress caused by ischemia/hypoxia [115,116]. This usually results in the formation
of harmful reactive oxygen species, inflammation, and lipid peroxidation [117–122]. A
study using a mouse model mimicking placental PE showed that overexpression of sFlt
causes elevated SBP and DBP, but only in male offspring [123]. Researchers in Turkey
indicated that oxidative stress and damage of DNA were present in the cord blood of
children born from PE pregnancies [124], which is well-known that it causes a reduction in
fetal growth [125]. Another experimental study conducted on rats showed inflammation
and atherosclerosis in offspring exposed to hypoxia [126].

Hu et al. found changes in the immune system, with fewer T regulatory cells (Treg)
persisting into early childhood [127]. Taking into account the fact that inflammation
plays a significant role in the pathogenesis of atherosclerosis and CVD, this process of
immune-programming in PE pregnancies may lead to CVD [128–131].

Advances in genetic technology have made a major impact on clinical practices [132].
Clinical genome and exome sequencing are crucial tools in the implementation of prog-
nostic and individualized medicine [133]. There is a growing body of research looking
for links between genetics and PE [134]. A study from 2004 examined Swedish families
with gestational hypertension and PE [135]. Mothers–daughters and full sisters shared
more similarities than half-sisters regarding PE and gestational hypertension. The authors
concluded that heritability estimated for PE in 31%, for gestational hypertension in 20%,
and for pregnancy induced hypertension in 28% of cases [135].

The incidence of PE is higher in mothers who were born from pregnancies complicated
by PE, in fathers who previously conceived a pregnancy complicated by PE with another
partner [136], and in fathers who themselves were born from a pregnancy complicated
by PE [137]. A study examined the genetic dissection locus on chromosome 2q22, more
specifically single nucleotide polymorphisms (SNPs) [138]. Johnson et al. identified
four independent SNPs to be significantly associated with PE. Furthermore, these SNPs
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exhibited evidence of pleiotropy with several quantitative CVD-related traits, indicating
that these two diseases share underlying genetic mechanisms [138].

Another study analyzed the connection between SNPs in the insulin receptor gene (INSR)
and PE. In this study, the prevalence of the INSR AA genotype was significantly higher in
preeclamptic women when compared to those with uncomplicated pregnancies [139].

A study performed in the Mexican population also confirmed these findings [140].
Australian researchers found a relationship between SNPs and CVD risk factors, such as
body weight, blood triglycerides, and glucose levels [141]. In the future, there is a hope for
eliminating such SNPs by turning off their expression using genetic engineering techniques.

Modern methods were also applied in a study investigating plasma angiopoietin 1
(ANG-1) concentrations. The TT genotype of the angiopoietin 1 gene (ANGPT1) was linked
with increased plasma ANG-1 levels compared to the AA genotype. The study determined
that the prevalence of the TT genotype was significantly decreased in women with PE. This
indicates that certain genotypes may play a protective role against pregnancy complications,
such as PE, hypertensive SGA, and the abnormal uterine artery Doppler indices [142].

Another preliminary study demonstrated that the homozygosity of the CC allele of
the KDR-604T/C polymorphism in both the father and the infant is associated with higher
risk of PE and SGA [137]. KDR-604 is the main receptor for vascular endothelial growth
factor A, which regulates the development of the placental vasculature [137].

Inherited polymorphisms, epigenetic factors, and altered microRNA expression play
a crucial role in the development of a normal pregnancy, as well as in pregnancies com-
plicated by PE [143–145]. Maternal levels of sFlt-1 were correlated with human umbilical
vein endothelial cells (HUVECs). HUVECs from affected offspring had lower vasculogenic
capacity, which was associated with reduction in microvascular density in the early post-
natal period [144]. This highlights the role of genetic factors in the pathogenesis of PE.
Yu et al. found that the upregulation of miR-146a expression in HUVECs was associated
with reduced postnatal vasculogenesis. They also confirmed that miR-146a levels may be a
good predictor of microvascular development during the first three months of life [145].

5.2. Epigenetics

Epigenetics refers to changes in gene expression that are not related to the nucleotide
sequence [146]. Epigenetics deals with processes such as DNA methylation, non-coding
RNA (ncRNA) particles, and modifications of histones. There is a growing evidence of the
decisive influence of environmental and lifestyle factors on gene expression and disease
development. Moreover, epigenetic modifications are used as diagnostic and prognostic
biomarkers. The methylation of DNA is responsible for many fundamental molecular
phenomena, such as imprinting and inactivation of the X-chromosome, repression of trans-
posable elements, aging, and carcinogenesis [146]. It is well known that gene repression
is associated with the hypermethylation of CpG islands and the regulatory regions of
promoters. Histone modifications affect chromatin packing and the disponibility of the
transcription factors to the regulatory DNA sequences [147]. In turn, the members of
non-coding RNA (ncRNA) family influence protein transcription, translation, trafficking,
and folding [146].

The work studying children born SGA very prematurely or following in vitro fertiliza-
tion suggested that epigenetics was a potential explanation for environmentally induced
changes in gene expression in offspring [148].

Several important papers have been published on the role of epigenetics in placental
gene modification. Hogg et al. examined the association between early-onset PE and the
altered methylation of cortisol-signaling genes and steroidogenic genes in the placenta [149].
Cortisol was present in the placentas of preeclamptic women but was not in those from
normal pregnancies [149–152]. All these data showed that dysregulation of the placental
epigenome plays an important role in an early onset PE [149]. Blair et al. examined
20 chorionic villi samples from early onset PE placentas and 20 gestational age-matched
controls from preterm births [153]. They identified 38,840 CpG sites with significant
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alterations in DNA methylation patterns in early onset PE [153]. Interestingly, there are
a number of studies that identified different methylation patterns in placentas from both
normal and complicated pregnancies. These genes include those involved in trophoblast
proliferation, differentiation, and invasion [154,155].

Epigenetics gives a potential explanation for the mechanism linking PE to CVD in
offspring and its further transmission to subsequent generations [156,157]. Moreover, when
assessed in the placenta or cord blood, changes in DNA methylation may be potential
biomarkers of exposure to PE. This is because these changes occur not only in the placenta
but are also found in fetal cells [154,155,158].

The role of genetics and epigenetics has been convincingly confirmed in the discussion
above. Other influences besides genetic factors, should be taken into account, considering
the origins of PE. Jayet el al. observed that offspring exposed to PE showed significant
pulmonary and systemic vascular dysfunction [28]. This stands in contrast to a study from
Norway by Alsnes et al. in which siblings had nearly identical risk factors for hypertension,
although they were born after a normotensive pregnancy [159]. This study included
210 siblings, which is significantly more than in the previously mentioned paper. Another
important issue is the severity of PE and the duration of fetal exposure to PE. Longer
time from diagnosis of PE to delivery was associated with increased long-term morbidity
in offspring [160].

Environmental and lifestyle factors such as diet, sedentary lifestyle, lack of exercise,
and low socio-economic status play an important role in the morbidity of parents and their
children. These outcomes can be connected following the same patterns of lifestyle running
in those families. The aforementioned factors could also be responsible for morbidity from
CVD in these children. Genetic factors alone can be liable for developing the disease in
adulthood. The theory of the second hit states that other factors are also required to unmask
“programmed” hereditary impairments. Pregnancy itself can be considered a second hit in
the pathogenetic chain leading to PE, and then CVD in the further life of both the mother
and her offspring [161,162].

6. Conclusions

The analysis of selected scientific reports shows that there is a correlation between
PE and its effect on the long-term development of cardiovascular disorders. The evidence
presented supports the view that this correlation negatively affects, among other things,
cardiovascular morbidity, blood pressure, and BMI. It also affects the development of
congenital heart disease and kidney disorders, which further increases the risk of CVD
development. However, due to inconsistencies in the analyzed studies, there are still factors,
such as lipids or the structure and function of the heart itself, that require in-depth research.

It is difficult to establish a clear causal mechanism between PE and CVD, due to its
multifactorial nature. The role of genetics and epigenetics has been confirmed. Neverthe-
less, it is impossible to accurately determine the severity and type of inherited susceptibility
to the disease. It should be remembered that the pharmacotherapy used during pregnancy
carries the risk of adverse effects on the fetus.

Finally, environmental aspects, unhealthy lifestyle, and low socio-economic status over-
lap with other risk factors for PE, thereby distorting the assessment of correlation with CVD.

Therefore, in order to develop effective preventive strategies for this target group, i.e.,
both the screening tests model and the standards of treatment, further studies of the effect
of PE on the cardiovascular risk in children are essential.
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